organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of iso­butyl­ammonium hydrogen oxalate hemihydrate

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bartosz.zarychta@uni.opole.pl

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 October 2014; accepted 16 October 2014; online 24 October 2014)

In the title hydrated mol­ecular salt, C4H12N+·C2HO4·0.5H2O, the O atom of the water mol­ecule lies on a crystallographic twofold axis. The dihedral angle between the CO2 and CO2H planes of the anion is 18.47 (8)°. In the crystal, the anions are connected to each other by strong near-linear O—H⋯O hydrogen bonds. The water mol­ecules are located between the chains of anions and iso­butyl­amine cations; their O atoms participate as donors and acceptors, respectively, in O—H⋯O and N—H⋯O hydrogen bonds, which form channels (dimensions = 4.615 and 3.387 Å) arranged parallel to [010].

1. Related literature

Structure versus properties research is an important area in material engineering, see: Desiraju (2010[Desiraju, G. (2010). J. Chem. Sci. 122, 667-675.], 2013[Desiraju, G. (2013). J. Am. Chem. Soc. 135, 9952-9967.]). For the crystal structures of oxalic acid salts with aliphatic amines, see: Dziuk et al. (2014a[Dziuk, B., Zarychta, B. & Ejsmont, K. (2014a). Acta Cryst. E70, o852.],b[Dziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o917-o918.]); Braga et al. (2012[Braga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2012). New J. Chem. 37, 97-104.]); Ejsmont (2006[Ejsmont, K. (2006). Acta Cryst. E62, o5852-o5854.], 2007[Ejsmont, K. (2007). Acta Cryst. E63, o107-o109.])); Ejsmont & Zaleski (2006a[Ejsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o3879-o3880.],b[Ejsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o2512-o2513.]); MacDonald et al. (2001[MacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29-38.]). For the characteristic structural motifs in ammonium di­carboxyl­ate salts, see: Ali et al. (2012[Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2012). Acta Cryst. E68, o416.]). For motifs of hydrogen bonds containing carboxylate anions, see: Rodríguez-Cuamatzi et al. (2005[Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167-175.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C4H12N+·2C2HO4·H2O

  • Mr = 344.36

  • Monoclinic, C 2/c

  • a = 21.2425 (9) Å

  • b = 5.6341 (1) Å

  • c = 16.5372 (6) Å

  • β = 119.141 (5)°

  • V = 1728.69 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.17 × 0.16 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • 5536 measured reflections

  • 1696 independent reflections

  • 1370 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.03

  • 1696 reflections

  • 125 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.959 (15) 1.963 (15) 2.9111 (13) 169.2 (12)
N1—H1B⋯O9i 0.877 (15) 2.031 (15) 2.8333 (13) 151.7 (12)
N1—H1B⋯O11i 0.877 (15) 2.518 (14) 3.1968 (13) 134.8 (11)
N1—H1C⋯O12ii 0.940 (15) 1.887 (16) 2.8202 (13) 171.4 (13)
O12—H12⋯O8 0.853 (15) 1.893 (15) 2.7423 (10) 173.0 (16)
O10—H10⋯O9iii 0.988 (17) 1.577 (17) 2.5625 (11) 175.3 (17)
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z; (iii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrogen bonds are very important in designing new materials. The structure versus properties research is important area in material engineering (Desiraju, 2010, 2013). Carboxylic acid molecules interact in crystals by strong hydrogen bonds, forming different motives e.g. isolated oxalate monoanions, dimers or as in the case of dicarboxylic acids, linear chains (Dziuk et al., 2014a, 2014b; Braga et al., 2012; Ejsmont & Zaleski 2006a, 2006b; Ejsmont, 2006, 2007). The crystal structure of the title salt, (I), consists of isobutylammonium cations, hydrogen oxalate anions and water molecules (Fig. 1). The Cambridge Structural Database (CSD; CONQUEST Version 1.16) has almost 70 structures of oxalic acid salts with aliphatic amines. The geometrical parameters of the isobutylammonium cation (Table 1) are comparable with those found in other crystal structures. The oxalate anions are connected to each other by strong O—H···O hydrogen bonds along the b axis. The isobutylammonium cations form N–H···O type HBs with the anions and water molecules. The O–H···O and N–H···O hydrogen bonds form channels (dimensions = 4.615 Å and 3.387 Å) arranged parallel to [010] direction (Fig. 2 and Table 2).

Related literature top

Structure versus properties research is important area in material engineering, see: Desiraju (2010, 2013). For the crystal structures of oxalic acid salts with aliphatic amines, see: Dziuk et al. (2014a,b); Braga et al. (2012); Ejsmont (2006, 2007)); Ejsmont & Zaleski (2006a,b); MacDonald et al. (2001). For the characteristic structural motifs in ammonium dicarboxylate salts, see: Ali et al. (2012). For related literature [on what subject?], see: Rodríguez-Cuamatzi et al. (2005).

Experimental top

Colourless prisms of (I) were grown at room temperature by slow evaporation of an aqueous solution containing isobutylamine and oxalic acid in a 1:1 stoichiometric ratio.

Refinement top

All H atoms attached to atoms O and N were located in difference electron density maps and were freely refined with isotropic displacement factors [O–H = 0.853 (15) & 0.988 (17) and N–H = 0.877 (15) - 0.959 (15) Å]. The remaining H atoms were positioned geometrically and treated as riding on their parent C atoms, for methine group with distance of 0.98 Å and Uiso (H) = 1.2Ueq(C), for methylene group with distance of 0.97 Å and Uiso (H) = 1.2Ueq(C), for methyl group with distance of 0.96 Å and Uiso (H) = 1.5Ueq(C), no refinement of their parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are shown as dotted lines.

Fig. 2. The packing diagram of (I), viewed along the b axis, showing the intermolecular hydrogen-bonding scheme (dashed lines).
Isobutylammonium hydrogen oxalate hemihydrate top
Crystal data top
2C4H12N+·2C2HO4·H2OF(000) = 744
Mr = 344.36Dx = 1.323 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1696 reflections
a = 21.2425 (9) Åθ = 3.8–26.0°
b = 5.6341 (1) ŵ = 0.11 mm1
c = 16.5372 (6) ÅT = 100 K
β = 119.141 (5)°Prism, colourless
V = 1728.69 (10) Å30.30 × 0.17 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1370 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 26.0°, θmin = 3.8°
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1h = 2626
ω scank = 56
5536 measured reflectionsl = 2020
1696 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.1361P]
where P = (Fo2 + 2Fc2)/3
1696 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
2C4H12N+·2C2HO4·H2OV = 1728.69 (10) Å3
Mr = 344.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.2425 (9) ŵ = 0.11 mm1
b = 5.6341 (1) ÅT = 100 K
c = 16.5372 (6) Å0.30 × 0.17 × 0.16 mm
β = 119.141 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1370 reflections with I > 2σ(I)
5536 measured reflectionsRint = 0.019
1696 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
1696 reflectionsΔρmin = 0.20 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06332 (5)0.08724 (18)0.31560 (7)0.0152 (2)
H1A0.0236 (8)0.019 (2)0.3483 (9)0.031 (4)*
H1B0.0747 (8)0.146 (2)0.3559 (10)0.030 (4)*
H1C0.0464 (8)0.208 (3)0.2919 (10)0.036 (4)*
C20.12455 (6)0.0404 (2)0.23817 (8)0.0165 (3)
H2A0.10560.15040.21020.020*
H2B0.15000.13190.26280.020*
C30.17707 (6)0.1272 (2)0.16433 (8)0.0171 (3)
H3A0.15030.22410.14210.021*
C40.23158 (7)0.0228 (2)0.08384 (9)0.0284 (3)
H4A0.20660.12510.06250.043*
H4B0.25890.11700.10410.043*
H4C0.26350.07940.03430.043*
C50.21430 (7)0.2922 (2)0.20040 (9)0.0247 (3)
H5A0.17880.38420.25090.037*
H5B0.24610.39660.15170.037*
H5C0.24160.20020.22140.037*
C60.07522 (6)0.27767 (19)0.47629 (8)0.0119 (2)
C70.08118 (6)0.52879 (19)0.51722 (7)0.0119 (2)
O80.05406 (4)0.25554 (13)0.39204 (5)0.0149 (2)
O90.09169 (4)0.11123 (13)0.53399 (5)0.0180 (2)
O100.08298 (4)0.69868 (14)0.46405 (5)0.0155 (2)
H100.0884 (9)0.855 (3)0.4940 (12)0.057 (5)*
O110.08261 (4)0.55763 (14)0.59056 (5)0.0169 (2)
O120.00000.5785 (2)0.25000.0165 (3)
H120.0198 (9)0.486 (3)0.2967 (10)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0170 (5)0.0171 (5)0.0115 (5)0.0011 (4)0.0070 (4)0.0001 (4)
C20.0180 (6)0.0156 (6)0.0159 (6)0.0012 (5)0.0082 (5)0.0039 (5)
C30.0170 (6)0.0213 (6)0.0130 (6)0.0028 (5)0.0073 (5)0.0003 (5)
C40.0218 (7)0.0356 (8)0.0207 (7)0.0002 (6)0.0048 (6)0.0079 (6)
C50.0238 (7)0.0195 (7)0.0256 (7)0.0044 (5)0.0080 (6)0.0005 (5)
C60.0120 (6)0.0123 (6)0.0127 (6)0.0000 (4)0.0072 (5)0.0004 (4)
C70.0098 (6)0.0131 (6)0.0117 (5)0.0001 (4)0.0043 (4)0.0010 (4)
O80.0216 (4)0.0129 (4)0.0110 (4)0.0002 (3)0.0087 (4)0.0010 (3)
O90.0304 (5)0.0111 (4)0.0140 (4)0.0002 (3)0.0119 (4)0.0015 (3)
O100.0248 (5)0.0097 (4)0.0137 (4)0.0006 (3)0.0107 (4)0.0008 (3)
O110.0252 (5)0.0156 (4)0.0119 (4)0.0009 (3)0.0106 (4)0.0016 (3)
O120.0227 (7)0.0142 (6)0.0103 (6)0.0000.0062 (5)0.000
Geometric parameters (Å, º) top
N1—C21.4921 (14)C4—H4C0.9600
N1—H1A0.959 (15)C5—H5A0.9600
N1—H1B0.877 (15)C5—H5B0.9600
N1—H1C0.940 (15)C5—H5C0.9600
C2—C31.5167 (16)C6—O81.2445 (13)
C2—H2A0.9700C6—O91.2599 (13)
C2—H2B0.9700C6—C71.5468 (15)
C3—C51.5181 (17)C7—O111.2092 (13)
C3—C41.5249 (16)C7—O101.3128 (13)
C3—H3A0.9800O10—H100.988 (17)
C4—H4A0.9600O12—H120.853 (15)
C4—H4B0.9600
C2—N1—H1A110.0 (8)C3—C4—H4B109.5
C2—N1—H1B112.6 (9)H4A—C4—H4B109.5
H1A—N1—H1B107.4 (12)C3—C4—H4C109.5
C2—N1—H1C110.0 (9)H4A—C4—H4C109.5
H1A—N1—H1C106.2 (12)H4B—C4—H4C109.5
H1B—N1—H1C110.4 (12)C3—C5—H5A109.5
N1—C2—C3112.53 (9)C3—C5—H5B109.5
N1—C2—H2A109.1H5A—C5—H5B109.5
C3—C2—H2A109.1C3—C5—H5C109.5
N1—C2—H2B109.1H5A—C5—H5C109.5
C3—C2—H2B109.1H5B—C5—H5C109.5
H2A—C2—H2B107.8O8—C6—O9126.09 (10)
C2—C3—C5112.62 (9)O8—C6—C7119.31 (9)
C2—C3—C4107.83 (10)O9—C6—C7114.58 (9)
C5—C3—C4111.28 (10)O11—C7—O10125.39 (10)
C2—C3—H3A108.3O11—C7—C6121.24 (10)
C5—C3—H3A108.3O10—C7—C6113.37 (9)
C4—C3—H3A108.3C7—O10—H10110.3 (10)
C3—C4—H4A109.5
N1—C2—C3—C563.80 (13)O9—C6—C7—O1118.47 (15)
N1—C2—C3—C4173.04 (10)O8—C6—C7—O1018.64 (14)
O8—C6—C7—O11160.16 (10)O9—C6—C7—O10162.72 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.959 (15)1.963 (15)2.9111 (13)169.2 (12)
N1—H1B···O9i0.877 (15)2.031 (15)2.8333 (13)151.7 (12)
N1—H1B···O11i0.877 (15)2.518 (14)3.1968 (13)134.8 (11)
N1—H1C···O12ii0.940 (15)1.887 (16)2.8202 (13)171.4 (13)
O12—H12···O80.853 (15)1.893 (15)2.7423 (10)173.0 (16)
O10—H10···O9iii0.988 (17)1.577 (17)2.5625 (11)175.3 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.959 (15)1.963 (15)2.9111 (13)169.2 (12)
N1—H1B···O9i0.877 (15)2.031 (15)2.8333 (13)151.7 (12)
N1—H1B···O11i0.877 (15)2.518 (14)3.1968 (13)134.8 (11)
N1—H1C···O12ii0.940 (15)1.887 (16)2.8202 (13)171.4 (13)
O12—H12···O80.853 (15)1.893 (15)2.7423 (10)173.0 (16)
O10—H10···O9iii0.988 (17)1.577 (17)2.5625 (11)175.3 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x, y+1, z.
 

References

First citationAli, A. J., Athimoolam, S. & Bahadur, S. A. (2012). Acta Cryst. E68, o416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBraga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2012). New J. Chem. 37, 97–104.  Web of Science CSD CrossRef Google Scholar
First citationDesiraju, G. (2010). J. Chem. Sci. 122, 667–675.  CrossRef CAS Google Scholar
First citationDesiraju, G. (2013). J. Am. Chem. Soc. 135, 9952–9967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDziuk, B., Zarychta, B. & Ejsmont, K. (2014a). Acta Cryst. E70, o852.  CSD CrossRef IUCr Journals Google Scholar
First citationDziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o917–o918.  CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K. (2006). Acta Cryst. E62, o5852–o5854.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. (2007). Acta Cryst. E63, o107–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o3879–o3880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o2512–o2513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds