organic compounds
of 4,4′-(ethene-1,2-diyl)dipyridinium bis(3-carboxybenzenesulfonate)
aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: chezlg@zju.edu.cn
In the title molecular salt, C12H12N22+·2C7H5O5S−, the complete dication is generated by crystallographic inversion symmetry. In the anion, the sulfonic acid group is deprotonated and the dihedral angle between the planes of the carboxylic acid group and the benzene ring is 12.41 (11)°. In the crystal, the anions are linked into inversion dimers by pairs of O—H⋯O hydrogen bonds, which generate R22(16) loops. The dications link the anion dimers into [10-2] chains via N—H⋯O hydrogen bonds.
Keywords: crystal structure; 3-sulfobenzoate; 1,2-bis(pyridin-4-yl)ethylene; hydrogen bonding; 4,4′-(ethane-1,2-diyl)dipyridinium.
CCDC reference: 1029402
1. Related literature
For general background to salts of 1,2-bis(pyridin-4-yl)ethylene and sulfobenzoates and their applications, see: Ma & Zhu (2014); Zheng & Zhu (2014); Lesniewska et al. (2014); Danylyuk et al. (2010); Zhang & Zhu (2006, 2007).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1029402
10.1107/S1600536814022673/hb7296sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814022673/hb7296Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814022673/hb7296Isup3.cml
A mixed solution of 3-sulfobenzoate sodium (0.224 g,1 mmol) in 10 ml CH3OH and 1,2-bis(pyridin-4-yl)ethylene(0.091 g, 0.5 mmol) in 8 ml of CH3CN was stirred for one hour and set aside for slow evaporation at room tempereture. After two days, yellow plates were obtained and collected by filtration.
The nitrogen and carboxylate H atoms were found in the Fourier map with fixed Uiso=0.08 Å2. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of C—H=0.93 Å (for Csp2) with Uiso=1.2Ueq(parent atom).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. View of the asymmetry unit of (I) showing displacement ellipsoids at the 50% probability level. Symmetry code: (i) 2–x, –y, 1–z. Fig. 2 The hydrogen-bonded chain of (I). |
C12H12N22+·2C7H5O5S− | Z = 1 |
Mr = 586.58 | F(000) = 304 |
Triclinic, P1 | Dx = 1.578 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4573 (5) Å | Cell parameters from 1621 reflections |
b = 7.8381 (6) Å | θ = 3.3–29.4° |
c = 11.3111 (9) Å | µ = 0.28 mm−1 |
α = 85.525 (6)° | T = 170 K |
β = 86.634 (6)° | Plate, yellow |
γ = 69.545 (7)° | 0.43 × 0.29 × 0.18 mm |
V = 617.22 (8) Å3 |
Oxford Diffraction Xcalibur (Atlas, Gemini Ultra CCD) diffractometer | 2182 independent reflections |
Radiation source: fine-focus sealed tube | 1899 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 25.1°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −8→8 |
Tmin = 0.888, Tmax = 0.951 | k = −8→9 |
3834 measured reflections | l = −13→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.4291P] where P = (Fo2 + 2Fc2)/3 |
2182 reflections | (Δ/σ)max = 0.001 |
187 parameters | Δρmax = 0.24 e Å−3 |
2 restraints | Δρmin = −0.42 e Å−3 |
C12H12N22+·2C7H5O5S− | γ = 69.545 (7)° |
Mr = 586.58 | V = 617.22 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.4573 (5) Å | Mo Kα radiation |
b = 7.8381 (6) Å | µ = 0.28 mm−1 |
c = 11.3111 (9) Å | T = 170 K |
α = 85.525 (6)° | 0.43 × 0.29 × 0.18 mm |
β = 86.634 (6)° |
Oxford Diffraction Xcalibur (Atlas, Gemini Ultra CCD) diffractometer | 2182 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1899 reflections with I > 2σ(I) |
Tmin = 0.888, Tmax = 0.951 | Rint = 0.025 |
3834 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 2 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.24 e Å−3 |
2182 reflections | Δρmin = −0.42 e Å−3 |
187 parameters |
Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.53 (release 17-11-2009 CrysAlis171 .NET) (compiled Nov 17 2009,16:58:22) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.19563 (7) | 1.18509 (7) | 0.82396 (4) | 0.02058 (17) | |
N1 | 1.2183 (2) | 0.1796 (3) | 0.13817 (15) | 0.0249 (4) | |
H1A | 1.254 (5) | 0.198 (5) | 0.0693 (13) | 0.080* | |
O1 | 0.3295 (2) | 1.2088 (2) | 0.90567 (12) | 0.0262 (3) | |
O2 | 0.0064 (2) | 1.2254 (2) | 0.87794 (13) | 0.0297 (4) | |
O3 | 0.1989 (2) | 1.2820 (2) | 0.70976 (13) | 0.0309 (4) | |
O4 | 0.6933 (2) | 0.4749 (2) | 0.56362 (13) | 0.0313 (4) | |
O5 | 0.5777 (2) | 0.7626 (2) | 0.48846 (14) | 0.0339 (4) | |
H5A | 0.656 (4) | 0.725 (5) | 0.430 (2) | 0.080* | |
C1 | 0.2852 (3) | 0.9481 (3) | 0.79837 (17) | 0.0197 (4) | |
C2 | 0.2567 (3) | 0.8244 (3) | 0.88595 (18) | 0.0242 (5) | |
H2 | 0.1840 | 0.8660 | 0.9543 | 0.029* | |
C3 | 0.3371 (3) | 0.6395 (3) | 0.87079 (19) | 0.0271 (5) | |
H3 | 0.3179 | 0.5567 | 0.9291 | 0.032* | |
C4 | 0.4461 (3) | 0.5766 (3) | 0.76930 (19) | 0.0258 (5) | |
H4 | 0.5019 | 0.4519 | 0.7603 | 0.031* | |
C5 | 0.4716 (3) | 0.7008 (3) | 0.68091 (17) | 0.0206 (4) | |
C6 | 0.3908 (3) | 0.8874 (3) | 0.69538 (17) | 0.0196 (4) | |
H6 | 0.4076 | 0.9706 | 0.6364 | 0.024* | |
C7 | 0.5925 (3) | 0.6311 (3) | 0.57261 (18) | 0.0231 (5) | |
C8 | 1.0500 (3) | 0.2889 (3) | 0.31413 (18) | 0.0246 (5) | |
H8 | 0.9812 | 0.3866 | 0.3592 | 0.029* | |
C9 | 1.0830 (3) | 0.1109 (3) | 0.36022 (17) | 0.0204 (4) | |
C10 | 1.1909 (3) | −0.0318 (3) | 0.29100 (18) | 0.0233 (5) | |
H10 | 1.2187 | −0.1522 | 0.3200 | 0.028* | |
C11 | 1.2553 (3) | 0.0070 (3) | 0.18050 (18) | 0.0255 (5) | |
H11 | 1.3260 | −0.0879 | 0.1338 | 0.031* | |
C12 | 1.1187 (3) | 0.3205 (3) | 0.20264 (19) | 0.0269 (5) | |
H12 | 1.0961 | 0.4394 | 0.1719 | 0.032* | |
C13 | 1.0020 (3) | 0.0799 (3) | 0.47750 (18) | 0.0228 (4) | |
H13 | 0.9494 | 0.1797 | 0.5238 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0253 (3) | 0.0180 (3) | 0.0175 (3) | −0.0069 (2) | 0.00549 (19) | −0.0025 (2) |
N1 | 0.0229 (9) | 0.0334 (11) | 0.0187 (9) | −0.0105 (8) | 0.0001 (7) | −0.0006 (8) |
O1 | 0.0315 (8) | 0.0256 (8) | 0.0249 (8) | −0.0138 (6) | 0.0056 (6) | −0.0080 (6) |
O2 | 0.0277 (8) | 0.0274 (9) | 0.0327 (9) | −0.0085 (7) | 0.0088 (6) | −0.0058 (7) |
O3 | 0.0460 (9) | 0.0195 (8) | 0.0206 (8) | −0.0048 (7) | 0.0085 (6) | −0.0004 (6) |
O4 | 0.0364 (9) | 0.0205 (8) | 0.0320 (9) | −0.0030 (7) | 0.0022 (6) | −0.0070 (7) |
O5 | 0.0473 (10) | 0.0223 (8) | 0.0260 (9) | −0.0066 (7) | 0.0134 (7) | −0.0033 (7) |
C1 | 0.0201 (10) | 0.0190 (10) | 0.0202 (10) | −0.0071 (8) | −0.0011 (7) | −0.0009 (8) |
C2 | 0.0275 (11) | 0.0283 (12) | 0.0199 (11) | −0.0139 (9) | 0.0025 (8) | −0.0023 (9) |
C3 | 0.0338 (12) | 0.0255 (12) | 0.0248 (11) | −0.0153 (9) | 0.0001 (9) | 0.0047 (9) |
C4 | 0.0311 (12) | 0.0181 (11) | 0.0291 (12) | −0.0094 (9) | −0.0012 (9) | −0.0030 (9) |
C5 | 0.0199 (10) | 0.0221 (11) | 0.0211 (11) | −0.0084 (8) | −0.0025 (8) | −0.0025 (8) |
C6 | 0.0224 (10) | 0.0199 (11) | 0.0180 (10) | −0.0091 (8) | 0.0004 (8) | −0.0008 (8) |
C7 | 0.0259 (11) | 0.0218 (11) | 0.0232 (11) | −0.0098 (9) | −0.0007 (8) | −0.0042 (9) |
C8 | 0.0271 (11) | 0.0228 (11) | 0.0222 (11) | −0.0063 (9) | 0.0012 (8) | −0.0042 (9) |
C9 | 0.0177 (10) | 0.0222 (11) | 0.0205 (10) | −0.0056 (8) | −0.0024 (7) | −0.0029 (8) |
C10 | 0.0233 (11) | 0.0215 (11) | 0.0235 (11) | −0.0059 (8) | 0.0016 (8) | −0.0027 (9) |
C11 | 0.0226 (11) | 0.0289 (12) | 0.0238 (11) | −0.0067 (9) | 0.0013 (8) | −0.0074 (9) |
C12 | 0.0269 (11) | 0.0253 (12) | 0.0282 (12) | −0.0089 (9) | −0.0030 (9) | 0.0015 (9) |
C13 | 0.0240 (11) | 0.0213 (10) | 0.0212 (11) | −0.0048 (8) | 0.0025 (8) | −0.0060 (8) |
S1—O2 | 1.4426 (15) | C4—C5 | 1.392 (3) |
S1—O3 | 1.4499 (15) | C4—H4 | 0.9300 |
S1—O1 | 1.4664 (15) | C5—C6 | 1.393 (3) |
S1—C1 | 1.781 (2) | C5—C7 | 1.497 (3) |
N1—C11 | 1.338 (3) | C6—H6 | 0.9300 |
N1—C12 | 1.339 (3) | C8—C12 | 1.370 (3) |
N1—H1A | 0.827 (10) | C8—C9 | 1.392 (3) |
O4—C7 | 1.200 (3) | C8—H8 | 0.9300 |
O5—C7 | 1.327 (3) | C9—C10 | 1.395 (3) |
O5—H5A | 0.855 (10) | C9—C13 | 1.464 (3) |
C1—C6 | 1.386 (3) | C10—C11 | 1.363 (3) |
C1—C2 | 1.392 (3) | C10—H10 | 0.9300 |
C2—C3 | 1.381 (3) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.386 (3) | C13—C13i | 1.324 (4) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
O2—S1—O3 | 113.77 (9) | C1—C6—C5 | 119.45 (18) |
O2—S1—O1 | 111.53 (9) | C1—C6—H6 | 120.3 |
O3—S1—O1 | 112.10 (9) | C5—C6—H6 | 120.3 |
O2—S1—C1 | 107.31 (9) | O4—C7—O5 | 123.92 (19) |
O3—S1—C1 | 106.65 (9) | O4—C7—C5 | 123.93 (19) |
O1—S1—C1 | 104.84 (9) | O5—C7—C5 | 112.14 (17) |
C11—N1—C12 | 121.56 (18) | C12—C8—C9 | 120.2 (2) |
C11—N1—H1A | 118 (3) | C12—C8—H8 | 119.9 |
C12—N1—H1A | 120 (3) | C9—C8—H8 | 119.9 |
C7—O5—H5A | 112 (2) | C8—C9—C10 | 118.08 (18) |
C6—C1—C2 | 120.52 (19) | C8—C9—C13 | 119.46 (18) |
C6—C1—S1 | 120.31 (15) | C10—C9—C13 | 122.45 (19) |
C2—C1—S1 | 119.08 (15) | C11—C10—C9 | 119.4 (2) |
C3—C2—C1 | 119.64 (19) | C11—C10—H10 | 120.3 |
C3—C2—H2 | 120.2 | C9—C10—H10 | 120.3 |
C1—C2—H2 | 120.2 | N1—C11—C10 | 121.0 (2) |
C2—C3—C4 | 120.50 (19) | N1—C11—H11 | 119.5 |
C2—C3—H3 | 119.7 | C10—C11—H11 | 119.5 |
C4—C3—H3 | 119.7 | N1—C12—C8 | 119.7 (2) |
C3—C4—C5 | 119.72 (19) | N1—C12—H12 | 120.1 |
C3—C4—H4 | 120.1 | C8—C12—H12 | 120.1 |
C5—C4—H4 | 120.1 | C13i—C13—C9 | 124.8 (2) |
C4—C5—C6 | 120.14 (18) | C13i—C13—H13 | 117.6 |
C4—C5—C7 | 119.23 (18) | C9—C13—H13 | 117.6 |
C6—C5—C7 | 120.59 (18) | ||
O2—S1—C1—C6 | 140.83 (16) | C7—C5—C6—C1 | −177.69 (17) |
O3—S1—C1—C6 | 18.56 (18) | C4—C5—C7—O4 | −11.6 (3) |
O1—S1—C1—C6 | −100.47 (16) | C6—C5—C7—O4 | 166.22 (19) |
O2—S1—C1—C2 | −42.65 (18) | C4—C5—C7—O5 | 169.47 (18) |
O3—S1—C1—C2 | −164.92 (15) | C6—C5—C7—O5 | −12.7 (3) |
O1—S1—C1—C2 | 76.05 (17) | C12—C8—C9—C10 | 1.6 (3) |
C6—C1—C2—C3 | 1.1 (3) | C12—C8—C9—C13 | −177.52 (19) |
S1—C1—C2—C3 | −175.44 (15) | C8—C9—C10—C11 | −1.8 (3) |
C1—C2—C3—C4 | 0.2 (3) | C13—C9—C10—C11 | 177.25 (18) |
C2—C3—C4—C5 | −1.3 (3) | C12—N1—C11—C10 | 0.6 (3) |
C3—C4—C5—C6 | 1.1 (3) | C9—C10—C11—N1 | 0.8 (3) |
C3—C4—C5—C7 | 178.94 (18) | C11—N1—C12—C8 | −0.9 (3) |
C2—C1—C6—C5 | −1.2 (3) | C9—C8—C12—N1 | −0.2 (3) |
S1—C1—C6—C5 | 175.28 (14) | C8—C9—C13—C13i | 169.0 (2) |
C4—C5—C6—C1 | 0.1 (3) | C10—C9—C13—C13i | −10.1 (4) |
Symmetry code: (i) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O3ii | 0.86 (1) | 1.85 (1) | 2.683 (2) | 163 (3) |
N1—H1A···O1iii | 0.83 (1) | 1.91 (1) | 2.727 (2) | 172 (4) |
Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) x+1, y−1, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O3i | 0.855 (10) | 1.854 (14) | 2.683 (2) | 163 (3) |
N1—H1A···O1ii | 0.827 (10) | 1.907 (12) | 2.727 (2) | 172 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y−1, z−1. |
Acknowledgements
We acknowledge support from the National Natural Science Foundation of China (grant No. 21073157).
References
Danylyuk, O., Leśniewska, B., Suwinska, K., Matoussi, N. & Coleman, A. W. (2010). Cryst. Growth Des. 10, 4542–4549. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lesniewska, B., Perret, F., Suwinska, K. & Coleman, A. W. (2014). CrystEngComm, 16, 4399–4405. Web of Science CSD CrossRef CAS Google Scholar
Ma, A. Q. & Zhu, L. G. (2014). RSC Adv. 4, 14691–14699. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, L.-P. & Zhu, L.-G. (2006). Acta Cryst. E62, o1529–o1531. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, J. & Zhu, L.-G. (2007). Acta Cryst. C63, o484–o486. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, X. F. & Zhu, L. G. (2014). J. Mol. Struct. 1065–1066, 113–119. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfobenzoate derivatives and their organic or coordination compounds are very interesting in material science, such as potential applications in fluorescence and catalytic fields (Ma & Zhu, 2014; Zheng & Zhu, 2014). Sulfobenzoates have two functional groups, sulfonate and carboxylate, and can coordinate to metal ions via versatile coordination modes or can form abundant hydrogen bonds due to they have five donors or acceptors. The 1,2-bis(pyridin-4-yl)ethylene derivatives have been widely used as bridge linkers in the coordination chemistry. several organic complexes with the 1,2-bis(pyridin-4-yl)ethylene and sulfobenzoate ligands have been reported, such as, 4,4'-ethylene-1,2-diyldipyridinium bis(4-carboxybenzenesulfonate) dihydrate (Zheng & Zhu, 2014), bis(4-(2-(pyridin-4-yl)vinyl)pyridinium) 4-sulfonatobenzoate trihydrate (Zhang & Zhu, 2006), and 4-(2-(pyridin-4-yl)ethenyl)pyridinium 2-carboxybenzenesulfonate (Zhang & Zhu, 2007). The title complound has 1:2 ratio of cation to anion without any water molecule (Fig. 1). The cation is protonated and the anion is partly deprotonated. Two pyridyl rings of the 4-(2-(pyridin-4-yl)ethenyl)pyridinium anion are coplanar and the whole cation is a big pi-conjugated system. Two anions are linked by O—H···O between sulfonate and carboxylate groups into a dimer and these anionic dimers interact with cations by N—H···O hydrogen bonds, generating a chain (Fig. 2).