organic compounds
of isobutylammonium hydrogen oxalate hemihydrate
aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bartosz.zarychta@uni.opole.pl
In the title hydrated molecular salt, C4H12N+·C2HO4−·0.5H2O, the O atom of the water molecule lies on a crystallographic twofold axis. The dihedral angle between the CO2 and CO2H planes of the anion is 18.47 (8)°. In the crystal, the anions are connected to each other by strong near-linear O—H⋯O hydrogen bonds. The water molecules are located between the chains of anions and isobutylamine cations; their O atoms participate as donors and acceptors, respectively, in O—H⋯O and N—H⋯O hydrogen bonds, which form channels (dimensions = 4.615 and 3.387 Å) arranged parallel to [010].
Keywords: crystal structure; isobutylammonium hydrogen oxalate hemihydrate; hydrated molecular salt; hydrogen bonding; materials engineering.
CCDC reference: 1029482
1. Related literature
Structure versus properties research is an important area in material engineering, see: Desiraju (2010, 2013). For the crystal structures of oxalic acid salts with aliphatic see: Dziuk et al. (2014a,b); Braga et al. (2012); Ejsmont (2006, 2007)); Ejsmont & Zaleski (2006a,b); MacDonald et al. (2001). For the characteristic structural motifs in ammonium dicarboxylate salts, see: Ali et al. (2012). For motifs of hydrogen bonds containing carboxylate anions, see: Rodríguez-Cuamatzi et al. (2005).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1029482
10.1107/S1600536814022697/hb7298sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814022697/hb7298Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814022697/hb7298Isup3.cml
Colourless prisms of (I) were grown at room temperature by slow evaporation of an aqueous solution containing isobutylamine and oxalic acid in a 1:1 stoichiometric ratio.
All H atoms attached to atoms O and N were located in difference electron density maps and were freely refined with isotropic displacement factors [O–H = 0.853 (15) & 0.988 (17) and N–H = 0.877 (15) - 0.959 (15) Å]. The remaining H atoms were positioned geometrically and treated as riding on their parent C atoms, for methine group with distance of 0.98 Å and Uiso (H) = 1.2Ueq(C), for methylene group with distance of 0.97 Å and Uiso (H) = 1.2Ueq(C), for methyl group with distance of 0.96 Å and Uiso (H) = 1.5Ueq(C), no
of their parameters.Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are shown as dotted lines. Fig. 2. The packing diagram of (I), viewed along the b axis, showing the intermolecular hydrogen-bonding scheme (dashed lines). |
2C4H12N+·2C2HO4−·H2O | F(000) = 744 |
Mr = 344.36 | Dx = 1.323 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1696 reflections |
a = 21.2425 (9) Å | θ = 3.8–26.0° |
b = 5.6341 (1) Å | µ = 0.11 mm−1 |
c = 16.5372 (6) Å | T = 100 K |
β = 119.141 (5)° | Prism, colourless |
V = 1728.69 (10) Å3 | 0.30 × 0.17 × 0.16 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer | 1370 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 26.0°, θmin = 3.8° |
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1 | h = −26→26 |
ω scan | k = −5→6 |
5536 measured reflections | l = −20→20 |
1696 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0414P)2 + 0.1361P] where P = (Fo2 + 2Fc2)/3 |
1696 reflections | (Δ/σ)max < 0.001 |
125 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
2C4H12N+·2C2HO4−·H2O | V = 1728.69 (10) Å3 |
Mr = 344.36 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 21.2425 (9) Å | µ = 0.11 mm−1 |
b = 5.6341 (1) Å | T = 100 K |
c = 16.5372 (6) Å | 0.30 × 0.17 × 0.16 mm |
β = 119.141 (5)° |
Oxford Diffraction Xcalibur diffractometer | 1370 reflections with I > 2σ(I) |
5536 measured reflections | Rint = 0.019 |
1696 independent reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.22 e Å−3 |
1696 reflections | Δρmin = −0.20 e Å−3 |
125 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | −0.06332 (5) | −0.08724 (18) | 0.31560 (7) | 0.0152 (2) | |
H1A | −0.0236 (8) | 0.019 (2) | 0.3483 (9) | 0.031 (4)* | |
H1B | −0.0747 (8) | −0.146 (2) | 0.3559 (10) | 0.030 (4)* | |
H1C | −0.0464 (8) | −0.208 (3) | 0.2919 (10) | 0.036 (4)* | |
C2 | −0.12455 (6) | 0.0404 (2) | 0.23817 (8) | 0.0165 (3) | |
H2A | −0.1056 | 0.1504 | 0.2102 | 0.020* | |
H2B | −0.1500 | 0.1319 | 0.2628 | 0.020* | |
C3 | −0.17707 (6) | −0.1272 (2) | 0.16433 (8) | 0.0171 (3) | |
H3A | −0.1503 | −0.2241 | 0.1421 | 0.021* | |
C4 | −0.23158 (7) | 0.0228 (2) | 0.08384 (9) | 0.0284 (3) | |
H4A | −0.2066 | 0.1251 | 0.0625 | 0.043* | |
H4B | −0.2589 | 0.1170 | 0.1041 | 0.043* | |
H4C | −0.2635 | −0.0794 | 0.0343 | 0.043* | |
C5 | −0.21430 (7) | −0.2922 (2) | 0.20040 (9) | 0.0247 (3) | |
H5A | −0.1788 | −0.3842 | 0.2509 | 0.037* | |
H5B | −0.2461 | −0.3966 | 0.1517 | 0.037* | |
H5C | −0.2416 | −0.2002 | 0.2214 | 0.037* | |
C6 | 0.07522 (6) | 0.27767 (19) | 0.47629 (8) | 0.0119 (2) | |
C7 | 0.08118 (6) | 0.52879 (19) | 0.51722 (7) | 0.0119 (2) | |
O8 | 0.05406 (4) | 0.25554 (13) | 0.39204 (5) | 0.0149 (2) | |
O9 | 0.09169 (4) | 0.11123 (13) | 0.53399 (5) | 0.0180 (2) | |
O10 | 0.08298 (4) | 0.69868 (14) | 0.46405 (5) | 0.0155 (2) | |
H10 | 0.0884 (9) | 0.855 (3) | 0.4940 (12) | 0.057 (5)* | |
O11 | 0.08261 (4) | 0.55763 (14) | 0.59056 (5) | 0.0169 (2) | |
O12 | 0.0000 | 0.5785 (2) | 0.2500 | 0.0165 (3) | |
H12 | 0.0198 (9) | 0.486 (3) | 0.2967 (10) | 0.048 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0170 (5) | 0.0171 (5) | 0.0115 (5) | −0.0011 (4) | 0.0070 (4) | 0.0001 (4) |
C2 | 0.0180 (6) | 0.0156 (6) | 0.0159 (6) | 0.0012 (5) | 0.0082 (5) | 0.0039 (5) |
C3 | 0.0170 (6) | 0.0213 (6) | 0.0130 (6) | 0.0028 (5) | 0.0073 (5) | −0.0003 (5) |
C4 | 0.0218 (7) | 0.0356 (8) | 0.0207 (7) | 0.0002 (6) | 0.0048 (6) | 0.0079 (6) |
C5 | 0.0238 (7) | 0.0195 (7) | 0.0256 (7) | −0.0044 (5) | 0.0080 (6) | 0.0005 (5) |
C6 | 0.0120 (6) | 0.0123 (6) | 0.0127 (6) | 0.0000 (4) | 0.0072 (5) | 0.0004 (4) |
C7 | 0.0098 (6) | 0.0131 (6) | 0.0117 (5) | 0.0001 (4) | 0.0043 (4) | 0.0010 (4) |
O8 | 0.0216 (4) | 0.0129 (4) | 0.0110 (4) | 0.0002 (3) | 0.0087 (4) | −0.0010 (3) |
O9 | 0.0304 (5) | 0.0111 (4) | 0.0140 (4) | 0.0002 (3) | 0.0119 (4) | 0.0015 (3) |
O10 | 0.0248 (5) | 0.0097 (4) | 0.0137 (4) | −0.0006 (3) | 0.0107 (4) | 0.0008 (3) |
O11 | 0.0252 (5) | 0.0156 (4) | 0.0119 (4) | −0.0009 (3) | 0.0106 (4) | −0.0016 (3) |
O12 | 0.0227 (7) | 0.0142 (6) | 0.0103 (6) | 0.000 | 0.0062 (5) | 0.000 |
N1—C2 | 1.4921 (14) | C4—H4C | 0.9600 |
N1—H1A | 0.959 (15) | C5—H5A | 0.9600 |
N1—H1B | 0.877 (15) | C5—H5B | 0.9600 |
N1—H1C | 0.940 (15) | C5—H5C | 0.9600 |
C2—C3 | 1.5167 (16) | C6—O8 | 1.2445 (13) |
C2—H2A | 0.9700 | C6—O9 | 1.2599 (13) |
C2—H2B | 0.9700 | C6—C7 | 1.5468 (15) |
C3—C5 | 1.5181 (17) | C7—O11 | 1.2092 (13) |
C3—C4 | 1.5249 (16) | C7—O10 | 1.3128 (13) |
C3—H3A | 0.9800 | O10—H10 | 0.988 (17) |
C4—H4A | 0.9600 | O12—H12 | 0.853 (15) |
C4—H4B | 0.9600 | ||
C2—N1—H1A | 110.0 (8) | C3—C4—H4B | 109.5 |
C2—N1—H1B | 112.6 (9) | H4A—C4—H4B | 109.5 |
H1A—N1—H1B | 107.4 (12) | C3—C4—H4C | 109.5 |
C2—N1—H1C | 110.0 (9) | H4A—C4—H4C | 109.5 |
H1A—N1—H1C | 106.2 (12) | H4B—C4—H4C | 109.5 |
H1B—N1—H1C | 110.4 (12) | C3—C5—H5A | 109.5 |
N1—C2—C3 | 112.53 (9) | C3—C5—H5B | 109.5 |
N1—C2—H2A | 109.1 | H5A—C5—H5B | 109.5 |
C3—C2—H2A | 109.1 | C3—C5—H5C | 109.5 |
N1—C2—H2B | 109.1 | H5A—C5—H5C | 109.5 |
C3—C2—H2B | 109.1 | H5B—C5—H5C | 109.5 |
H2A—C2—H2B | 107.8 | O8—C6—O9 | 126.09 (10) |
C2—C3—C5 | 112.62 (9) | O8—C6—C7 | 119.31 (9) |
C2—C3—C4 | 107.83 (10) | O9—C6—C7 | 114.58 (9) |
C5—C3—C4 | 111.28 (10) | O11—C7—O10 | 125.39 (10) |
C2—C3—H3A | 108.3 | O11—C7—C6 | 121.24 (10) |
C5—C3—H3A | 108.3 | O10—C7—C6 | 113.37 (9) |
C4—C3—H3A | 108.3 | C7—O10—H10 | 110.3 (10) |
C3—C4—H4A | 109.5 | ||
N1—C2—C3—C5 | 63.80 (13) | O9—C6—C7—O11 | −18.47 (15) |
N1—C2—C3—C4 | −173.04 (10) | O8—C6—C7—O10 | −18.64 (14) |
O8—C6—C7—O11 | 160.16 (10) | O9—C6—C7—O10 | 162.72 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O8 | 0.959 (15) | 1.963 (15) | 2.9111 (13) | 169.2 (12) |
N1—H1B···O9i | 0.877 (15) | 2.031 (15) | 2.8333 (13) | 151.7 (12) |
N1—H1B···O11i | 0.877 (15) | 2.518 (14) | 3.1968 (13) | 134.8 (11) |
N1—H1C···O12ii | 0.940 (15) | 1.887 (16) | 2.8202 (13) | 171.4 (13) |
O12—H12···O8 | 0.853 (15) | 1.893 (15) | 2.7423 (10) | 173.0 (16) |
O10—H10···O9iii | 0.988 (17) | 1.577 (17) | 2.5625 (11) | 175.3 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y−1, z; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O8 | 0.959 (15) | 1.963 (15) | 2.9111 (13) | 169.2 (12) |
N1—H1B···O9i | 0.877 (15) | 2.031 (15) | 2.8333 (13) | 151.7 (12) |
N1—H1B···O11i | 0.877 (15) | 2.518 (14) | 3.1968 (13) | 134.8 (11) |
N1—H1C···O12ii | 0.940 (15) | 1.887 (16) | 2.8202 (13) | 171.4 (13) |
O12—H12···O8 | 0.853 (15) | 1.893 (15) | 2.7423 (10) | 173.0 (16) |
O10—H10···O9iii | 0.988 (17) | 1.577 (17) | 2.5625 (11) | 175.3 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y−1, z; (iii) x, y+1, z. |
References
Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2012). Acta Cryst. E68, o416. Web of Science CSD CrossRef IUCr Journals Google Scholar
Braga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2012). New J. Chem. 37, 97–104. Web of Science CSD CrossRef Google Scholar
Desiraju, G. (2010). J. Chem. Sci. 122, 667–675. CrossRef CAS Google Scholar
Desiraju, G. (2013). J. Am. Chem. Soc. 135, 9952–9967. Web of Science CrossRef CAS PubMed Google Scholar
Dziuk, B., Zarychta, B. & Ejsmont, K. (2014a). Acta Cryst. E70, o852. CSD CrossRef IUCr Journals Google Scholar
Dziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o917–o918. CSD CrossRef IUCr Journals Google Scholar
Ejsmont, K. (2006). Acta Cryst. E62, o5852–o5854. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. (2007). Acta Cryst. E63, o107–o109. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ejsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o3879–o3880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ejsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o2512–o2513. Web of Science CSD CrossRef IUCr Journals Google Scholar
MacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167–175. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonds are very important in designing new materials. The structure versus properties research is important area in material engineering (Desiraju, 2010, 2013). Carboxylic acid molecules interact in crystals by strong hydrogen bonds, forming different motives e.g. isolated oxalate monoanions, dimers or as in the case of dicarboxylic acids, linear chains (Dziuk et al., 2014a, 2014b; Braga et al., 2012; Ejsmont & Zaleski 2006a, 2006b; Ejsmont, 2006, 2007). The crystal structure of the title salt, (I), consists of isobutylammonium cations, hydrogen oxalate anions and water molecules (Fig. 1). The Cambridge Structural Database (CSD; CONQUEST Version 1.16) has almost 70 structures of oxalic acid salts with aliphatic amines. The geometrical parameters of the isobutylammonium cation (Table 1) are comparable with those found in other crystal structures. The oxalate anions are connected to each other by strong O—H···O hydrogen bonds along the b axis. The isobutylammonium cations form N–H···O type HBs with the anions and water molecules. The O–H···O and N–H···O hydrogen bonds form channels (dimensions = 4.615 Å and 3.387 Å) arranged parallel to [010] direction (Fig. 2 and Table 2).