organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1200-o1201

Crystal structure of 3-meth­­oxy­carbonyl-2-(4-meth­­oxy­phen­yl)-8-oxo-1-aza­spiro[4.5]deca-1,6,9-trien-1-ium-1-olate

aLaboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil, bLaboratory of Single Crystal X-Ray Diffraction, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil, and cLaboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: aparicio@iqm.unicamp.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 October 2014; accepted 22 October 2014; online 29 October 2014)

The title compound, C18H17NO5, was prepared by a synthetic strategy based on the Heck reaction from Morita–Baylis–Hillman adducts. The five-membered ring adopts a slightly twisted conformation on the Ca—Cm (a = aromatic and m = methyl­ene) bond. The dihedral angle between the five-membered ring and the spiro aromatic ring is 89.35 (7)°; that between the five-membered ring and the 4-meth­oxy­benzene ring is 4.65 (7)°. Two short intra­molecular C—H⋯O contacts occur. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds to generate a three-dimensional network.

1. Related literature

For compounds that contain a spiro­hexa­dienone moiety in their structures, see: Wright & König (1993[Wright, D. & König, A. (1993). Heterocycles, 36, 1351-1358.]); König et al. (1990[König, G. M., Wright, A. D. & Sticher, O. (1990). J. Nat. Prod. 53, 1615-1618.]); Beil et al. (1998[Beil, W., Jones, P. G., Nerenz, F. & Winterfeldt, E. (1998). Tetrahedron, 54, 7273-7292.]) and for their biological activities, see: Glushkov et al. (2010[Glushkov, V. A., Stryapunina, O. G., Gorbunov, A. A., Maiorova, V., Slepukhin, P. A., Ryabukhina, S. Y., Khorosheva, E. V., Sokol, & Shklyaev, Y. V. (2010). Tetrahedron, 66, 721-729.]); Pereira et al. (2007[Pereira, J., Barlier, M. & Guillou, C. (2007). Org. Lett. 9, 3101-3103.]). For strategies for the synthesis of spiro-hexa­dienones from Morita–Baylis–Hillman adducts, see: Coelho et al. (2002[Coelho, F., Almeida, W. P., Veronese, D., Mateus, C. R., Silva Lopes, E. C., Rossi, R. C., Silveira, G. P. C. & Pavam, C. H. (2002). Tetrahedron, 58, 7437-7447.]); Ferreira et al. (2009[Ferreira, B. R. V., Pirovani, R. V., Souza-Filho, L. G. & Coelho, F. (2009). Tetrahedron, 65, 7712-7717.]); Pirovani et al. (2009[Pirovani, R. V., Ferreira, B. R. V. & Coelho, F. (2009). Synlett,pp. 2333-2337.]); Martins et al. (2014[Martins, L. J., Ferreira, B. V., Almeida, W. P., Lancellotti, M. & Coelho, F. (2014). Tetrahedron Lett. doi: 10.1016/j. tetlet. 2014.07.114.]). For the biological activity of compounds containing a nitrone group, see: Fangour et al. (2009[Fangour, S. E., Marini, M., Good, J., McQuaker, S. J., Shiels, P. G. & Hartley, R. C. (2009). Age (Dordrecht, Netherlands), 31, 269-276.]); Floyd et al. (2008[Floyd, R. A., Kopke, R. D., Choi, C.-H., Foster, S. B., Doblas, S. & Towner, R. A. (2008). Free Radical Biol. Med. 45, 1361-1374.]); Halliwell & Gutteridge (1999[Halliwell, B. & Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine, 3rd ed. Oxford University.]); Fevig et al. (1996[Fevig, T. L., Bowen, S. M., Janowick, D. A., Jones, B. K., Munson, H. R., Ohlweiler, D. F. & Thomas, C. E. J. (1996). J. Med. Chem. 39, 4988-4996.]). For a discussion about non-classical hydrogen bonds, see: Desiraju (2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H17NO5

  • Mr = 327.32

  • Triclinic, [P \overline 1]

  • a = 6.0916 (11) Å

  • b = 8.7713 (16) Å

  • c = 15.167 (3) Å

  • α = 80.255 (6)°

  • β = 81.703 (6)°

  • γ = 80.122 (6)°

  • V = 781.3 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 100 K

  • 0.47 × 0.20 × 0.17 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 1.000

  • 14656 measured reflections

  • 2771 independent reflections

  • 2727 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.11

  • 2771 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H1C⋯O1i 0.98 2.59 3.4941 (18) 153
C4—H3⋯O1i 0.95 2.38 3.1345 (16) 136
C3—H4⋯O1 0.95 2.22 2.8725 (17) 125
C14—H8⋯O3 0.95 2.57 3.3431 (18) 138
C15—H9⋯O5ii 0.95 2.56 3.3821 (17) 146
C18—H13⋯O2iii 0.95 2.54 3.4309 (17) 155
C17—H14⋯O3iv 0.95 2.38 3.2408 (18) 151
C12—H15A⋯O5v 0.99 2.60 3.5402 (18) 159
C9—H16⋯O1vi 1.00 2.31 3.2045 (16) 148
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, -y+1, -z; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Natural products, isolated both from terrestrial or marine sources, display great structural diversity and exhibit remarkable biological activities, many of them bearing in their structures a spiro-hexadienone moiety (Wright & König (1993); Beil et al. (1998)). Owing to the high conjugation, provided by the presence of a carbonyl group and two double bonds, this structural moiety acts as an efficient Michael acceptor and this chemical property is routinely associated with some biological activities, such as cytotoxic (Pereira et al. (2007); Glushkov et al. (2010)).

Compounds presenting a nitrone group in their structures can present biological activity related to radical trapping in chemical systems (Fangour et al. (2009); Floyd et al. (2008); Halliwell et al. (1999)). The presence of radicals is normally associated to several type of pathologies. Our inter­est in preparing spiro-hexadienones with great structural diversity combinated with the biological effect that can be associated to nitrone groups stimulated us to synthesize new spiro compounds containing a nitrone group into their structures and evaluate the biological profiles of these new compounds.

A strategy for the synthesis of spiro-hexadienones from Morita-Baylis-Hillman aducts had been developed. This strategy is based on the Heck reaction, followed by phenolic oxidation of functionalized b-ketoester mediated by a hypervalent iodine reagent (Coelho et al. (2002); Ferreira et al. (2009); Floyd et al. (2008); Halliwell et al. (1999)). As far as we know, we synthesized for the first time new functionalized aza­spiro compounds from Morita-Baylis-Hillman.

Experimental top

Synthesis and crystallization top

Some β-ketoesters, prepared from Morita-Baylis-Hillman adducts, were treated with hydroxyl­amine hydro­chloride to furnish a diastereomeric mixture of oximes, in which the E isomer cyclizes spontaneously to the corresponding isoxazoles. The Z oxime was treated with PIFA [phenyl­iodine(III) bis­(tri­fluoro­acetate)] to furnish the new aza­spiro compounds in moderate overall yield (3-17%). The obtained 3-(Meth­oxy­carbonyl)-2-(4-meth­oxy­phenyl)-8-oxo-1-aza­spiro­[4.5]deca-1,6,9-trien-1-ium-1-olate (33 mg, 0.1 mmol) was dissolved in absolute chloro­form-D1 (1 mL), followed by stirring until total dissolution was achieved. The solution was kept in the freezer. After two weeks, the resulting solution was filtered using a vacuum, washed with small portions of cold chloro­form and dried in a desiccator to furnish colourless prisms.

Refinement top

A riding model was used to calculate the positions of included H atoms, with aromatic and methyl C—H bond lengths of 0.95 and 0.98 A °, respectively. The isotropic displacement parameters values (Uiso(H)) were fixed at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other attached H atoms.

Related literature top

For compounds that contain a spirohexadienone moiety in their structures, see: Wright & König (1993); König et al. (1990); Beil et al. (1998) and for their biological activities, see: Glushkov et al. (2010); Pereira et al. (2007). For strategies for the synthesis of spiro-hexadienones from Morita–Baylis–Hillman adducts, see: Coelho et al. (2002); Ferreira et al. (2009); Pirovani et al. (2009); Martins et al. (2014). For the biological activity of compounds containing a nitrone group, see: Fangour et al. (2009); Floyd et al. (2008); Halliwell & Gutteridge (1999); Fevig et al. (1996). For a discussion about non-classical hydrogen bonds, see: Desiraju (2005).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The molecular structure of the title compound with 50% probability displacement ellipsoids.

Crystal packing of the title compound, showing hydrogen bonding interactions.
3-Methoxycarbonyl-2-(4-methoxyphenyl)-8-oxo-1-azaspiro[4.5]deca-1,6,9-trien-1-ium-1-olate top
Crystal data top
C18H17NO5Z = 2
Mr = 327.32F(000) = 344
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.0916 (11) ÅCell parameters from 109 reflections
b = 8.7713 (16) Åθ = 9.0–38.4°
c = 15.167 (3) ŵ = 0.85 mm1
α = 80.255 (6)°T = 100 K
β = 81.703 (6)°Prismatic, colourless
γ = 80.122 (6)°0.47 × 0.20 × 0.17 mm
V = 781.3 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2771 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.033
ϕ and ω scansθmax = 67.7°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 57
Tmin = 0.813, Tmax = 1.000k = 1010
14656 measured reflectionsl = 1817
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3281P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.28 e Å3
2771 reflectionsΔρmin = 0.35 e Å3
220 parametersExtinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.043 (2)
Crystal data top
C18H17NO5γ = 80.122 (6)°
Mr = 327.32V = 781.3 (2) Å3
Triclinic, P1Z = 2
a = 6.0916 (11) ÅCu Kα radiation
b = 8.7713 (16) ŵ = 0.85 mm1
c = 15.167 (3) ÅT = 100 K
α = 80.255 (6)°0.47 × 0.20 × 0.17 mm
β = 81.703 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2771 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
2727 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.033
14656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
2771 reflectionsΔρmin = 0.35 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.20642 (16)0.89397 (12)0.62486 (6)0.0247 (3)
O50.19082 (18)0.28804 (12)0.01392 (7)0.0309 (3)
O10.19910 (14)0.44109 (11)0.32280 (6)0.0199 (2)
O40.91693 (15)0.79511 (11)0.19091 (7)0.0228 (3)
O30.54105 (16)0.85337 (11)0.19863 (7)0.0281 (3)
N10.38917 (17)0.48769 (12)0.29230 (7)0.0166 (3)
C80.0287 (2)0.92550 (17)0.65513 (10)0.0252 (3)
H1A0.11060.97200.60360.038*
H1B0.05350.99850.69910.038*
H1C0.08270.82760.68330.038*
C50.2673 (2)0.80731 (16)0.55566 (9)0.0202 (3)
C40.1260 (2)0.72330 (16)0.52570 (9)0.0200 (3)
H30.02220.72030.55510.024*
C30.2017 (2)0.64391 (15)0.45269 (9)0.0189 (3)
H40.10480.58550.43330.023*
C20.4179 (2)0.64816 (15)0.40712 (9)0.0177 (3)
C10.4981 (2)0.57613 (15)0.32644 (9)0.0173 (3)
C130.4972 (2)0.44582 (15)0.20162 (9)0.0180 (3)
C140.3688 (2)0.55382 (15)0.13203 (9)0.0186 (3)
H80.35690.66350.13120.022*
C150.2712 (2)0.50353 (16)0.07177 (9)0.0202 (3)
H90.19340.57770.02930.024*
C160.2811 (2)0.33526 (16)0.06944 (9)0.0216 (3)
C70.5596 (2)0.73034 (16)0.44026 (9)0.0207 (3)
H110.70830.73320.41140.025*
C60.4867 (2)0.80683 (16)0.51396 (9)0.0223 (3)
H120.58630.85930.53630.027*
C180.4924 (2)0.27616 (15)0.20004 (9)0.0197 (3)
H130.55800.20100.24540.024*
C170.4002 (2)0.22581 (16)0.13799 (9)0.0213 (3)
H140.41170.11640.13790.026*
C120.7367 (2)0.48121 (15)0.20051 (9)0.0196 (3)
H15A0.79560.52740.13940.024*
H15B0.83890.38460.21990.024*
C90.7139 (2)0.59949 (15)0.26787 (9)0.0186 (3)
H160.84220.57320.30490.022*
C100.7081 (2)0.76464 (16)0.21684 (9)0.0195 (3)
C110.9377 (3)0.93704 (17)0.12808 (10)0.0270 (3)
H18A0.87040.93290.07380.040*
H18B1.09680.94700.11180.040*
H18C0.86011.02740.15610.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0232 (5)0.0323 (6)0.0211 (5)0.0051 (4)0.0046 (4)0.0084 (4)
O50.0324 (6)0.0323 (6)0.0319 (6)0.0051 (5)0.0150 (5)0.0066 (4)
O10.0130 (5)0.0267 (5)0.0208 (5)0.0079 (4)0.0007 (4)0.0017 (4)
O40.0166 (5)0.0233 (5)0.0272 (5)0.0063 (4)0.0016 (4)0.0003 (4)
O30.0188 (5)0.0246 (5)0.0372 (6)0.0016 (4)0.0037 (4)0.0044 (4)
N10.0128 (5)0.0199 (5)0.0161 (5)0.0027 (4)0.0024 (4)0.0005 (4)
C80.0252 (7)0.0298 (7)0.0210 (7)0.0038 (6)0.0018 (6)0.0061 (6)
C50.0233 (7)0.0216 (7)0.0158 (6)0.0023 (5)0.0067 (5)0.0005 (5)
C40.0179 (6)0.0231 (7)0.0183 (6)0.0047 (5)0.0025 (5)0.0008 (5)
C30.0180 (6)0.0209 (6)0.0184 (6)0.0057 (5)0.0048 (5)0.0004 (5)
C20.0163 (6)0.0187 (6)0.0174 (6)0.0028 (5)0.0051 (5)0.0022 (5)
C10.0143 (6)0.0185 (6)0.0182 (6)0.0023 (5)0.0051 (5)0.0019 (5)
C130.0139 (6)0.0229 (7)0.0166 (6)0.0016 (5)0.0014 (5)0.0023 (5)
C140.0140 (6)0.0202 (6)0.0190 (6)0.0005 (5)0.0006 (5)0.0004 (5)
C150.0148 (6)0.0250 (7)0.0184 (6)0.0002 (5)0.0023 (5)0.0011 (5)
C160.0156 (6)0.0280 (7)0.0214 (7)0.0036 (5)0.0017 (5)0.0039 (6)
C70.0153 (6)0.0238 (7)0.0229 (7)0.0043 (5)0.0045 (5)0.0001 (5)
C60.0199 (7)0.0245 (7)0.0246 (7)0.0054 (5)0.0094 (5)0.0019 (5)
C180.0159 (6)0.0216 (7)0.0195 (6)0.0000 (5)0.0017 (5)0.0000 (5)
C170.0180 (7)0.0208 (7)0.0243 (7)0.0027 (5)0.0017 (5)0.0021 (5)
C120.0136 (6)0.0226 (7)0.0219 (7)0.0013 (5)0.0027 (5)0.0017 (5)
C90.0130 (6)0.0218 (7)0.0204 (6)0.0021 (5)0.0037 (5)0.0006 (5)
C100.0159 (6)0.0231 (7)0.0197 (7)0.0041 (5)0.0013 (5)0.0033 (5)
C110.0275 (8)0.0252 (7)0.0277 (7)0.0109 (6)0.0023 (6)0.0002 (6)
Geometric parameters (Å, º) top
O2—C51.3705 (17)C13—C141.5066 (18)
O2—C81.4339 (17)C13—C121.5395 (17)
O5—C161.2301 (17)C14—C151.3289 (19)
O1—N11.2905 (14)C14—H80.9500
O4—C101.3345 (16)C15—C161.473 (2)
O4—C111.4462 (17)C15—H90.9500
O3—C101.2059 (17)C16—C171.4732 (19)
N1—C11.3121 (17)C7—C61.380 (2)
N1—C131.5121 (16)C7—H110.9500
C8—H1A0.9800C6—H120.9500
C8—H1B0.9800C18—C171.332 (2)
C8—H1C0.9800C18—H130.9500
C5—C41.3908 (19)C17—H140.9500
C5—C61.393 (2)C12—C91.5519 (18)
C4—C31.3884 (19)C12—H15A0.9900
C4—H30.9500C12—H15B0.9900
C3—C21.3996 (19)C9—C101.5197 (18)
C3—H40.9500C9—H161.0000
C2—C71.4067 (18)C11—H18A0.9800
C2—C11.4554 (19)C11—H18B0.9800
C1—C91.5014 (18)C11—H18C0.9800
C13—C181.4977 (19)
C5—O2—C8116.78 (10)C16—C15—H9119.3
C10—O4—C11115.74 (11)O5—C16—C15121.67 (13)
O1—N1—C1128.90 (11)O5—C16—C17121.42 (13)
O1—N1—C13116.85 (10)C15—C16—C17116.89 (12)
C1—N1—C13114.09 (10)C6—C7—C2121.25 (12)
O2—C8—H1A109.5C6—C7—H11119.4
O2—C8—H1B109.5C2—C7—H11119.4
H1A—C8—H1B109.5C7—C6—C5120.13 (12)
O2—C8—H1C109.5C7—C6—H12119.9
H1A—C8—H1C109.5C5—C6—H12119.9
H1B—C8—H1C109.5C17—C18—C13123.01 (12)
O2—C5—C4124.47 (12)C17—C18—H13118.5
O2—C5—C6115.89 (12)C13—C18—H13118.5
C4—C5—C6119.64 (12)C18—C17—C16121.73 (13)
C3—C4—C5119.90 (12)C18—C17—H14119.1
C3—C4—H3120.1C16—C17—H14119.1
C5—C4—H3120.1C13—C12—C9105.07 (10)
C4—C3—C2121.34 (12)C13—C12—H15A110.7
C4—C3—H4119.3C9—C12—H15A110.7
C2—C3—H4119.3C13—C12—H15B110.7
C3—C2—C7117.62 (12)C9—C12—H15B110.7
C3—C2—C1123.04 (12)H15A—C12—H15B108.8
C7—C2—C1119.31 (12)C1—C9—C10112.58 (11)
N1—C1—C2125.30 (12)C1—C9—C12103.83 (10)
N1—C1—C9110.32 (11)C10—C9—C12109.86 (11)
C2—C1—C9124.32 (11)C1—C9—H16110.1
C18—C13—C14113.42 (11)C10—C9—H16110.1
C18—C13—N1109.22 (10)C12—C9—H16110.1
C14—C13—N1106.44 (10)O3—C10—O4124.52 (12)
C18—C13—C12112.45 (11)O3—C10—C9125.53 (12)
C14—C13—C12113.17 (11)O4—C10—C9109.87 (11)
N1—C13—C12101.15 (10)O4—C11—H18A109.5
C15—C14—C13123.35 (12)O4—C11—H18B109.5
C15—C14—H8118.3H18A—C11—H18B109.5
C13—C14—H8118.3O4—C11—H18C109.5
C14—C15—C16121.39 (12)H18A—C11—H18C109.5
C14—C15—H9119.3H18B—C11—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H1C···O1i0.982.593.4941 (18)153
C4—H3···O1i0.952.383.1345 (16)136
C3—H4···O10.952.222.8725 (17)125
C14—H8···O30.952.573.3431 (18)138
C15—H9···O5ii0.952.563.3821 (17)146
C18—H13···O2iii0.952.543.4309 (17)155
C17—H14···O3iv0.952.383.2408 (18)151
C12—H15A···O5v0.992.603.5402 (18)159
C9—H16···O1vi1.002.313.2045 (16)148
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H1C···O1i0.982.593.4941 (18)153
C4—H3···O1i0.952.383.1345 (16)136
C3—H4···O10.952.222.8725 (17)125
C14—H8···O30.952.573.3431 (18)138
C15—H9···O5ii0.952.563.3821 (17)146
C18—H13···O2iii0.952.543.4309 (17)155
C17—H14···O3iv0.952.383.2408 (18)151
C12—H15A···O5v0.992.603.5402 (18)159
C9—H16···O1vi1.002.313.2045 (16)148
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+1, y, z.
 

Acknowledgements

The authors acknowledge Dr Cristiane Storck Schwalm for the data collection and preliminary data processing and structure refinement and thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2009/18390–4 and 2009/51602–5), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. RA is the recipient of a research grant from CNPq.

References

First citationBeil, W., Jones, P. G., Nerenz, F. & Winterfeldt, E. (1998). Tetrahedron, 54, 7273–7292.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoelho, F., Almeida, W. P., Veronese, D., Mateus, C. R., Silva Lopes, E. C., Rossi, R. C., Silveira, G. P. C. & Pavam, C. H. (2002). Tetrahedron, 58, 7437–7447.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995.  Google Scholar
First citationFangour, S. E., Marini, M., Good, J., McQuaker, S. J., Shiels, P. G. & Hartley, R. C. (2009). Age (Dordrecht, Netherlands), 31, 269–276.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, B. R. V., Pirovani, R. V., Souza-Filho, L. G. & Coelho, F. (2009). Tetrahedron, 65, 7712–7717.  Web of Science CrossRef CAS Google Scholar
First citationFevig, T. L., Bowen, S. M., Janowick, D. A., Jones, B. K., Munson, H. R., Ohlweiler, D. F. & Thomas, C. E. J. (1996). J. Med. Chem. 39, 4988–4996.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFloyd, R. A., Kopke, R. D., Choi, C.-H., Foster, S. B., Doblas, S. & Towner, R. A. (2008). Free Radical Biol. Med. 45, 1361–1374.  Web of Science CrossRef CAS Google Scholar
First citationGlushkov, V. A., Stryapunina, O. G., Gorbunov, A. A., Maiorova, V., Slepukhin, P. A., Ryabukhina, S. Y., Khorosheva, E. V., Sokol, & Shklyaev, Y. V. (2010). Tetrahedron, 66, 721–729.  Google Scholar
First citationHalliwell, B. & Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine, 3rd ed. Oxford University.  Google Scholar
First citationKönig, G. M., Wright, A. D. & Sticher, O. (1990). J. Nat. Prod. 53, 1615–1618.  PubMed Google Scholar
First citationMartins, L. J., Ferreira, B. V., Almeida, W. P., Lancellotti, M. & Coelho, F. (2014). Tetrahedron Lett. doi: 10.1016/j. tetlet. 2014.07.114.  Google Scholar
First citationPereira, J., Barlier, M. & Guillou, C. (2007). Org. Lett. 9, 3101–3103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPirovani, R. V., Ferreira, B. R. V. & Coelho, F. (2009). Synlett,pp. 2333–2337.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, D. & König, A. (1993). Heterocycles, 36, 1351–1358.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1200-o1201
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds