research communications
of a four-layered [3.3](3,5)pyridinophane
aDepartment of Chemistry, Faculty of Education and Welfare Science, Oita University, 700 Dannoharu, Oita 870-1192, Japan, bInternational Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, cEvaluation Center of Materials Properties and Function, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan, and dInstitute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: mshiba@oita-u.ac.jp
The title compound, C40H46N2 {systematic name: 12,30-diazaheptacyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]dotetraconta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodecaene}, has syn–anti–syn geometry wherein the two outer [3.3]metacyclophane (MCP) moieties have a syn geometry, and contain the facing benzene and pyridine rings at dihedral angles of 26.26 (10) and 26.46 (10)°, respectively. The rings of the central [3.3]MCP unit are not parallel, but orientated at a slight angle of 2.66 (9)°. Three bridging methylene groups are disordered over two sets of sites in a 0.60:0.40 ratio. In the crystal, the molecules are linked by C—H⋯N interactions and intermolecular C—H⋯π short contacts, generating a three-dimensional network.
Keywords: crystal structure; metacyclophane; pyridinophane; transannular p-electronic interaction; C—H⋯N hydrogen bond; intermolecular short contact.
CCDC reference: 1031274
1. Chemical context
[3.3]Metapyridinophanes (MPyPs) have been used as ligands in transition metal complexes, and various kinds of metal complexes have been prepared using them (Muralidharan et al., 1989; Fronczek et al., 1989; Krüger, 1995). A variety of types of [3.3]MPyPs are possible, and the [3.3](2,6)PyPs have been studied in detail (Vögtle & Schunder, 1969; Shinmyozu et al., 1986; Bottino et al., 1988). Only a limited number of [3.3](3,5)PyPs have been produced up to now, mainly because of the instability of the coupling precursor, 3,5-bis(halomethyl)pyridine. We have previously used freshly prepared 3,5-bis(chloromethyl)pyridine as the coupling reaction to prepare 2,11-diaza[3.3](3,5)PyP (Satou & Shinmyozu, 2002). One of the major advantages of using [3.3](3,5)PyPs over using [3.3](2,6)PyPs is the potential for forming self-assembled supramolecules when [3.3](3,5)PyPs become coordinated. This occurs because the metacyclophanes (MCPs) have syn geometries and the nitrogen lone-pair electrons can readily coordinate with metals without being caused by the bridges. We have also described the synthesis of multilayered [3.3]cyclophanes using the (p-tolylsulfonyl)methyl isocyanide method (MCPs; Shibahara et al., 2007) and the (p-ethylbenzenesulfonyl)methyl isocyanide method (paracyclophanes; Shibahara et al., 2008). Multilayered [3.3]MCPs that have a pyridine ring at each end may, therefore, form larger supramolecules when they form complexes with transition metals. These new types of supramolecules could have uses as catalysts, inclusion hosts or nanometer-scale materials.
2. Structural commentary
The molecular structure of the title compound (at 123 K) is shown Fig. 1. The trimethylene bridges are highly flexible and disordered even at this temperature. The molecule has a syn–anti–syn geometry, in which the two outer [3.3]MCP moieties have a syn geometry and contain opposing benzene and pyridine rings at angles of 26.26 (10)° (between the C4–C8/N1 and C13—C18 planes) and 26.46 (10)° (between the C26—C31 and C35–C39/N2 planes). These angles are comparable to the corresponding angle (24°) in the parent two-layered [3.3]MCP (Semmelhack et al., 1985). The central [3.3]MCP unit is not parallel, but is at a slight angle of 2.66 (9)° between the C13–C18 and C26–C31 planes. There is a twist between the benzene rings of the parent two-layered [3.3]MCP of ca 15° about the axis through the centre of each ring, but the twists in the outer [3.3]MCP moieties are only 3.93° (between the N1–C8 and C15–C18 axes) and 2.49° (between the C28–C31 and N2–C36 axes), and the benzene rings overlap each other completely in this molecule. However, the twist in the benzene rings in the central [3.3]MCP unit is quite large, at 11.6° between the C15–C18 and C28–C31 axes. The transannular distances between C8 and C18 [2.968 (3) Å], C28 and C36 [2.955 (3) Å], N1 and C15 [4.168 (3) Å], and N2 and C31 [4.174 (3) Å] are comparable to the distances in the parent two-layered [3.3]MCP (2.995 and 4.171 Å) while the distance between C15 and C31 [2.910 (3) Å] is much shorter than that in the parent two-layered [3.3]MCP-2,11-dione (2.99 Å), which adopts an anti geometry (Isaji et al., 2001).
3. Supramolecular features
The crystal-packing diagram of the molecule (Fig. 2) shows that molecules are stacked alternately changing direction in the bc plane. Two types of intermolecular short contacts are observed. One is the C—H⋯π-type interactions between C6 and H11 (2.811 Å) and between C35 and H49 (2.868 Å) in the bc plane, while the other is between N1 and H9 (2.429 Å) and between N2 and H50 (2.468 Å) along the a axis (Table 1). Both instances of the second type of short contact were found to be shorter than the sum of the van der Waals radii of a nitrogen and hydrogen atom.
4. Database survey
The title compound is closely related to the four-layered [3.3]MCP, heptacyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]dotetraconta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodecaene), which is the hydrocarbon-only parent molecule (Shibahara et al., 2007), and its with tetracyanoethylene (Shibahara et al., 2011, 2014). The four-layered [3.3]MCP changes conformation in the solid state depending on the environment its circumference is in, having a syn–anti–syn geometry like the letter `ω' in a ligand-free environment and have a geometry like the letter `s' when it forms a complex.
5. Synthesis and crystallization
The title compound was prepared as described by Shibahara et al. (2008) by a coupling reaction of 5,7,14,16-tetrakis(bromomethyl)[3.3]metacyclophane with 3,5-bis[2-isocyano-2-(tolylsulfonyl)ethyl]pyridine, which afforded four-layered [3.3](3,5)pyridinophane tetraone, which was converted to the four-layered[3.3](3,5)pyridinophane Shibahara et al., 2009) by a Wolff–Kishner reduction. Purification of the crude product by silica gel with CH2Cl2/EtOH (9:1; v/v, Rf = 0.53) gave the four-layered pyridinophane (12% isolated yield in two steps). Finally, the product was crystallized from CH2Cl2/acetone to give single crystals (colourless prisms), m.p. 518 K (decomposed).
1H NMR (600 MHz, CDCl3): δ 1.8–2.0 (m, 12H, CH2CH2CH2), 2.4–2.7 (m, 24H, CH2CH2CH2), 5.97 (s, 2H, ArH), 6.21 (s, 2H, ArH), 6.91 (s, 2H, ArH), 7.84 (d, J = 1.5 Hz, 4H, ArH). 13C NMR (150 MHz, CDCl3) δ 26.2, 27.7, 32.4, 32.7, 33.2, 134.0, 134.4, 134.8, 134.8, 135.8, 140.4, 146.8. HRMS (FAB): m/z [M+H]+ calculated for C40H47N2 555.3739, found 555.3739. Analysis calculated for C40H46N2: C, 86.59; H, 8.36; N, 5.05. found: C, 86.35; H, 8.34; N, 5.01.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1031274
10.1107/S1600536814023691/hb7300sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814023691/hb7300Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814023691/hb7300Isup3.cml
[3.3]Metapyridinophanes (MPyPs) have been used as ligands in transition metal complexes, and various kinds of metal complexes have been prepared using them (Muralidharan et al., 1989; Fronczek et al., 1989; Krüger, 1995). A variety of types of [3.3]MPyPs are possible, and the [3.3](2,6)PyPs have been studied in detail (Vögtle & Schunder, 1969; Shinmyozu et al. 1986; Bottino et al. 1988). Only a limited number of [3.3](3,5)PyPs have been produced up to now, mainly because of the instability of the coupling precursor, 3,5-bis(halomethyl)pyridine. We have previously used freshly prepared 3,5-bis(chloromethyl)pyridine as the coupling reaction to prepare 2,11-diaza[3.3](3,5)Pyp (Satou & Shinmyozu, 2002). One of the major advantages of using [3.3](3,5)PyPs over using [3.3](2,6)PyPs is the potential for forming self-assembled supramolecules when [3.3](3,5)PyPs become coordinated. This occurs because the metacyclophanes (MCPs) have syn geometries and the nitrogen lone-pair electrons can readily coordinate with metals without
being caused by the bridges. We have also described the synthesis of multilayered [3.3]cyclophanes using the (p-tolylsulfonyl)methyl isocyanide method (MCPs; Shibahara et al. 2007) and the (p-ethylbenzenesulfonyl)methyl isocyanide method (paracyclophanes; Shibahara et al. 2008). Multilayered [3.3]MCPs that have a pyridine ring at each end may, therefore, form larger supramolecules when they form complexes with transition metals. These new types of supramolecules could have uses as catalysts, inclusion hosts or nanometer-scale materials.The molecular structure of the title compound (at 123 K) is shown Fig.1. The trimethylene bridges are highly flexible and disordered even at this temperature. The molecule has a syn–anti--syn geometry, in which the two outer [3.3]MCP moieties have a syn geometry and contain opposing benzene and pyridine rings at angles of 26.26 (10)° (between the C4–C8/N1 and C13—C18 planes) and 26.46 (10)° (between the C26—C31 and C35–C39/N2 planes). These angles are comparable to the corresponding angle (24°) in the parent two-layered [3.3]MCP (Semmelhack et al. 1985). The central [3.3]MCP unit is not parallel, but is at a slight angle of 2.66 (9)° between the C13–C18 and C26–C31 planes. There is a twist between the benzene rings of the parent two-layered [3.3]MCP of ca 15° about the axis through the centre of each ring, but the twists in the outer [3.3]MCP moieties are only 3.93° (between the N1–C8 and C15–C18 axes) and 2.49° (between the C28–C31 and N2–C36 axes), and the benzene rings overlap each other completely in this molecule. However, the twist in the benzene rings in the central [3.3]MCP unit is quite large, at 11.6° between the C15–C18 and C28–C31 axes. The transannular distances between C8 and C18 [2.968 (3) Å], C28 and C36 [2.955 (3) Å], N1 and C15 [4.168 (3) Å], and N2 and C31 [4.174 (3) Å] are comparable to the distances in the parent two-layered [3.3]MCP (2.995 and 4.171 Å) while the distance between C15 and C31 [2.910 (3) Å] is much shorter than that in the parent two-layered [3.3]MCP-2,11-dione (2.99 Å), which adopts an anti geometry (Isaji et al. 2001).
The crystal-packing diagram of the molecule (Fig. 2) shows that molecules are stacked alternately changing direction in the bc plane. Two types of intermolecular short contacts are observed. One is the C—H···π-type interactions between C6 and H11 (2.811 Å) and between C35 and H49 (2.868 Å) in the bc plane, while the other is between N1 and H9 (2.429 Å) and between N2 and H50 (2.468 Å) along the a axis (Table 1). Both instances of the second type of short contact were found to be shorter than the sum of the van der Waals radii of a nitrogen and hydrogen atom.
\ The title compound is closely related to a four-layered [3.3]MCP (systematic name : heptacyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]dotetraconta-\ 1(37),5(40),6(41),10 (42),11,13,18,23,28,30,32 (39),36 (38)-dodecaene), which is the hydrocarbon-only parent molecule (Shibahara et al. 2007) and its
with tetracyanoethylene (Shibahara et al. 2011, 2014). The four-layered [3.3]MCP changes conformation in the solid state depending on the environment its circumference is in, having a syn–anti–syn geometry like the letter `w' in a ligand-free environment and have a geometry like the letter `s' when it forms a complex.The title compound was prepared as described by Shibahara et al. (2008) by a coupling reaction of 5,7,14,16-tetrakis(bromomethyl)[3.3]metacyclophane with 3,5-bis[2-isocyano-2-(tolylsulfonyl)ethyl]pyridine, which afforded four-layered [3.3](3,5)pyridinophane tetraone (Shibahara et al. (2009), which was converted to the four-layered[3.3](3,5)pyridinophane by a Wolff–Kishner reduction. Purification of the crude product by silica gel
with CH2Cl2/EtOH (9:1; v/v, Rf = 0.53) gave the four-layered pyridinophane (12% isolated yield in two steps). Finally, the product was crystallized from CH2Cl2/acetone to give single crystals (colourless prisms), m.p. 518 K (decomposed). 1H NMR (600 MHz, CDCl3): d 1.8–2.0 (m, 12H, CH2CH2CH2), 2.4–2.7 (m, 24H, CH2CH2CH2), 5.97 (s, 2H, ArH), 6.21 (s, 2H, ArH), 6.91 (s, 2H, ArH), 7.84 (d, J = 1.5 Hz, 4H, ArH). 13C NMR (150 MHz, CDCl3) d 26.2, 27.7, 32.4, 32.7, 33.2, 134.0, 134.4, 134.8, 134.8, 135.8, 140.4, 146.8. HRMS (FAB): m/z [M+H]+ calculated for C40H47N2 555.3739, found 555.3739. Analysis calculated for C40H46N2: C, 86.59; H, 8.36; N, 5.05. found: C, 86.35; H, 8.34; N, 5.01.Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2011 (Camalli et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Short contacts of the title compound; C—H···π-type interactions between C6 and H11 and C35 and H49 (orange dashed lines) and short contacts between N1 and H9 and N2 and H50 (light-blue dashed lines). |
C40H46N2 | Z = 2 |
Mr = 554.79 | F(000) = 600 |
Triclinic, P1 | Dx = 1.210 Mg m−3 |
a = 6.1377 (15) Å | Cu Kα radiation, λ = 1.54187 Å |
b = 14.643 (4) Å | Cell parameters from 20167 reflections |
c = 17.519 (4) Å | θ = 3.1–68.2° |
α = 75.619 (16)° | µ = 0.52 mm−1 |
β = 88.369 (17)° | T = 123 K |
γ = 86.755 (17)° | Block, colorless |
V = 1522.6 (7) Å3 | 0.45 × 0.30 × 0.16 mm |
Rigaku R-AXIS RAPID diffractometer | 4455 reflections with I > 2σ(I) |
Radiation source: Rotating anode | Rint = 0.040 |
Graphite monochromator | θmax = 68.2°, θmin = 3.1° |
Detector resolution: 10.00 pixels mm-1 | h = −7→7 |
ω scans | k = −17→17 |
20167 measured reflections | l = −21→20 |
5396 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.204 | w = 1/[σ2(Fo2) + (0.0985P)2 + 0.5512P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
5396 reflections | Δρmax = 0.42 e Å−3 |
410 parameters | Δρmin = −0.32 e Å−3 |
C40H46N2 | γ = 86.755 (17)° |
Mr = 554.79 | V = 1522.6 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.1377 (15) Å | Cu Kα radiation |
b = 14.643 (4) Å | µ = 0.52 mm−1 |
c = 17.519 (4) Å | T = 123 K |
α = 75.619 (16)° | 0.45 × 0.30 × 0.16 mm |
β = 88.369 (17)° |
Rigaku R-AXIS RAPID diffractometer | 4455 reflections with I > 2σ(I) |
20167 measured reflections | Rint = 0.040 |
5396 independent reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.204 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.42 e Å−3 |
5396 reflections | Δρmin = −0.32 e Å−3 |
410 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ (F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | −0.1497 (3) | 0.89284 (14) | 0.15093 (15) | 0.0710 (6) | |
N2 | −0.3765 (3) | 0.11241 (14) | 0.34741 (14) | 0.0686 (6) | |
C1 | −0.6871 (4) | 0.71516 (16) | 0.33718 (12) | 0.0548 (6) | |
H1 | −0.6992 | 0.6659 | 0.3871 | 0.066* | |
H2 | −0.8360 | 0.7317 | 0.3161 | 0.066* | |
C2 | −0.5956 (4) | 0.80319 (16) | 0.35507 (13) | 0.0611 (6) | |
H3 | −0.6656 | 0.8121 | 0.4045 | 0.073* | |
H4 | −0.4377 | 0.7900 | 0.3652 | 0.073* | |
C3 | −0.6234 (4) | 0.89604 (15) | 0.29260 (14) | 0.0568 (6) | |
H5 | −0.7804 | 0.9087 | 0.2805 | 0.068* | |
H6 | −0.5757 | 0.9476 | 0.3146 | 0.068* | |
C4 | −0.4983 (3) | 0.89824 (13) | 0.21695 (14) | 0.0489 (5) | |
C5 | −0.2702 (3) | 0.89796 (15) | 0.21396 (16) | 0.0593 (6) | |
H7 | −0.1969 | 0.9017 | 0.2600 | 0.071* | |
C6 | −0.2568 (4) | 0.88533 (16) | 0.08720 (17) | 0.0694 (7) | |
H8 | −0.1726 | 0.8797 | 0.0421 | 0.083* | |
C7 | −0.4813 (4) | 0.88527 (14) | 0.08282 (14) | 0.0585 (6) | |
C8 | −0.6003 (3) | 0.89542 (13) | 0.14854 (13) | 0.0505 (5) | |
H9 | −0.7551 | 0.9006 | 0.1466 | 0.061* | |
C9 | −0.5889 (6) | 0.86779 (17) | 0.01185 (15) | 0.0813 (9) | |
H10 | −0.4757 | 0.8638 | −0.0288 | 0.098* | 0.6 |
H11 | −0.6909 | 0.9221 | −0.0105 | 0.098* | 0.6 |
H12 | −0.5535 | 0.9178 | −0.0356 | 0.098* | 0.4 |
H13 | −0.7493 | 0.8692 | 0.0196 | 0.098* | 0.4 |
C10 | −0.5062 (11) | 0.7705 (4) | 0.0003 (3) | 0.0600 (14) | 0.4 |
H14 | −0.5447 | 0.7669 | −0.0533 | 0.072* | 0.4 |
H15 | −0.3450 | 0.7658 | 0.0034 | 0.072* | 0.4 |
C11 | −0.7216 (7) | 0.7719 (3) | 0.0321 (2) | 0.0624 (10) | 0.6 |
H16 | −0.8340 | 0.7766 | 0.0728 | 0.075* | 0.6 |
H17 | −0.7987 | 0.7684 | −0.0159 | 0.075* | 0.6 |
C12 | −0.5953 (5) | 0.68650 (16) | 0.05909 (12) | 0.0624 (6) | |
H18 | −0.4697 | 0.6872 | 0.0223 | 0.075* | 0.6 |
H19 | −0.6855 | 0.6342 | 0.0546 | 0.075* | 0.6 |
H20 | −0.5686 | 0.6304 | 0.0375 | 0.075* | 0.4 |
H21 | −0.7554 | 0.6976 | 0.0628 | 0.075* | 0.4 |
C13 | −0.5062 (4) | 0.66231 (13) | 0.14222 (10) | 0.0439 (5) | |
C14 | −0.3006 (4) | 0.61736 (13) | 0.15950 (11) | 0.0465 (5) | |
C15 | −0.2239 (3) | 0.60393 (13) | 0.23604 (12) | 0.0458 (5) | |
H22 | −0.0810 | 0.5762 | 0.2473 | 0.055* | |
C16 | −0.3447 (3) | 0.62880 (13) | 0.29652 (11) | 0.0438 (5) | |
C17 | −0.5504 (3) | 0.67436 (13) | 0.27882 (11) | 0.0410 (4) | |
C18 | −0.6270 (3) | 0.68750 (13) | 0.20271 (11) | 0.0409 (4) | |
H23 | −0.7698 | 0.7152 | 0.1915 | 0.049* | |
C19 | −0.2635 (4) | 0.6006 (2) | 0.38046 (13) | 0.0730 (8) | |
H24 | −0.1814 | 0.6546 | 0.3865 | 0.088* | 0.5 |
H25 | −0.3961 | 0.6001 | 0.4141 | 0.088* | 0.5 |
H26 | −0.3104 | 0.6488 | 0.4092 | 0.088* | 0.5 |
H27 | −0.1022 | 0.5927 | 0.3812 | 0.088* | 0.5 |
C20 | −0.3775 (7) | 0.4969 (3) | 0.4213 (2) | 0.0438 (9) | 0.5 |
H28 | −0.4192 | 0.4961 | 0.4765 | 0.053* | 0.5 |
H29 | −0.5135 | 0.4949 | 0.3929 | 0.053* | 0.5 |
C21 | −0.1416 (7) | 0.5230 (3) | 0.4162 (2) | 0.0446 (9) | 0.5 |
H30 | −0.1111 | 0.5271 | 0.4704 | 0.054* | 0.5 |
H31 | 0.0001 | 0.5235 | 0.3876 | 0.054* | 0.5 |
C22 | −0.2538 (4) | 0.4179 (2) | 0.42155 (14) | 0.0656 (7) | |
H32 | −0.2123 | 0.3718 | 0.4713 | 0.088 (18)* | 0.5 |
H33 | −0.4149 | 0.4262 | 0.4200 | 0.058 (13)* | 0.5 |
H34 | −0.3369 | 0.3655 | 0.4537 | 0.060 (13)* | 0.5 |
H35 | −0.1237 | 0.4216 | 0.4526 | 0.078 (15)* | 0.5 |
C23 | −0.1580 (5) | 0.57678 (16) | 0.10252 (13) | 0.0699 (8) | |
H36 | −0.0159 | 0.5545 | 0.1277 | 0.084* | |
H37 | −0.1295 | 0.6282 | 0.0553 | 0.084* | |
C24 | −0.2510 (5) | 0.49556 (16) | 0.07572 (12) | 0.0804 (9) | |
H38 | −0.1332 | 0.4667 | 0.0483 | 0.097* | |
H39 | −0.3658 | 0.5222 | 0.0367 | 0.097* | |
C25 | −0.3485 (5) | 0.41715 (15) | 0.14020 (12) | 0.0644 (7) | |
H40 | −0.4924 | 0.4407 | 0.1565 | 0.077* | |
H41 | −0.3737 | 0.3632 | 0.1175 | 0.077* | |
C26 | −0.2098 (3) | 0.38177 (13) | 0.21302 (10) | 0.0435 (5) | |
C27 | −0.0039 (3) | 0.33628 (13) | 0.21292 (11) | 0.0448 (5) | |
C28 | 0.1172 (3) | 0.31807 (13) | 0.28151 (12) | 0.0443 (5) | |
H42 | 0.2606 | 0.2902 | 0.2807 | 0.053* | |
C29 | 0.0400 (3) | 0.33839 (12) | 0.35121 (10) | 0.0392 (4) | |
C30 | −0.1672 (3) | 0.38350 (12) | 0.35142 (10) | 0.0377 (4) | |
C31 | −0.2876 (3) | 0.40213 (12) | 0.28279 (11) | 0.0396 (4) | |
H43 | −0.4307 | 0.4303 | 0.2835 | 0.048* | |
C32 | 0.1769 (4) | 0.30603 (15) | 0.42464 (13) | 0.0553 (6) | |
H44 | 0.1901 | 0.3602 | 0.4484 | 0.066* | |
H45 | 0.3255 | 0.2868 | 0.4090 | 0.066* | |
C33 | 0.0864 (4) | 0.22411 (16) | 0.48715 (13) | 0.0651 (7) | |
H46 | 0.1605 | 0.2208 | 0.5373 | 0.078* | |
H47 | −0.0703 | 0.2395 | 0.4953 | 0.078* | |
C34 | 0.1071 (4) | 0.12618 (16) | 0.47135 (15) | 0.0628 (6) | |
H48 | 0.2628 | 0.1108 | 0.4614 | 0.075* | |
H49 | 0.0597 | 0.0795 | 0.5193 | 0.075* | |
C35 | −0.0238 (3) | 0.11599 (13) | 0.40259 (15) | 0.0532 (6) | |
C36 | 0.0739 (3) | 0.11169 (14) | 0.33139 (15) | 0.0553 (6) | |
H50 | 0.2286 | 0.1072 | 0.3271 | 0.066* | |
C37 | −0.0508 (4) | 0.11380 (15) | 0.26629 (16) | 0.0595 (6) | |
C38 | −0.2743 (4) | 0.11317 (17) | 0.27859 (18) | 0.0680 (7) | |
H51 | −0.3623 | 0.1133 | 0.2348 | 0.082* | |
C39 | −0.2509 (3) | 0.11535 (15) | 0.40745 (16) | 0.0597 (6) | |
H52 | −0.3199 | 0.1171 | 0.4563 | 0.072* | |
C40 | 0.0508 (5) | 0.12235 (19) | 0.18544 (18) | 0.0774 (8) | |
H53 | −0.0669 | 0.1207 | 0.1484 | 0.093* | 0.6 |
H54 | 0.1502 | 0.0661 | 0.1876 | 0.093* | 0.6 |
H55 | 0.2112 | 0.1122 | 0.1902 | 0.093* | 0.4 |
H56 | −0.0033 | 0.0728 | 0.1624 | 0.093* | 0.4 |
C41 | 0.1840 (8) | 0.2138 (3) | 0.1500 (2) | 0.0668 (11) | 0.6 |
H57 | 0.3133 | 0.2097 | 0.1834 | 0.080* | 0.6 |
H58 | 0.2389 | 0.2097 | 0.0972 | 0.080* | 0.6 |
C42 | 0.0035 (11) | 0.2064 (4) | 0.1380 (4) | 0.0637 (16) | 0.4 |
H59 | −0.1577 | 0.2140 | 0.1391 | 0.076* | 0.4 |
H60 | 0.0441 | 0.1999 | 0.0844 | 0.076* | 0.4 |
C43 | 0.0848 (5) | 0.30389 (18) | 0.14163 (14) | 0.0708 (7) | |
H61 | −0.0378 | 0.3097 | 0.1049 | 0.085* | 0.6 |
H62 | 0.1923 | 0.3497 | 0.1150 | 0.085* | 0.6 |
H63 | 0.2463 | 0.2999 | 0.1430 | 0.085* | 0.4 |
H64 | 0.0403 | 0.3516 | 0.0932 | 0.085* | 0.4 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0479 (11) | 0.0539 (12) | 0.1144 (18) | −0.0067 (9) | 0.0227 (11) | −0.0285 (12) |
N2 | 0.0409 (10) | 0.0638 (12) | 0.1137 (18) | −0.0058 (9) | −0.0037 (11) | −0.0448 (12) |
C1 | 0.0666 (14) | 0.0559 (13) | 0.0480 (11) | −0.0095 (11) | 0.0150 (10) | −0.0248 (10) |
C2 | 0.0778 (15) | 0.0628 (14) | 0.0530 (12) | −0.0038 (12) | 0.0063 (11) | −0.0346 (11) |
C3 | 0.0511 (12) | 0.0500 (12) | 0.0799 (15) | −0.0006 (9) | 0.0029 (11) | −0.0369 (12) |
C4 | 0.0444 (10) | 0.0324 (10) | 0.0750 (14) | −0.0021 (8) | 0.0053 (10) | −0.0234 (10) |
C5 | 0.0450 (11) | 0.0454 (12) | 0.0942 (17) | −0.0045 (9) | −0.0016 (11) | −0.0292 (12) |
C6 | 0.0770 (17) | 0.0441 (13) | 0.0855 (18) | −0.0014 (11) | 0.0254 (14) | −0.0165 (12) |
C7 | 0.0746 (15) | 0.0308 (10) | 0.0663 (14) | 0.0007 (10) | 0.0092 (12) | −0.0069 (9) |
C8 | 0.0471 (11) | 0.0335 (10) | 0.0720 (14) | −0.0005 (8) | −0.0029 (10) | −0.0155 (10) |
C9 | 0.137 (3) | 0.0452 (13) | 0.0563 (14) | 0.0068 (15) | −0.0120 (15) | −0.0034 (11) |
C10 | 0.091 (4) | 0.048 (3) | 0.037 (3) | −0.008 (3) | −0.003 (3) | −0.002 (2) |
C11 | 0.093 (3) | 0.051 (2) | 0.0446 (19) | 0.011 (2) | −0.0237 (19) | −0.0144 (16) |
C12 | 0.1004 (19) | 0.0522 (13) | 0.0364 (11) | −0.0181 (12) | −0.0042 (11) | −0.0109 (9) |
C13 | 0.0676 (13) | 0.0327 (9) | 0.0324 (9) | −0.0112 (9) | 0.0030 (8) | −0.0089 (7) |
C14 | 0.0672 (13) | 0.0309 (9) | 0.0396 (10) | −0.0050 (9) | 0.0170 (9) | −0.0068 (8) |
C15 | 0.0492 (11) | 0.0328 (10) | 0.0515 (11) | −0.0034 (8) | 0.0065 (9) | −0.0036 (8) |
C16 | 0.0559 (11) | 0.0379 (10) | 0.0379 (10) | −0.0118 (9) | −0.0004 (8) | −0.0080 (8) |
C17 | 0.0536 (11) | 0.0360 (9) | 0.0370 (9) | −0.0121 (8) | 0.0084 (8) | −0.0147 (8) |
C18 | 0.0478 (10) | 0.0337 (9) | 0.0434 (10) | −0.0084 (8) | 0.0026 (8) | −0.0123 (8) |
C19 | 0.0617 (14) | 0.105 (2) | 0.0419 (12) | −0.0207 (14) | −0.0051 (10) | 0.0048 (12) |
C20 | 0.065 (2) | 0.041 (2) | 0.0260 (16) | 0.0018 (18) | 0.0066 (16) | −0.0124 (15) |
C21 | 0.062 (2) | 0.043 (2) | 0.0361 (19) | −0.0004 (18) | −0.0067 (17) | −0.0238 (16) |
C22 | 0.0569 (13) | 0.101 (2) | 0.0585 (14) | −0.0181 (13) | 0.0111 (11) | −0.0554 (15) |
C23 | 0.105 (2) | 0.0451 (12) | 0.0507 (13) | 0.0090 (12) | 0.0363 (13) | −0.0029 (10) |
C24 | 0.159 (3) | 0.0534 (13) | 0.0282 (10) | 0.0263 (16) | 0.0051 (13) | −0.0161 (10) |
C25 | 0.110 (2) | 0.0449 (12) | 0.0435 (12) | 0.0036 (12) | −0.0247 (12) | −0.0202 (10) |
C26 | 0.0670 (13) | 0.0339 (9) | 0.0330 (9) | −0.0082 (9) | −0.0032 (8) | −0.0133 (7) |
C27 | 0.0641 (12) | 0.0366 (10) | 0.0388 (10) | −0.0132 (9) | 0.0129 (9) | −0.0181 (8) |
C28 | 0.0466 (10) | 0.0359 (10) | 0.0554 (12) | −0.0076 (8) | 0.0077 (9) | −0.0202 (9) |
C29 | 0.0490 (10) | 0.0314 (9) | 0.0393 (10) | −0.0099 (8) | −0.0017 (8) | −0.0108 (8) |
C30 | 0.0502 (10) | 0.0349 (9) | 0.0322 (9) | −0.0092 (8) | 0.0044 (7) | −0.0151 (7) |
C31 | 0.0488 (10) | 0.0334 (9) | 0.0401 (10) | −0.0028 (8) | −0.0016 (8) | −0.0153 (8) |
C32 | 0.0626 (13) | 0.0455 (11) | 0.0574 (13) | −0.0127 (10) | −0.0183 (10) | −0.0080 (10) |
C33 | 0.0859 (17) | 0.0526 (13) | 0.0535 (13) | −0.0114 (12) | −0.0261 (12) | −0.0020 (10) |
C34 | 0.0543 (13) | 0.0446 (12) | 0.0803 (16) | −0.0028 (10) | −0.0135 (11) | 0.0036 (11) |
C35 | 0.0433 (11) | 0.0291 (9) | 0.0860 (16) | −0.0004 (8) | −0.0084 (10) | −0.0114 (10) |
C36 | 0.0391 (10) | 0.0331 (10) | 0.0970 (17) | 0.0025 (8) | 0.0045 (11) | −0.0240 (11) |
C37 | 0.0520 (12) | 0.0411 (11) | 0.0972 (18) | −0.0018 (9) | −0.0017 (12) | −0.0399 (12) |
C38 | 0.0522 (13) | 0.0585 (14) | 0.108 (2) | −0.0025 (11) | −0.0110 (13) | −0.0475 (14) |
C39 | 0.0447 (11) | 0.0446 (12) | 0.0938 (17) | −0.0024 (9) | 0.0033 (11) | −0.0253 (12) |
C40 | 0.0780 (17) | 0.0647 (17) | 0.110 (2) | −0.0023 (13) | 0.0105 (15) | −0.0612 (17) |
C41 | 0.084 (3) | 0.069 (3) | 0.050 (2) | 0.018 (2) | 0.014 (2) | −0.0262 (19) |
C42 | 0.071 (4) | 0.064 (4) | 0.075 (4) | −0.011 (3) | 0.022 (3) | −0.053 (3) |
C43 | 0.0954 (18) | 0.0707 (16) | 0.0608 (14) | −0.0262 (14) | 0.0334 (13) | −0.0428 (13) |
N1—C5 | 1.327 (3) | C21—H30 | 0.9900 |
N1—C6 | 1.342 (3) | C21—H31 | 0.9900 |
N2—C39 | 1.332 (3) | C22—C30 | 1.512 (2) |
N2—C38 | 1.341 (3) | C22—H32 | 0.9900 |
C1—C17 | 1.518 (2) | C22—H33 | 0.9900 |
C1—C2 | 1.539 (3) | C22—H34 | 0.9900 |
C1—H1 | 0.9900 | C22—H35 | 0.9900 |
C1—H2 | 0.9900 | C23—C24 | 1.527 (4) |
C2—C3 | 1.524 (3) | C23—H36 | 0.9900 |
C2—H3 | 0.9900 | C23—H37 | 0.9900 |
C2—H4 | 0.9900 | C24—C25 | 1.532 (3) |
C3—C4 | 1.507 (3) | C24—H38 | 0.9900 |
C3—H5 | 0.9900 | C24—H39 | 0.9900 |
C3—H6 | 0.9900 | C25—C26 | 1.518 (3) |
C4—C8 | 1.378 (3) | C25—H40 | 0.9900 |
C4—C5 | 1.399 (3) | C25—H41 | 0.9900 |
C5—H7 | 0.9500 | C26—C31 | 1.394 (2) |
C6—C7 | 1.383 (4) | C26—C27 | 1.395 (3) |
C6—H8 | 0.9500 | C27—C28 | 1.392 (3) |
C7—C8 | 1.381 (3) | C27—C43 | 1.519 (2) |
C7—C9 | 1.507 (4) | C28—C29 | 1.391 (3) |
C8—H9 | 0.9500 | C28—H42 | 0.9500 |
C9—C10 | 1.544 (6) | C29—C30 | 1.399 (3) |
C9—C11 | 1.621 (5) | C29—C32 | 1.516 (3) |
C9—H10 | 0.9900 | C30—C31 | 1.390 (2) |
C9—H11 | 0.9900 | C31—H43 | 0.9500 |
C9—H12 | 0.9900 | C32—C33 | 1.528 (3) |
C9—H13 | 0.9900 | C32—H44 | 0.9900 |
C10—C12 | 1.512 (6) | C32—H45 | 0.9900 |
C10—H14 | 0.9900 | C33—C34 | 1.524 (3) |
C10—H15 | 0.9900 | C33—H46 | 0.9900 |
C11—C12 | 1.416 (4) | C33—H47 | 0.9900 |
C11—H16 | 0.9900 | C34—C35 | 1.509 (3) |
C11—H17 | 0.9900 | C34—H48 | 0.9900 |
C12—C13 | 1.521 (3) | C34—H49 | 0.9900 |
C12—H18 | 0.9900 | C35—C36 | 1.383 (3) |
C12—H19 | 0.9900 | C35—C39 | 1.395 (3) |
C12—H20 | 0.9900 | C36—C37 | 1.385 (3) |
C12—H21 | 0.9900 | C36—H50 | 0.9500 |
C13—C18 | 1.388 (3) | C37—C38 | 1.383 (3) |
C13—C14 | 1.395 (3) | C37—C40 | 1.510 (4) |
C14—C15 | 1.397 (3) | C38—H51 | 0.9500 |
C14—C23 | 1.517 (3) | C39—H52 | 0.9500 |
C15—C16 | 1.386 (3) | C40—C42 | 1.325 (7) |
C15—H22 | 0.9500 | C40—C41 | 1.591 (5) |
C16—C17 | 1.399 (3) | C40—H53 | 0.9900 |
C16—C19 | 1.516 (3) | C40—H54 | 0.9900 |
C17—C18 | 1.391 (3) | C40—H55 | 0.9900 |
C18—H23 | 0.9500 | C40—H56 | 0.9900 |
C19—C21 | 1.350 (5) | C41—C43 | 1.396 (5) |
C19—C20 | 1.691 (5) | C41—H57 | 0.9900 |
C19—H24 | 0.9900 | C41—H58 | 0.9900 |
C19—H25 | 0.9900 | C42—C43 | 1.555 (6) |
C19—H26 | 0.9900 | C42—H59 | 0.9900 |
C19—H27 | 0.9900 | C42—H60 | 0.9900 |
C20—C22 | 1.347 (4) | C43—H61 | 0.9900 |
C20—H28 | 0.9900 | C43—H62 | 0.9900 |
C20—H29 | 0.9900 | C43—H63 | 0.9900 |
C21—C22 | 1.701 (5) | C43—H64 | 0.9900 |
C5—N1—C6 | 116.8 (2) | C30—C22—H32 | 110.3 |
C39—N2—C38 | 116.6 (2) | C21—C22—H32 | 110.3 |
C17—C1—C2 | 114.26 (18) | C30—C22—H33 | 110.3 |
C17—C1—H1 | 108.7 | C21—C22—H33 | 110.3 |
C2—C1—H1 | 108.7 | H32—C22—H33 | 108.6 |
C17—C1—H2 | 108.7 | C20—C22—H34 | 105.3 |
C2—C1—H2 | 108.7 | C30—C22—H34 | 105.3 |
H1—C1—H2 | 107.6 | C20—C22—H35 | 105.3 |
C3—C2—C1 | 117.46 (19) | C30—C22—H35 | 105.3 |
C3—C2—H3 | 107.9 | H34—C22—H35 | 106.0 |
C1—C2—H3 | 107.9 | C14—C23—C24 | 115.7 (2) |
C3—C2—H4 | 107.9 | C14—C23—H36 | 108.4 |
C1—C2—H4 | 107.9 | C24—C23—H36 | 108.4 |
H3—C2—H4 | 107.2 | C14—C23—H37 | 108.4 |
C4—C3—C2 | 114.39 (17) | C24—C23—H37 | 108.4 |
C4—C3—H5 | 108.7 | H36—C23—H37 | 107.4 |
C2—C3—H5 | 108.7 | C23—C24—C25 | 116.52 (17) |
C4—C3—H6 | 108.7 | C23—C24—H38 | 108.2 |
C2—C3—H6 | 108.7 | C25—C24—H38 | 108.2 |
H5—C3—H6 | 107.6 | C23—C24—H39 | 108.2 |
C8—C4—C5 | 116.5 (2) | C25—C24—H39 | 108.2 |
C8—C4—C3 | 122.13 (19) | H38—C24—H39 | 107.3 |
C5—C4—C3 | 121.2 (2) | C26—C25—C24 | 115.1 (2) |
N1—C5—C4 | 124.2 (2) | C26—C25—H40 | 108.5 |
N1—C5—H7 | 117.9 | C24—C25—H40 | 108.5 |
C4—C5—H7 | 117.9 | C26—C25—H41 | 108.5 |
N1—C6—C7 | 124.4 (2) | C24—C25—H41 | 108.5 |
N1—C6—H8 | 117.8 | H40—C25—H41 | 107.5 |
C7—C6—H8 | 117.8 | C31—C26—C27 | 118.34 (17) |
C8—C7—C6 | 116.8 (2) | C31—C26—C25 | 117.50 (19) |
C8—C7—C9 | 121.8 (2) | C27—C26—C25 | 124.01 (18) |
C6—C7—C9 | 121.3 (2) | C28—C27—C26 | 118.03 (16) |
C4—C8—C7 | 121.1 (2) | C28—C27—C43 | 120.2 (2) |
C4—C8—H9 | 119.4 | C26—C27—C43 | 121.71 (19) |
C7—C8—H9 | 119.4 | C29—C28—C27 | 123.65 (18) |
C7—C9—C10 | 109.2 (3) | C29—C28—H42 | 118.2 |
C7—C9—C11 | 113.0 (2) | C27—C28—H42 | 118.2 |
C7—C9—H10 | 109.0 | C28—C29—C30 | 118.22 (17) |
C11—C9—H10 | 109.0 | C28—C29—C32 | 118.96 (18) |
C7—C9—H11 | 109.0 | C30—C29—C32 | 122.72 (17) |
C11—C9—H11 | 109.0 | C31—C30—C29 | 118.05 (16) |
H10—C9—H11 | 107.8 | C31—C30—C22 | 120.01 (18) |
C7—C9—H12 | 109.8 | C29—C30—C22 | 121.79 (17) |
C10—C9—H12 | 109.8 | C30—C31—C26 | 123.58 (18) |
C7—C9—H13 | 109.8 | C30—C31—H43 | 118.2 |
C10—C9—H13 | 109.8 | C26—C31—H43 | 118.2 |
H12—C9—H13 | 108.3 | C29—C32—C33 | 114.53 (17) |
C12—C10—C9 | 115.1 (4) | C29—C32—H44 | 108.6 |
C12—C10—H14 | 108.5 | C33—C32—H44 | 108.6 |
C9—C10—H14 | 108.5 | C29—C32—H45 | 108.6 |
C12—C10—H15 | 108.5 | C33—C32—H45 | 108.6 |
C9—C10—H15 | 108.5 | H44—C32—H45 | 107.6 |
H14—C10—H15 | 107.5 | C34—C33—C32 | 117.7 (2) |
C12—C11—C9 | 116.1 (3) | C34—C33—H46 | 107.9 |
C12—C11—H16 | 108.3 | C32—C33—H46 | 107.9 |
C9—C11—H16 | 108.3 | C34—C33—H47 | 107.9 |
C12—C11—H17 | 108.3 | C32—C33—H47 | 107.9 |
C9—C11—H17 | 108.3 | H46—C33—H47 | 107.2 |
H16—C11—H17 | 107.4 | C35—C34—C33 | 114.42 (17) |
C11—C12—C13 | 119.1 (2) | C35—C34—H48 | 108.7 |
C10—C12—C13 | 117.6 (3) | C33—C34—H48 | 108.7 |
C11—C12—H18 | 107.5 | C35—C34—H49 | 108.7 |
C13—C12—H18 | 107.5 | C33—C34—H49 | 108.7 |
C11—C12—H19 | 107.5 | H48—C34—H49 | 107.6 |
C13—C12—H19 | 107.5 | C36—C35—C39 | 117.3 (2) |
H18—C12—H19 | 107.0 | C36—C35—C34 | 121.9 (2) |
C10—C12—H20 | 107.9 | C39—C35—C34 | 120.8 (2) |
C13—C12—H20 | 107.9 | C35—C36—C37 | 120.85 (19) |
C10—C12—H21 | 107.9 | C35—C36—H50 | 119.6 |
C13—C12—H21 | 107.9 | C37—C36—H50 | 119.6 |
H20—C12—H21 | 107.2 | C38—C37—C36 | 116.2 (2) |
C18—C13—C14 | 118.27 (17) | C38—C37—C40 | 121.9 (2) |
C18—C13—C12 | 120.13 (19) | C36—C37—C40 | 121.8 (2) |
C14—C13—C12 | 121.57 (18) | N2—C38—C37 | 125.2 (2) |
C13—C14—C15 | 118.04 (17) | N2—C38—H51 | 117.4 |
C13—C14—C23 | 124.8 (2) | C37—C38—H51 | 117.4 |
C15—C14—C23 | 117.1 (2) | N2—C39—C35 | 123.7 (2) |
C16—C15—C14 | 123.64 (19) | N2—C39—H52 | 118.1 |
C16—C15—H22 | 118.2 | C35—C39—H52 | 118.1 |
C14—C15—H22 | 118.2 | C42—C40—C37 | 111.4 (3) |
C15—C16—C17 | 118.06 (17) | C37—C40—C41 | 116.6 (2) |
C15—C16—C19 | 120.7 (2) | C37—C40—H53 | 108.1 |
C17—C16—C19 | 121.05 (19) | C41—C40—H53 | 108.1 |
C18—C17—C16 | 118.22 (17) | C37—C40—H54 | 108.1 |
C18—C17—C1 | 118.57 (18) | C41—C40—H54 | 108.1 |
C16—C17—C1 | 123.10 (17) | H53—C40—H54 | 107.3 |
C13—C18—C17 | 123.63 (18) | C42—C40—H55 | 109.3 |
C13—C18—H23 | 118.2 | C37—C40—H55 | 109.3 |
C17—C18—H23 | 118.2 | C42—C40—H56 | 109.3 |
C21—C19—C16 | 128.5 (3) | C37—C40—H56 | 109.3 |
C16—C19—C20 | 104.8 (2) | H55—C40—H56 | 108.0 |
C21—C19—H24 | 105.2 | C43—C41—C40 | 120.6 (3) |
C16—C19—H24 | 105.2 | C43—C41—H57 | 107.2 |
C21—C19—H25 | 105.2 | C40—C41—H57 | 107.2 |
C16—C19—H25 | 105.2 | C43—C41—H58 | 107.2 |
H24—C19—H25 | 105.9 | C40—C41—H58 | 107.2 |
C16—C19—H26 | 110.8 | H57—C41—H58 | 106.8 |
C20—C19—H26 | 110.8 | C40—C42—C43 | 128.5 (5) |
C16—C19—H27 | 110.8 | C40—C42—H59 | 105.2 |
C20—C19—H27 | 110.8 | C43—C42—H59 | 105.2 |
H26—C19—H27 | 108.9 | C40—C42—H60 | 105.2 |
C22—C20—C19 | 116.5 (3) | C43—C42—H60 | 105.2 |
C22—C20—H28 | 108.2 | H59—C42—H60 | 105.9 |
C19—C20—H28 | 108.2 | C41—C43—C27 | 120.9 (3) |
C22—C20—H29 | 108.2 | C27—C43—C42 | 113.0 (3) |
C19—C20—H29 | 108.2 | C41—C43—H61 | 107.1 |
H28—C20—H29 | 107.3 | C27—C43—H61 | 107.1 |
C19—C21—C22 | 115.7 (3) | C41—C43—H62 | 107.1 |
C19—C21—H30 | 108.4 | C27—C43—H62 | 107.1 |
C22—C21—H30 | 108.4 | H61—C43—H62 | 106.8 |
C19—C21—H31 | 108.4 | C27—C43—H63 | 109.0 |
C22—C21—H31 | 108.4 | C42—C43—H63 | 109.0 |
H30—C21—H31 | 107.4 | C27—C43—H64 | 109.0 |
C20—C22—C30 | 127.9 (3) | C42—C43—H64 | 109.0 |
C30—C22—C21 | 106.9 (2) | H63—C43—H64 | 107.8 |
C17—C1—C2—C3 | 75.5 (3) | C19—C21—C22—C30 | 94.6 (3) |
C1—C2—C3—C4 | −66.0 (3) | C13—C14—C23—C24 | −63.4 (3) |
C2—C3—C4—C8 | 107.4 (2) | C15—C14—C23—C24 | 113.0 (2) |
C2—C3—C4—C5 | −69.0 (3) | C14—C23—C24—C25 | −46.4 (3) |
C6—N1—C5—C4 | −1.6 (3) | C23—C24—C25—C26 | −46.4 (3) |
C8—C4—C5—N1 | −1.8 (3) | C24—C25—C26—C31 | 111.4 (2) |
C3—C4—C5—N1 | 174.8 (2) | C24—C25—C26—C27 | −63.9 (3) |
C5—N1—C6—C7 | 1.9 (4) | C31—C26—C27—C28 | −3.2 (3) |
N1—C6—C7—C8 | 1.2 (3) | C25—C26—C27—C28 | 172.08 (18) |
N1—C6—C7—C9 | −174.4 (2) | C31—C26—C27—C43 | 174.58 (18) |
C5—C4—C8—C7 | 5.0 (3) | C25—C26—C27—C43 | −10.1 (3) |
C3—C4—C8—C7 | −171.58 (17) | C26—C27—C28—C29 | 3.4 (3) |
C6—C7—C8—C4 | −4.8 (3) | C43—C27—C28—C29 | −174.48 (18) |
C9—C7—C8—C4 | 170.89 (19) | C27—C28—C29—C30 | −3.0 (3) |
C8—C7—C9—C10 | −117.0 (3) | C27—C28—C29—C32 | 173.57 (17) |
C6—C7—C9—C10 | 58.5 (4) | C28—C29—C30—C31 | 2.5 (3) |
C8—C7—C9—C11 | −59.7 (3) | C32—C29—C30—C31 | −173.94 (16) |
C6—C7—C9—C11 | 115.8 (3) | C28—C29—C30—C22 | −173.11 (19) |
C7—C9—C10—C12 | 73.5 (5) | C32—C29—C30—C22 | 10.5 (3) |
C11—C9—C10—C12 | −31.4 (3) | C20—C22—C30—C31 | −32.6 (4) |
C7—C9—C11—C12 | −63.3 (4) | C21—C22—C30—C31 | −95.1 (2) |
C10—C9—C11—C12 | 34.1 (3) | C20—C22—C30—C29 | 142.9 (3) |
C9—C11—C12—C10 | −32.8 (3) | C21—C22—C30—C29 | 80.4 (3) |
C9—C11—C12—C13 | 73.3 (4) | C29—C30—C31—C26 | −2.7 (3) |
C9—C10—C12—C11 | 34.3 (4) | C22—C30—C31—C26 | 173.01 (19) |
C9—C10—C12—C13 | −74.3 (5) | C27—C26—C31—C30 | 3.1 (3) |
C11—C12—C13—C18 | 35.0 (4) | C25—C26—C31—C30 | −172.56 (18) |
C10—C12—C13—C18 | 101.7 (4) | C28—C29—C32—C33 | −108.0 (2) |
C11—C12—C13—C14 | −143.1 (3) | C30—C29—C32—C33 | 68.4 (3) |
C10—C12—C13—C14 | −76.3 (4) | C29—C32—C33—C34 | 73.9 (3) |
C18—C13—C14—C15 | −2.7 (3) | C32—C33—C34—C35 | −65.6 (3) |
C12—C13—C14—C15 | 175.31 (18) | C33—C34—C35—C36 | 105.7 (2) |
C18—C13—C14—C23 | 173.67 (19) | C33—C34—C35—C39 | −71.0 (3) |
C12—C13—C14—C23 | −8.3 (3) | C39—C35—C36—C37 | 4.7 (3) |
C13—C14—C15—C16 | 3.1 (3) | C34—C35—C36—C37 | −172.15 (18) |
C23—C14—C15—C16 | −173.58 (18) | C35—C36—C37—C38 | −4.7 (3) |
C14—C15—C16—C17 | −3.5 (3) | C35—C36—C37—C40 | 171.67 (19) |
C14—C15—C16—C19 | 171.89 (19) | C39—N2—C38—C37 | 2.1 (4) |
C15—C16—C17—C18 | 3.5 (3) | C36—C37—C38—N2 | 1.3 (3) |
C19—C16—C17—C18 | −171.89 (19) | C40—C37—C38—N2 | −175.1 (2) |
C15—C16—C17—C1 | −172.74 (18) | C38—N2—C39—C35 | −2.2 (3) |
C19—C16—C17—C1 | 11.9 (3) | C36—C35—C39—N2 | −1.1 (3) |
C2—C1—C17—C18 | −106.2 (2) | C34—C35—C39—N2 | 175.7 (2) |
C2—C1—C17—C16 | 69.9 (3) | C38—C37—C40—C42 | 67.1 (4) |
C14—C13—C18—C17 | 3.1 (3) | C36—C37—C40—C42 | −109.1 (4) |
C12—C13—C18—C17 | −174.99 (17) | C38—C37—C40—C41 | 116.7 (3) |
C16—C17—C18—C13 | −3.4 (3) | C36—C37—C40—C41 | −59.5 (4) |
C1—C17—C18—C13 | 172.93 (17) | C42—C40—C41—C43 | 37.8 (4) |
C15—C16—C19—C21 | −31.6 (4) | C37—C40—C41—C43 | −56.7 (5) |
C17—C16—C19—C21 | 143.6 (3) | C37—C40—C42—C43 | 69.5 (6) |
C15—C16—C19—C20 | −92.8 (2) | C41—C40—C42—C43 | −37.3 (4) |
C17—C16—C19—C20 | 82.4 (3) | C40—C41—C43—C27 | 61.4 (5) |
C21—C19—C20—C22 | −30.3 (3) | C40—C41—C43—C42 | −31.4 (4) |
C16—C19—C20—C22 | 96.1 (3) | C28—C27—C43—C41 | 43.8 (4) |
C16—C19—C21—C22 | −60.6 (4) | C26—C27—C43—C41 | −133.9 (3) |
C20—C19—C21—C22 | 23.4 (2) | C28—C27—C43—C42 | 94.5 (4) |
C19—C20—C22—C30 | −63.5 (4) | C26—C27—C43—C42 | −83.3 (4) |
C19—C20—C22—C21 | 23.7 (2) | C40—C42—C43—C41 | 43.5 (5) |
C19—C21—C22—C20 | −29.9 (3) | C40—C42—C43—C27 | −67.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H9···N1i | 0.95 | 2.43 | 3.373 (3) | 173 |
C36—H50···N2ii | 0.95 | 2.47 | 3.394 (3) | 165 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H9···N1i | 0.95 | 2.43 | 3.373 (3) | 173 |
C36—H50···N2ii | 0.95 | 2.47 | 3.394 (3) | 165 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C40H46N2 |
Mr | 554.79 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 123 |
a, b, c (Å) | 6.1377 (15), 14.643 (4), 17.519 (4) |
α, β, γ (°) | 75.619 (16), 88.369 (17), 86.755 (17) |
V (Å3) | 1522.6 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.52 |
Crystal size (mm) | 0.45 × 0.30 × 0.16 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20167, 5396, 4455 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.204, 1.07 |
No. of reflections | 5396 |
No. of parameters | 410 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.32 |
Computer programs: RAPID-AUTO (Rigaku, 1998), SIR2011 (Camalli et al., 2012), SHELXL2014 (Sheldrick, 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).
Acknowledgements
This work was partially supported by a Grant-in-Aid for Science Research (C 25410050) from the Japan Society for the Promotion of Science (JSPS), Japan, and was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (IMCE, Kyushu University). MW thanks the World Premier International Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Japan.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521–3529. CSD CrossRef CAS Web of Science Google Scholar
Camalli, M., Carrozzini, B., Cascarano, G. L. & Giacovazzo, C. (2012). J. Appl. Cryst. 45, 351–356. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fronczek, F. R., Mamo, A. & Pappalardo, S. (1989). Inorg. Chem. 28, 1419–1422. CSD CrossRef CAS Web of Science Google Scholar
Isaji, H., Yasutake, M., Takemura, H., Sako, K., Tatemitsu, H., Inazu, T. & Shinmyozu, T. (2001). Eur. J. Org. Chem. pp. 2487–2499. CrossRef Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Krüger, H.-J. (1995). Chem. Ber. 128, 531–539. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Muralidharan, S., Hojjatie, M., Firestone, M. & Freiser, H. (1989). J. Org. Chem. 54, 393–399. CSD CrossRef CAS Web of Science Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Satou, T. & Shinmyozu, T. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 393–397. Web of Science CSD CrossRef Google Scholar
Semmelhack, M. F., Harrison, J. J., Young, D. C., Gutierrez, A., Rafii, S. & Clardy, J. (1985). J. Am. Chem. Soc. 107, 7508–7514. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shibahara, M., Watanabe, M., Aso, K. & Shinmyozu, T. (2008). Synthesis, pp. 3749–3754. Web of Science CrossRef Google Scholar
Shibahara, M., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). Acta Cryst. E70, o625–o626. CSD CrossRef IUCr Journals Google Scholar
Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865–2877. Web of Science CSD CrossRef PubMed CAS Google Scholar
Shibahara, M., Watanabe, M., Suenaga, M., Ideta, K., Matsumoto, T. & Shinmyozu, T. (2009). Tetrahedron Lett. 50, 1340–1344. Web of Science CSD CrossRef CAS Google Scholar
Shibahara, M., Watanabe, M., Yuan, C. & Shinmyozu, T. (2011). Tetrahedron Lett. 52, 5012–5015. Web of Science CSD CrossRef CAS Google Scholar
Shinmyozu, T., Hirai, Y. & Inazu, T. (1986). J. Org. Chem. 51, 1551–1555. CrossRef CAS Web of Science Google Scholar
Vögtle, F. & Schunder, L. (1969). Chem. Ber. 102, 2677–2683. Google Scholar
Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.