research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a four-layered [3.3](3,5)pyridino­phane

aDepartment of Chemistry, Faculty of Education and Welfare Science, Oita University, 700 Dannoharu, Oita 870-1192, Japan, bInternational Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, cEvaluation Center of Materials Properties and Function, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan, and dInstitute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: mshiba@oita-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 October 2014; accepted 27 October 2014; online 31 October 2014)

The title compound, C40H46N2 {systematic name: 12,30-di­aza­hepta­cyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]do­tetra­conta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodeca­ene}, has synantisyn geometry wherein the two outer [3.3]meta­cyclo­phane (MCP) moieties have a syn geometry, and contain the facing benzene and pyridine rings at dihedral angles of 26.26 (10) and 26.46 (10)°, respectively. The rings of the central [3.3]MCP unit are not parallel, but orientated at a slight angle of 2.66 (9)°. Three bridging methyl­ene groups are disordered over two sets of sites in a 0.60:0.40 ratio. In the crystal, the mol­ecules are linked by C—H⋯N inter­actions and inter­molecular C—H⋯π short contacts, generating a three-dimensional network.

1. Chemical context

[3.3]Meta­pyridino­phanes (MPyPs) have been used as ligands in transition metal complexes, and various kinds of metal complexes have been prepared using them (Muralidharan et al., 1989[Muralidharan, S., Hojjatie, M., Firestone, M. & Freiser, H. (1989). J. Org. Chem. 54, 393-399.]; Fronczek et al., 1989[Fronczek, F. R., Mamo, A. & Pappalardo, S. (1989). Inorg. Chem. 28, 1419-1422.]; Krüger, 1995[Krüger, H.-J. (1995). Chem. Ber. 128, 531-539.]). A variety of types of [3.3]MPyPs are possible, and the [3.3](2,6)PyPs have been studied in detail (Vögtle & Schunder, 1969[Vögtle, F. & Schunder, L. (1969). Chem. Ber. 102, 2677-2683.]; Shinmyozu et al., 1986[Shinmyozu, T., Hirai, Y. & Inazu, T. (1986). J. Org. Chem. 51, 1551-1555.]; Bottino et al., 1988[Bottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521-3529.]). Only a limited number of [3.3](3,5)PyPs have been produced up to now, mainly because of the instability of the coupling precursor, 3,5-bis­(halometh­yl)pyridine. We have previously used freshly prepared 3,5-bis­(chloro­meth­yl)pyridine as the coupling reaction to prepare 2,11-di­aza­[3.3](3,5)PyP (Satou & Shinmyozu, 2002[Satou, T. & Shinmyozu, T. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 393-397.]). One of the major advantages of using [3.3](3,5)PyPs over using [3.3](2,6)PyPs is the potential for forming self-assembled supra­molecules when [3.3](3,5)PyPs become coordinated. This occurs because the meta­cyclo­phanes (MCPs) have syn geometries and the nitro­gen lone-pair electrons can readily coordinate with metals without steric hindrance being caused by the bridges. We have also described the synthesis of multilayered [3.3]cyclo­phanes using the (p-tolyl­sulfon­yl)methyl isocyanide method (MCPs; Shibahara et al., 2007[Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865-2877.]) and the (p-ethyl­benzene­sulfon­yl)methyl isocyanide method (para­cyclo­phanes; Shibahara et al., 2008[Shibahara, M., Watanabe, M., Aso, K. & Shinmyozu, T. (2008). Synthesis, pp. 3749-3754.]). Multilayered [3.3]MCPs that have a pyridine ring at each end may, therefore, form larger supra­molecules when they form complexes with transition metals. These new types of supra­molecules could have uses as catalysts, inclusion hosts or nanometer-scale materials.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (at 123 K) is shown Fig. 1[link]. The tri­methyl­ene bridges are highly flexible and disordered even at this temperature. The mol­ecule has a synantisyn geometry, in which the two outer [3.3]MCP moieties have a syn geometry and contain opposing benzene and pyridine rings at angles of 26.26 (10)° (between the C4–C8/N1 and C13—C18 planes) and 26.46 (10)° (between the C26—C31 and C35–C39/N2 planes). These angles are comparable to the corresponding angle (24°) in the parent two-layered [3.3]MCP (Semmelhack et al., 1985[Semmelhack, M. F., Harrison, J. J., Young, D. C., Gutierrez, A., Rafii, S. & Clardy, J. (1985). J. Am. Chem. Soc. 107, 7508-7514.]). The central [3.3]MCP unit is not parallel, but is at a slight angle of 2.66 (9)° between the C13–C18 and C26–C31 planes. There is a twist between the benzene rings of the parent two-layered [3.3]MCP of ca 15° about the axis through the centre of each ring, but the twists in the outer [3.3]MCP moieties are only 3.93° (between the N1–C8 and C15–C18 axes) and 2.49° (between the C28–C31 and N2–C36 axes), and the benzene rings overlap each other completely in this mol­ecule. However, the twist in the benzene rings in the central [3.3]MCP unit is quite large, at 11.6° between the C15–C18 and C28–C31 axes. The transannular distances between C8 and C18 [2.968 (3) Å], C28 and C36 [2.955 (3) Å], N1 and C15 [4.168 (3) Å], and N2 and C31 [4.174 (3) Å] are comparable to the distances in the parent two-layered [3.3]MCP (2.995 and 4.171 Å) while the distance between C15 and C31 [2.910 (3) Å] is much shorter than that in the parent two-layered [3.3]MCP-2,11-dione (2.99 Å), which adopts an anti geometry (Isaji et al., 2001[Isaji, H., Yasutake, M., Takemura, H., Sako, K., Tatemitsu, H., Inazu, T. & Shinmyozu, T. (2001). Eur. J. Org. Chem. pp. 2487-2499.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal-packing diagram of the mol­ecule (Fig. 2[link]) shows that mol­ecules are stacked alternately changing direction in the bc plane. Two types of inter­molecular short contacts are observed. One is the C—H⋯π-type inter­actions between C6 and H11 (2.811 Å) and between C35 and H49 (2.868 Å) in the bc plane, while the other is between N1 and H9 (2.429 Å) and between N2 and H50 (2.468 Å) along the a axis (Table 1[link]). Both instances of the second type of short contact were found to be shorter than the sum of the van der Waals radii of a nitro­gen and hydrogen atom.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H9⋯N1i 0.95 2.43 3.373 (3) 173
C36—H50⋯N2ii 0.95 2.47 3.394 (3) 165
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 2]
Figure 2
Short contacts of the title compound; C—H⋯π-type inter­actions between C6 and H11 and C35 and H49 (orange dashed lines) and short contacts between N1 and H9 and N2 and H50 (light-blue dashed lines).

4. Database survey

The title compound is closely related to the four-layered [3.3]MCP, hepta­cyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]dotetra­conta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodeca­ene), which is the hydro­carbon-only parent mol­ecule (Shibahara et al., 2007[Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865-2877.]), and its charge-transfer complex with tetra­cyano­ethyl­ene (Shibahara et al., 2011[Shibahara, M., Watanabe, M., Yuan, C. & Shinmyozu, T. (2011). Tetrahedron Lett. 52, 5012-5015.], 2014[Shibahara, M., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). Acta Cryst. E70, o625-o626.]). The four-layered [3.3]MCP changes conformation in the solid state depending on the environment its circumference is in, having a synantisyn geometry like the letter `ω' in a ligand-free environment and have a geometry like the letter `s' when it forms a complex.

5. Synthesis and crystallization

The title compound was prepared as described by Shibahara et al. (2008[Shibahara, M., Watanabe, M., Aso, K. & Shinmyozu, T. (2008). Synthesis, pp. 3749-3754.]) by a coupling reaction of 5,7,14,16-tetra­kis­(bromo­meth­yl)[3.3]meta­cyclo­phane with 3,5-bis­[2-iso­cyano-2-(tolyl­sulfon­yl)eth­yl]pyridine, which afforded four-layered [3.3](3,5)pyridino­phane tetra­one, which was converted to the four-layered[3.3](3,5)pyridino­phane Shibahara et al., 2009[Shibahara, M., Watanabe, M., Suenaga, M., Ideta, K., Matsumoto, T. & Shinmyozu, T. (2009). Tetrahedron Lett. 50, 1340-1344.]) by a Wolff–Kishner reduction. Purification of the crude product by silica gel column chromatography with CH2Cl2/EtOH (9:1; v/v, Rf = 0.53) gave the four-layered pyridino­phane (12% isolated yield in two steps). Finally, the product was crystallized from CH2Cl2/acetone to give single crystals (colourless prisms), m.p. 518 K (decomposed).

1H NMR (600 MHz, CDCl3): δ 1.8–2.0 (m, 12H, CH2CH2CH2), 2.4–2.7 (m, 24H, CH2CH2CH2), 5.97 (s, 2H, ArH), 6.21 (s, 2H, ArH), 6.91 (s, 2H, ArH), 7.84 (d, J = 1.5 Hz, 4H, ArH). 13C NMR (150 MHz, CDCl3) δ 26.2, 27.7, 32.4, 32.7, 33.2, 134.0, 134.4, 134.8, 134.8, 135.8, 140.4, 146.8. HRMS (FAB): m/z [M+H]+ calculated for C40H47N2 555.3739, found 555.3739. Analysis calculated for C40H46N2: C, 86.59; H, 8.36; N, 5.05. found: C, 86.35; H, 8.34; N, 5.01.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geom­etrically and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C40H46N2
Mr 554.79
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 6.1377 (15), 14.643 (4), 17.519 (4)
α, β, γ (°) 75.619 (16), 88.369 (17), 86.755 (17)
V3) 1522.6 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.52
Crystal size (mm) 0.45 × 0.30 × 0.16
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
No. of measured, independent and observed [I > 2σ(I)] reflections 20167, 5396, 4455
Rint 0.040
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.204, 1.07
No. of reflections 5396
No. of parameters 410
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.32
Computer programs: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2011 (Camalli et al., 2012[Camalli, M., Carrozzini, B., Cascarano, G. L. & Giacovazzo, C. (2012). J. Appl. Cryst. 45, 351-356.]), SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari ]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Chemical context top

[3.3]Meta­pyridino­phanes (MPyPs) have been used as ligands in transition metal complexes, and various kinds of metal complexes have been prepared using them (Muralidharan et al., 1989; Fronczek et al., 1989; Krüger, 1995). A variety of types of [3.3]MPyPs are possible, and the [3.3](2,6)PyPs have been studied in detail (Vögtle & Schunder, 1969; Shinmyozu et al. 1986; Bottino et al. 1988). Only a limited number of [3.3](3,5)PyPs have been produced up to now, mainly because of the instability of the coupling precursor, 3,5-bis­(halo­methyl)­pyridine. We have previously used freshly prepared 3,5-bis­(chloro­methyl)­pyridine as the coupling reaction to prepare 2,11-di­aza­[3.3](3,5)Pyp (Satou & Shinmyozu, 2002). One of the major advantages of using [3.3](3,5)PyPs over using [3.3](2,6)PyPs is the potential for forming self-assembled supra­molecules when [3.3](3,5)PyPs become coordinated. This occurs because the meta­cyclo­phanes (MCPs) have syn geometries and the nitro­gen lone-pair electrons can readily coordinate with metals without steric hindrance being caused by the bridges. We have also described the synthesis of multilayered [3.3]cyclo­phanes using the (p-tolyl­sulfonyl)­methyl isocyanide method (MCPs; Shibahara et al. 2007) and the (p-ethyl­benzene­sulfonyl)­methyl isocyanide method (para­cyclo­phanes; Shibahara et al. 2008). Multilayered [3.3]MCPs that have a pyridine ring at each end may, therefore, form larger supra­molecules when they form complexes with transition metals. These new types of supra­molecules could have uses as catalysts, inclusion hosts or nanometer-scale materials.

Structural commentary top

The molecular structure of the title compound (at 123 K) is shown Fig.1. The tri­methyl­ene bridges are highly flexible and disordered even at this temperature. The molecule has a synanti--syn geometry, in which the two outer [3.3]MCP moieties have a syn geometry and contain opposing benzene and pyridine rings at angles of 26.26 (10)° (between the C4–C8/N1 and C13—C18 planes) and 26.46 (10)° (between the C26—C31 and C35–C39/N2 planes). These angles are comparable to the corresponding angle (24°) in the parent two-layered [3.3]MCP (Semmelhack et al. 1985). The central [3.3]MCP unit is not parallel, but is at a slight angle of 2.66 (9)° between the C13–C18 and C26–C31 planes. There is a twist between the benzene rings of the parent two-layered [3.3]MCP of ca 15° about the axis through the centre of each ring, but the twists in the outer [3.3]MCP moieties are only 3.93° (between the N1–C8 and C15–C18 axes) and 2.49° (between the C28–C31 and N2–C36 axes), and the benzene rings overlap each other completely in this molecule. However, the twist in the benzene rings in the central [3.3]MCP unit is quite large, at 11.6° between the C15–C18 and C28–C31 axes. The transannular distances between C8 and C18 [2.968 (3) Å], C28 and C36 [2.955 (3) Å], N1 and C15 [4.168 (3) Å], and N2 and C31 [4.174 (3) Å] are comparable to the distances in the parent two-layered [3.3]MCP (2.995 and 4.171 Å) while the distance between C15 and C31 [2.910 (3) Å] is much shorter than that in the parent two-layered [3.3]MCP-2,11-dione (2.99 Å), which adopts an anti geometry (Isaji et al. 2001).

Supra­molecular features top

The crystal-packing diagram of the molecule (Fig. 2) shows that molecules are stacked alternately changing direction in the bc plane. Two types of inter­molecular short contacts are observed. One is the C—H···π-type inter­actions between C6 and H11 (2.811 Å) and between C35 and H49 (2.868 Å) in the bc plane, while the other is between N1 and H9 (2.429 Å) and between N2 and H50 (2.468 Å) along the a axis (Table 1). Both instances of the second type of short contact were found to be shorter than the sum of the van der Waals radii of a nitro­gen and hydrogen atom.

Database survey top

\ The title compound is closely related to a four-layered [3.3]MCP (systematic name : hepta­cyclo­[21.13.1.15,19.16,18.110,14.124,36.128,32]do­tetra­conta-\ 1(37),5(40),6(41),10 (42),11,13,18,23,28,30,32 (39),36 (38)-dodeca­ene­), which is the hydro­carbon-only parent molecule (Shibahara et al. 2007) and its charge-transfer complex with tetra­cyano­ethyl­ene (Shibahara et al. 2011, 2014). The four-layered [3.3]MCP changes conformation in the solid state depending on the environment its circumference is in, having a synantisyn geometry like the letter `w' in a ligand-free environment and have a geometry like the letter `s' when it forms a complex.

Synthesis and crystallization top

The title compound was prepared as described by Shibahara et al. (2008) by a coupling reaction of 5,7,14,16-tetra­kis(bromo­methyl)[3.3]meta­cyclo­phane with 3,5-bis­[2-iso­cyano-2-(tolyl­sulfonyl)­ethyl]­pyridine, which afforded four-layered [3.3](3,5)pyridino­phane tetra­one (Shibahara et al. (2009), which was converted to the four-layered[3.3](3,5)pyridino­phane by a Wolff–Kishner reduction. Purification of the crude product by silica gel column chromatography with CH2Cl2/EtOH (9:1; v/v, Rf = 0.53) gave the four-layered pyridino­phane (12% isolated yield in two steps). Finally, the product was crystallized from CH2Cl2/acetone to give single crystals (colourless prisms), m.p. 518 K (decomposed). 1H NMR (600 MHz, CDCl3): d 1.8–2.0 (m, 12H, CH2CH2CH2), 2.4–2.7 (m, 24H, CH2CH2CH2), 5.97 (s, 2H, ArH), 6.21 (s, 2H, ArH), 6.91 (s, 2H, ArH), 7.84 (d, J = 1.5 Hz, 4H, ArH). 13C NMR (150 MHz, CDCl3) d 26.2, 27.7, 32.4, 32.7, 33.2, 134.0, 134.4, 134.8, 134.8, 135.8, 140.4, 146.8. HRMS (FAB): m/z [M+H]+ calculated for C40H47N2 555.3739, found 555.3739. Analysis calculated for C40H46N2: C, 86.59; H, 8.36; N, 5.05. found: C, 86.35; H, 8.34; N, 5.01.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). [OK?]

Related literature top

For related literature, see: Fronczek et al. (1989); Isaji et al. (2001); Krüger (1995); Muralidharan et al. (1989); Semmelhack et al. (1985); Shibahara et al. (2007, 2008, 2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2011 (Camalli et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Figures top
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Short contacts of the title compound; C—H···π-type interactions between C6 and H11 and C35 and H49 (orange dashed lines) and short contacts between N1 and H9 and N2 and H50 (light-blue dashed lines).
12,30-Diazaheptacyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]dotetraconta-1(37),5(40),6(41),10 (42),11,13,18,23,28,30,32 (39),36 (38)-dodecaene top
Crystal data top
C40H46N2Z = 2
Mr = 554.79F(000) = 600
Triclinic, P1Dx = 1.210 Mg m3
a = 6.1377 (15) ÅCu Kα radiation, λ = 1.54187 Å
b = 14.643 (4) ÅCell parameters from 20167 reflections
c = 17.519 (4) Åθ = 3.1–68.2°
α = 75.619 (16)°µ = 0.52 mm1
β = 88.369 (17)°T = 123 K
γ = 86.755 (17)°Block, colorless
V = 1522.6 (7) Å30.45 × 0.30 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4455 reflections with I > 2σ(I)
Radiation source: Rotating anodeRint = 0.040
Graphite monochromatorθmax = 68.2°, θmin = 3.1°
Detector resolution: 10.00 pixels mm-1h = 77
ω scansk = 1717
20167 measured reflectionsl = 2120
5396 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0985P)2 + 0.5512P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5396 reflectionsΔρmax = 0.42 e Å3
410 parametersΔρmin = 0.32 e Å3
Crystal data top
C40H46N2γ = 86.755 (17)°
Mr = 554.79V = 1522.6 (7) Å3
Triclinic, P1Z = 2
a = 6.1377 (15) ÅCu Kα radiation
b = 14.643 (4) ŵ = 0.52 mm1
c = 17.519 (4) ÅT = 123 K
α = 75.619 (16)°0.45 × 0.30 × 0.16 mm
β = 88.369 (17)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4455 reflections with I > 2σ(I)
20167 measured reflectionsRint = 0.040
5396 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
5396 reflectionsΔρmin = 0.32 e Å3
410 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ (F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1497 (3)0.89284 (14)0.15093 (15)0.0710 (6)
N20.3765 (3)0.11241 (14)0.34741 (14)0.0686 (6)
C10.6871 (4)0.71516 (16)0.33718 (12)0.0548 (6)
H10.69920.66590.38710.066*
H20.83600.73170.31610.066*
C20.5956 (4)0.80319 (16)0.35507 (13)0.0611 (6)
H30.66560.81210.40450.073*
H40.43770.79000.36520.073*
C30.6234 (4)0.89604 (15)0.29260 (14)0.0568 (6)
H50.78040.90870.28050.068*
H60.57570.94760.31460.068*
C40.4983 (3)0.89824 (13)0.21695 (14)0.0489 (5)
C50.2702 (3)0.89796 (15)0.21396 (16)0.0593 (6)
H70.19690.90170.26000.071*
C60.2568 (4)0.88533 (16)0.08720 (17)0.0694 (7)
H80.17260.87970.04210.083*
C70.4813 (4)0.88527 (14)0.08282 (14)0.0585 (6)
C80.6003 (3)0.89542 (13)0.14854 (13)0.0505 (5)
H90.75510.90060.14660.061*
C90.5889 (6)0.86779 (17)0.01185 (15)0.0813 (9)
H100.47570.86380.02880.098*0.6
H110.69090.92210.01050.098*0.6
H120.55350.91780.03560.098*0.4
H130.74930.86920.01960.098*0.4
C100.5062 (11)0.7705 (4)0.0003 (3)0.0600 (14)0.4
H140.54470.76690.05330.072*0.4
H150.34500.76580.00340.072*0.4
C110.7216 (7)0.7719 (3)0.0321 (2)0.0624 (10)0.6
H160.83400.77660.07280.075*0.6
H170.79870.76840.01590.075*0.6
C120.5953 (5)0.68650 (16)0.05909 (12)0.0624 (6)
H180.46970.68720.02230.075*0.6
H190.68550.63420.05460.075*0.6
H200.56860.63040.03750.075*0.4
H210.75540.69760.06280.075*0.4
C130.5062 (4)0.66231 (13)0.14222 (10)0.0439 (5)
C140.3006 (4)0.61736 (13)0.15950 (11)0.0465 (5)
C150.2239 (3)0.60393 (13)0.23604 (12)0.0458 (5)
H220.08100.57620.24730.055*
C160.3447 (3)0.62880 (13)0.29652 (11)0.0438 (5)
C170.5504 (3)0.67436 (13)0.27882 (11)0.0410 (4)
C180.6270 (3)0.68750 (13)0.20271 (11)0.0409 (4)
H230.76980.71520.19150.049*
C190.2635 (4)0.6006 (2)0.38046 (13)0.0730 (8)
H240.18140.65460.38650.088*0.5
H250.39610.60010.41410.088*0.5
H260.31040.64880.40920.088*0.5
H270.10220.59270.38120.088*0.5
C200.3775 (7)0.4969 (3)0.4213 (2)0.0438 (9)0.5
H280.41920.49610.47650.053*0.5
H290.51350.49490.39290.053*0.5
C210.1416 (7)0.5230 (3)0.4162 (2)0.0446 (9)0.5
H300.11110.52710.47040.054*0.5
H310.00010.52350.38760.054*0.5
C220.2538 (4)0.4179 (2)0.42155 (14)0.0656 (7)
H320.21230.37180.47130.088 (18)*0.5
H330.41490.42620.42000.058 (13)*0.5
H340.33690.36550.45370.060 (13)*0.5
H350.12370.42160.45260.078 (15)*0.5
C230.1580 (5)0.57678 (16)0.10252 (13)0.0699 (8)
H360.01590.55450.12770.084*
H370.12950.62820.05530.084*
C240.2510 (5)0.49556 (16)0.07572 (12)0.0804 (9)
H380.13320.46670.04830.097*
H390.36580.52220.03670.097*
C250.3485 (5)0.41715 (15)0.14020 (12)0.0644 (7)
H400.49240.44070.15650.077*
H410.37370.36320.11750.077*
C260.2098 (3)0.38177 (13)0.21302 (10)0.0435 (5)
C270.0039 (3)0.33628 (13)0.21292 (11)0.0448 (5)
C280.1172 (3)0.31807 (13)0.28151 (12)0.0443 (5)
H420.26060.29020.28070.053*
C290.0400 (3)0.33839 (12)0.35121 (10)0.0392 (4)
C300.1672 (3)0.38350 (12)0.35142 (10)0.0377 (4)
C310.2876 (3)0.40213 (12)0.28279 (11)0.0396 (4)
H430.43070.43030.28350.048*
C320.1769 (4)0.30603 (15)0.42464 (13)0.0553 (6)
H440.19010.36020.44840.066*
H450.32550.28680.40900.066*
C330.0864 (4)0.22411 (16)0.48715 (13)0.0651 (7)
H460.16050.22080.53730.078*
H470.07030.23950.49530.078*
C340.1071 (4)0.12618 (16)0.47135 (15)0.0628 (6)
H480.26280.11080.46140.075*
H490.05970.07950.51930.075*
C350.0238 (3)0.11599 (13)0.40259 (15)0.0532 (6)
C360.0739 (3)0.11169 (14)0.33139 (15)0.0553 (6)
H500.22860.10720.32710.066*
C370.0508 (4)0.11380 (15)0.26629 (16)0.0595 (6)
C380.2743 (4)0.11317 (17)0.27859 (18)0.0680 (7)
H510.36230.11330.23480.082*
C390.2509 (3)0.11535 (15)0.40745 (16)0.0597 (6)
H520.31990.11710.45630.072*
C400.0508 (5)0.12235 (19)0.18544 (18)0.0774 (8)
H530.06690.12070.14840.093*0.6
H540.15020.06610.18760.093*0.6
H550.21120.11220.19020.093*0.4
H560.00330.07280.16240.093*0.4
C410.1840 (8)0.2138 (3)0.1500 (2)0.0668 (11)0.6
H570.31330.20970.18340.080*0.6
H580.23890.20970.09720.080*0.6
C420.0035 (11)0.2064 (4)0.1380 (4)0.0637 (16)0.4
H590.15770.21400.13910.076*0.4
H600.04410.19990.08440.076*0.4
C430.0848 (5)0.30389 (18)0.14163 (14)0.0708 (7)
H610.03780.30970.10490.085*0.6
H620.19230.34970.11500.085*0.6
H630.24630.29990.14300.085*0.4
H640.04030.35160.09320.085*0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0479 (11)0.0539 (12)0.1144 (18)0.0067 (9)0.0227 (11)0.0285 (12)
N20.0409 (10)0.0638 (12)0.1137 (18)0.0058 (9)0.0037 (11)0.0448 (12)
C10.0666 (14)0.0559 (13)0.0480 (11)0.0095 (11)0.0150 (10)0.0248 (10)
C20.0778 (15)0.0628 (14)0.0530 (12)0.0038 (12)0.0063 (11)0.0346 (11)
C30.0511 (12)0.0500 (12)0.0799 (15)0.0006 (9)0.0029 (11)0.0369 (12)
C40.0444 (10)0.0324 (10)0.0750 (14)0.0021 (8)0.0053 (10)0.0234 (10)
C50.0450 (11)0.0454 (12)0.0942 (17)0.0045 (9)0.0016 (11)0.0292 (12)
C60.0770 (17)0.0441 (13)0.0855 (18)0.0014 (11)0.0254 (14)0.0165 (12)
C70.0746 (15)0.0308 (10)0.0663 (14)0.0007 (10)0.0092 (12)0.0069 (9)
C80.0471 (11)0.0335 (10)0.0720 (14)0.0005 (8)0.0029 (10)0.0155 (10)
C90.137 (3)0.0452 (13)0.0563 (14)0.0068 (15)0.0120 (15)0.0034 (11)
C100.091 (4)0.048 (3)0.037 (3)0.008 (3)0.003 (3)0.002 (2)
C110.093 (3)0.051 (2)0.0446 (19)0.011 (2)0.0237 (19)0.0144 (16)
C120.1004 (19)0.0522 (13)0.0364 (11)0.0181 (12)0.0042 (11)0.0109 (9)
C130.0676 (13)0.0327 (9)0.0324 (9)0.0112 (9)0.0030 (8)0.0089 (7)
C140.0672 (13)0.0309 (9)0.0396 (10)0.0050 (9)0.0170 (9)0.0068 (8)
C150.0492 (11)0.0328 (10)0.0515 (11)0.0034 (8)0.0065 (9)0.0036 (8)
C160.0559 (11)0.0379 (10)0.0379 (10)0.0118 (9)0.0004 (8)0.0080 (8)
C170.0536 (11)0.0360 (9)0.0370 (9)0.0121 (8)0.0084 (8)0.0147 (8)
C180.0478 (10)0.0337 (9)0.0434 (10)0.0084 (8)0.0026 (8)0.0123 (8)
C190.0617 (14)0.105 (2)0.0419 (12)0.0207 (14)0.0051 (10)0.0048 (12)
C200.065 (2)0.041 (2)0.0260 (16)0.0018 (18)0.0066 (16)0.0124 (15)
C210.062 (2)0.043 (2)0.0361 (19)0.0004 (18)0.0067 (17)0.0238 (16)
C220.0569 (13)0.101 (2)0.0585 (14)0.0181 (13)0.0111 (11)0.0554 (15)
C230.105 (2)0.0451 (12)0.0507 (13)0.0090 (12)0.0363 (13)0.0029 (10)
C240.159 (3)0.0534 (13)0.0282 (10)0.0263 (16)0.0051 (13)0.0161 (10)
C250.110 (2)0.0449 (12)0.0435 (12)0.0036 (12)0.0247 (12)0.0202 (10)
C260.0670 (13)0.0339 (9)0.0330 (9)0.0082 (9)0.0032 (8)0.0133 (7)
C270.0641 (12)0.0366 (10)0.0388 (10)0.0132 (9)0.0129 (9)0.0181 (8)
C280.0466 (10)0.0359 (10)0.0554 (12)0.0076 (8)0.0077 (9)0.0202 (9)
C290.0490 (10)0.0314 (9)0.0393 (10)0.0099 (8)0.0017 (8)0.0108 (8)
C300.0502 (10)0.0349 (9)0.0322 (9)0.0092 (8)0.0044 (7)0.0151 (7)
C310.0488 (10)0.0334 (9)0.0401 (10)0.0028 (8)0.0016 (8)0.0153 (8)
C320.0626 (13)0.0455 (11)0.0574 (13)0.0127 (10)0.0183 (10)0.0080 (10)
C330.0859 (17)0.0526 (13)0.0535 (13)0.0114 (12)0.0261 (12)0.0020 (10)
C340.0543 (13)0.0446 (12)0.0803 (16)0.0028 (10)0.0135 (11)0.0036 (11)
C350.0433 (11)0.0291 (9)0.0860 (16)0.0004 (8)0.0084 (10)0.0114 (10)
C360.0391 (10)0.0331 (10)0.0970 (17)0.0025 (8)0.0045 (11)0.0240 (11)
C370.0520 (12)0.0411 (11)0.0972 (18)0.0018 (9)0.0017 (12)0.0399 (12)
C380.0522 (13)0.0585 (14)0.108 (2)0.0025 (11)0.0110 (13)0.0475 (14)
C390.0447 (11)0.0446 (12)0.0938 (17)0.0024 (9)0.0033 (11)0.0253 (12)
C400.0780 (17)0.0647 (17)0.110 (2)0.0023 (13)0.0105 (15)0.0612 (17)
C410.084 (3)0.069 (3)0.050 (2)0.018 (2)0.014 (2)0.0262 (19)
C420.071 (4)0.064 (4)0.075 (4)0.011 (3)0.022 (3)0.053 (3)
C430.0954 (18)0.0707 (16)0.0608 (14)0.0262 (14)0.0334 (13)0.0428 (13)
Geometric parameters (Å, º) top
N1—C51.327 (3)C21—H300.9900
N1—C61.342 (3)C21—H310.9900
N2—C391.332 (3)C22—C301.512 (2)
N2—C381.341 (3)C22—H320.9900
C1—C171.518 (2)C22—H330.9900
C1—C21.539 (3)C22—H340.9900
C1—H10.9900C22—H350.9900
C1—H20.9900C23—C241.527 (4)
C2—C31.524 (3)C23—H360.9900
C2—H30.9900C23—H370.9900
C2—H40.9900C24—C251.532 (3)
C3—C41.507 (3)C24—H380.9900
C3—H50.9900C24—H390.9900
C3—H60.9900C25—C261.518 (3)
C4—C81.378 (3)C25—H400.9900
C4—C51.399 (3)C25—H410.9900
C5—H70.9500C26—C311.394 (2)
C6—C71.383 (4)C26—C271.395 (3)
C6—H80.9500C27—C281.392 (3)
C7—C81.381 (3)C27—C431.519 (2)
C7—C91.507 (4)C28—C291.391 (3)
C8—H90.9500C28—H420.9500
C9—C101.544 (6)C29—C301.399 (3)
C9—C111.621 (5)C29—C321.516 (3)
C9—H100.9900C30—C311.390 (2)
C9—H110.9900C31—H430.9500
C9—H120.9900C32—C331.528 (3)
C9—H130.9900C32—H440.9900
C10—C121.512 (6)C32—H450.9900
C10—H140.9900C33—C341.524 (3)
C10—H150.9900C33—H460.9900
C11—C121.416 (4)C33—H470.9900
C11—H160.9900C34—C351.509 (3)
C11—H170.9900C34—H480.9900
C12—C131.521 (3)C34—H490.9900
C12—H180.9900C35—C361.383 (3)
C12—H190.9900C35—C391.395 (3)
C12—H200.9900C36—C371.385 (3)
C12—H210.9900C36—H500.9500
C13—C181.388 (3)C37—C381.383 (3)
C13—C141.395 (3)C37—C401.510 (4)
C14—C151.397 (3)C38—H510.9500
C14—C231.517 (3)C39—H520.9500
C15—C161.386 (3)C40—C421.325 (7)
C15—H220.9500C40—C411.591 (5)
C16—C171.399 (3)C40—H530.9900
C16—C191.516 (3)C40—H540.9900
C17—C181.391 (3)C40—H550.9900
C18—H230.9500C40—H560.9900
C19—C211.350 (5)C41—C431.396 (5)
C19—C201.691 (5)C41—H570.9900
C19—H240.9900C41—H580.9900
C19—H250.9900C42—C431.555 (6)
C19—H260.9900C42—H590.9900
C19—H270.9900C42—H600.9900
C20—C221.347 (4)C43—H610.9900
C20—H280.9900C43—H620.9900
C20—H290.9900C43—H630.9900
C21—C221.701 (5)C43—H640.9900
C5—N1—C6116.8 (2)C30—C22—H32110.3
C39—N2—C38116.6 (2)C21—C22—H32110.3
C17—C1—C2114.26 (18)C30—C22—H33110.3
C17—C1—H1108.7C21—C22—H33110.3
C2—C1—H1108.7H32—C22—H33108.6
C17—C1—H2108.7C20—C22—H34105.3
C2—C1—H2108.7C30—C22—H34105.3
H1—C1—H2107.6C20—C22—H35105.3
C3—C2—C1117.46 (19)C30—C22—H35105.3
C3—C2—H3107.9H34—C22—H35106.0
C1—C2—H3107.9C14—C23—C24115.7 (2)
C3—C2—H4107.9C14—C23—H36108.4
C1—C2—H4107.9C24—C23—H36108.4
H3—C2—H4107.2C14—C23—H37108.4
C4—C3—C2114.39 (17)C24—C23—H37108.4
C4—C3—H5108.7H36—C23—H37107.4
C2—C3—H5108.7C23—C24—C25116.52 (17)
C4—C3—H6108.7C23—C24—H38108.2
C2—C3—H6108.7C25—C24—H38108.2
H5—C3—H6107.6C23—C24—H39108.2
C8—C4—C5116.5 (2)C25—C24—H39108.2
C8—C4—C3122.13 (19)H38—C24—H39107.3
C5—C4—C3121.2 (2)C26—C25—C24115.1 (2)
N1—C5—C4124.2 (2)C26—C25—H40108.5
N1—C5—H7117.9C24—C25—H40108.5
C4—C5—H7117.9C26—C25—H41108.5
N1—C6—C7124.4 (2)C24—C25—H41108.5
N1—C6—H8117.8H40—C25—H41107.5
C7—C6—H8117.8C31—C26—C27118.34 (17)
C8—C7—C6116.8 (2)C31—C26—C25117.50 (19)
C8—C7—C9121.8 (2)C27—C26—C25124.01 (18)
C6—C7—C9121.3 (2)C28—C27—C26118.03 (16)
C4—C8—C7121.1 (2)C28—C27—C43120.2 (2)
C4—C8—H9119.4C26—C27—C43121.71 (19)
C7—C8—H9119.4C29—C28—C27123.65 (18)
C7—C9—C10109.2 (3)C29—C28—H42118.2
C7—C9—C11113.0 (2)C27—C28—H42118.2
C7—C9—H10109.0C28—C29—C30118.22 (17)
C11—C9—H10109.0C28—C29—C32118.96 (18)
C7—C9—H11109.0C30—C29—C32122.72 (17)
C11—C9—H11109.0C31—C30—C29118.05 (16)
H10—C9—H11107.8C31—C30—C22120.01 (18)
C7—C9—H12109.8C29—C30—C22121.79 (17)
C10—C9—H12109.8C30—C31—C26123.58 (18)
C7—C9—H13109.8C30—C31—H43118.2
C10—C9—H13109.8C26—C31—H43118.2
H12—C9—H13108.3C29—C32—C33114.53 (17)
C12—C10—C9115.1 (4)C29—C32—H44108.6
C12—C10—H14108.5C33—C32—H44108.6
C9—C10—H14108.5C29—C32—H45108.6
C12—C10—H15108.5C33—C32—H45108.6
C9—C10—H15108.5H44—C32—H45107.6
H14—C10—H15107.5C34—C33—C32117.7 (2)
C12—C11—C9116.1 (3)C34—C33—H46107.9
C12—C11—H16108.3C32—C33—H46107.9
C9—C11—H16108.3C34—C33—H47107.9
C12—C11—H17108.3C32—C33—H47107.9
C9—C11—H17108.3H46—C33—H47107.2
H16—C11—H17107.4C35—C34—C33114.42 (17)
C11—C12—C13119.1 (2)C35—C34—H48108.7
C10—C12—C13117.6 (3)C33—C34—H48108.7
C11—C12—H18107.5C35—C34—H49108.7
C13—C12—H18107.5C33—C34—H49108.7
C11—C12—H19107.5H48—C34—H49107.6
C13—C12—H19107.5C36—C35—C39117.3 (2)
H18—C12—H19107.0C36—C35—C34121.9 (2)
C10—C12—H20107.9C39—C35—C34120.8 (2)
C13—C12—H20107.9C35—C36—C37120.85 (19)
C10—C12—H21107.9C35—C36—H50119.6
C13—C12—H21107.9C37—C36—H50119.6
H20—C12—H21107.2C38—C37—C36116.2 (2)
C18—C13—C14118.27 (17)C38—C37—C40121.9 (2)
C18—C13—C12120.13 (19)C36—C37—C40121.8 (2)
C14—C13—C12121.57 (18)N2—C38—C37125.2 (2)
C13—C14—C15118.04 (17)N2—C38—H51117.4
C13—C14—C23124.8 (2)C37—C38—H51117.4
C15—C14—C23117.1 (2)N2—C39—C35123.7 (2)
C16—C15—C14123.64 (19)N2—C39—H52118.1
C16—C15—H22118.2C35—C39—H52118.1
C14—C15—H22118.2C42—C40—C37111.4 (3)
C15—C16—C17118.06 (17)C37—C40—C41116.6 (2)
C15—C16—C19120.7 (2)C37—C40—H53108.1
C17—C16—C19121.05 (19)C41—C40—H53108.1
C18—C17—C16118.22 (17)C37—C40—H54108.1
C18—C17—C1118.57 (18)C41—C40—H54108.1
C16—C17—C1123.10 (17)H53—C40—H54107.3
C13—C18—C17123.63 (18)C42—C40—H55109.3
C13—C18—H23118.2C37—C40—H55109.3
C17—C18—H23118.2C42—C40—H56109.3
C21—C19—C16128.5 (3)C37—C40—H56109.3
C16—C19—C20104.8 (2)H55—C40—H56108.0
C21—C19—H24105.2C43—C41—C40120.6 (3)
C16—C19—H24105.2C43—C41—H57107.2
C21—C19—H25105.2C40—C41—H57107.2
C16—C19—H25105.2C43—C41—H58107.2
H24—C19—H25105.9C40—C41—H58107.2
C16—C19—H26110.8H57—C41—H58106.8
C20—C19—H26110.8C40—C42—C43128.5 (5)
C16—C19—H27110.8C40—C42—H59105.2
C20—C19—H27110.8C43—C42—H59105.2
H26—C19—H27108.9C40—C42—H60105.2
C22—C20—C19116.5 (3)C43—C42—H60105.2
C22—C20—H28108.2H59—C42—H60105.9
C19—C20—H28108.2C41—C43—C27120.9 (3)
C22—C20—H29108.2C27—C43—C42113.0 (3)
C19—C20—H29108.2C41—C43—H61107.1
H28—C20—H29107.3C27—C43—H61107.1
C19—C21—C22115.7 (3)C41—C43—H62107.1
C19—C21—H30108.4C27—C43—H62107.1
C22—C21—H30108.4H61—C43—H62106.8
C19—C21—H31108.4C27—C43—H63109.0
C22—C21—H31108.4C42—C43—H63109.0
H30—C21—H31107.4C27—C43—H64109.0
C20—C22—C30127.9 (3)C42—C43—H64109.0
C30—C22—C21106.9 (2)H63—C43—H64107.8
C17—C1—C2—C375.5 (3)C19—C21—C22—C3094.6 (3)
C1—C2—C3—C466.0 (3)C13—C14—C23—C2463.4 (3)
C2—C3—C4—C8107.4 (2)C15—C14—C23—C24113.0 (2)
C2—C3—C4—C569.0 (3)C14—C23—C24—C2546.4 (3)
C6—N1—C5—C41.6 (3)C23—C24—C25—C2646.4 (3)
C8—C4—C5—N11.8 (3)C24—C25—C26—C31111.4 (2)
C3—C4—C5—N1174.8 (2)C24—C25—C26—C2763.9 (3)
C5—N1—C6—C71.9 (4)C31—C26—C27—C283.2 (3)
N1—C6—C7—C81.2 (3)C25—C26—C27—C28172.08 (18)
N1—C6—C7—C9174.4 (2)C31—C26—C27—C43174.58 (18)
C5—C4—C8—C75.0 (3)C25—C26—C27—C4310.1 (3)
C3—C4—C8—C7171.58 (17)C26—C27—C28—C293.4 (3)
C6—C7—C8—C44.8 (3)C43—C27—C28—C29174.48 (18)
C9—C7—C8—C4170.89 (19)C27—C28—C29—C303.0 (3)
C8—C7—C9—C10117.0 (3)C27—C28—C29—C32173.57 (17)
C6—C7—C9—C1058.5 (4)C28—C29—C30—C312.5 (3)
C8—C7—C9—C1159.7 (3)C32—C29—C30—C31173.94 (16)
C6—C7—C9—C11115.8 (3)C28—C29—C30—C22173.11 (19)
C7—C9—C10—C1273.5 (5)C32—C29—C30—C2210.5 (3)
C11—C9—C10—C1231.4 (3)C20—C22—C30—C3132.6 (4)
C7—C9—C11—C1263.3 (4)C21—C22—C30—C3195.1 (2)
C10—C9—C11—C1234.1 (3)C20—C22—C30—C29142.9 (3)
C9—C11—C12—C1032.8 (3)C21—C22—C30—C2980.4 (3)
C9—C11—C12—C1373.3 (4)C29—C30—C31—C262.7 (3)
C9—C10—C12—C1134.3 (4)C22—C30—C31—C26173.01 (19)
C9—C10—C12—C1374.3 (5)C27—C26—C31—C303.1 (3)
C11—C12—C13—C1835.0 (4)C25—C26—C31—C30172.56 (18)
C10—C12—C13—C18101.7 (4)C28—C29—C32—C33108.0 (2)
C11—C12—C13—C14143.1 (3)C30—C29—C32—C3368.4 (3)
C10—C12—C13—C1476.3 (4)C29—C32—C33—C3473.9 (3)
C18—C13—C14—C152.7 (3)C32—C33—C34—C3565.6 (3)
C12—C13—C14—C15175.31 (18)C33—C34—C35—C36105.7 (2)
C18—C13—C14—C23173.67 (19)C33—C34—C35—C3971.0 (3)
C12—C13—C14—C238.3 (3)C39—C35—C36—C374.7 (3)
C13—C14—C15—C163.1 (3)C34—C35—C36—C37172.15 (18)
C23—C14—C15—C16173.58 (18)C35—C36—C37—C384.7 (3)
C14—C15—C16—C173.5 (3)C35—C36—C37—C40171.67 (19)
C14—C15—C16—C19171.89 (19)C39—N2—C38—C372.1 (4)
C15—C16—C17—C183.5 (3)C36—C37—C38—N21.3 (3)
C19—C16—C17—C18171.89 (19)C40—C37—C38—N2175.1 (2)
C15—C16—C17—C1172.74 (18)C38—N2—C39—C352.2 (3)
C19—C16—C17—C111.9 (3)C36—C35—C39—N21.1 (3)
C2—C1—C17—C18106.2 (2)C34—C35—C39—N2175.7 (2)
C2—C1—C17—C1669.9 (3)C38—C37—C40—C4267.1 (4)
C14—C13—C18—C173.1 (3)C36—C37—C40—C42109.1 (4)
C12—C13—C18—C17174.99 (17)C38—C37—C40—C41116.7 (3)
C16—C17—C18—C133.4 (3)C36—C37—C40—C4159.5 (4)
C1—C17—C18—C13172.93 (17)C42—C40—C41—C4337.8 (4)
C15—C16—C19—C2131.6 (4)C37—C40—C41—C4356.7 (5)
C17—C16—C19—C21143.6 (3)C37—C40—C42—C4369.5 (6)
C15—C16—C19—C2092.8 (2)C41—C40—C42—C4337.3 (4)
C17—C16—C19—C2082.4 (3)C40—C41—C43—C2761.4 (5)
C21—C19—C20—C2230.3 (3)C40—C41—C43—C4231.4 (4)
C16—C19—C20—C2296.1 (3)C28—C27—C43—C4143.8 (4)
C16—C19—C21—C2260.6 (4)C26—C27—C43—C41133.9 (3)
C20—C19—C21—C2223.4 (2)C28—C27—C43—C4294.5 (4)
C19—C20—C22—C3063.5 (4)C26—C27—C43—C4283.3 (4)
C19—C20—C22—C2123.7 (2)C40—C42—C43—C4143.5 (5)
C19—C21—C22—C2029.9 (3)C40—C42—C43—C2767.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H9···N1i0.952.433.373 (3)173
C36—H50···N2ii0.952.473.394 (3)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H9···N1i0.952.433.373 (3)173
C36—H50···N2ii0.952.473.394 (3)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC40H46N2
Mr554.79
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.1377 (15), 14.643 (4), 17.519 (4)
α, β, γ (°)75.619 (16), 88.369 (17), 86.755 (17)
V3)1522.6 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.52
Crystal size (mm)0.45 × 0.30 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20167, 5396, 4455
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.204, 1.07
No. of reflections5396
No. of parameters410
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), SIR2011 (Camalli et al., 2012), SHELXL2014 (Sheldrick, 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

 

Acknowledgements

This work was partially supported by a Grant-in-Aid for Science Research (C 25410050) from the Japan Society for the Promotion of Science (JSPS), Japan, and was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (IMCE, Kyushu University). MW thanks the World Premier Inter­national Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Japan.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521–3529.  CSD CrossRef CAS Web of Science Google Scholar
First citationCamalli, M., Carrozzini, B., Cascarano, G. L. & Giacovazzo, C. (2012). J. Appl. Cryst. 45, 351–356.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFronczek, F. R., Mamo, A. & Pappalardo, S. (1989). Inorg. Chem. 28, 1419–1422.  CSD CrossRef CAS Web of Science Google Scholar
First citationIsaji, H., Yasutake, M., Takemura, H., Sako, K., Tatemitsu, H., Inazu, T. & Shinmyozu, T. (2001). Eur. J. Org. Chem. pp. 2487–2499.  CrossRef Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationKrüger, H.-J. (1995). Chem. Ber. 128, 531–539.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuralidharan, S., Hojjatie, M., Firestone, M. & Freiser, H. (1989). J. Org. Chem. 54, 393–399.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSatou, T. & Shinmyozu, T. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 393–397.  Web of Science CSD CrossRef Google Scholar
First citationSemmelhack, M. F., Harrison, J. J., Young, D. C., Gutierrez, A., Rafii, S. & Clardy, J. (1985). J. Am. Chem. Soc. 107, 7508–7514.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, M., Watanabe, M., Aso, K. & Shinmyozu, T. (2008). Synthesis, pp. 3749–3754.  Web of Science CrossRef Google Scholar
First citationShibahara, M., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). Acta Cryst. E70, o625–o626.  CSD CrossRef IUCr Journals Google Scholar
First citationShibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865–2877.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShibahara, M., Watanabe, M., Suenaga, M., Ideta, K., Matsumoto, T. & Shinmyozu, T. (2009). Tetrahedron Lett. 50, 1340–1344.  Web of Science CSD CrossRef CAS Google Scholar
First citationShibahara, M., Watanabe, M., Yuan, C. & Shinmyozu, T. (2011). Tetrahedron Lett. 52, 5012–5015.  Web of Science CSD CrossRef CAS Google Scholar
First citationShinmyozu, T., Hirai, Y. & Inazu, T. (1986). J. Org. Chem. 51, 1551–1555.  CrossRef CAS Web of Science Google Scholar
First citationVögtle, F. & Schunder, L. (1969). Chem. Ber. 102, 2677–2683.  Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds