organic compounds
N-[(E)-(1,3-benzodioxol-5-yl)methylidene]-4-chloroaniline
ofaInstituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58000, México, and bDepartamento de Química, CINVESTAV-IPN, Apdo. Postal 14-740, 07000 México, D.F., México
*Correspondence e-mail: ylopez@umich.mx
In the title compound, C14H10ClNO2, obtained by the condensation of 4-chloroaniline and piperonal, the five-membered ring is almost planar (r.m.s. deviation = 0.023 Å) and the dihedral angle between the aromatic rings is 43.22 (14)°. In the crystal, a short O⋯Cl contact of 3.173 (2) Å is observed. The molecules are arranged into corrugated (010) layers.
Keywords: crystal structure; O⋯Cl contact; Schiff base.
CCDC reference: 1029773
1. Related literature
et al., 2007), catalysis (Itsuno et al., 1990), materials science (Sliwa et al., 2008), supramolecular (Sreenivasulu et al., 2012) and coordination chemistry (Drozdzak et al., 2005; MacLachlan et al., 1996). They display a broad spectrum of biological (Garavelli et al., 1997; Ren et al., 2002) and pharmacological properties, such as antibacterial, analgesic, antipyretic, anti-inflammatory and anticancer activities and can act as plant-growth regulators (Prakash et al., 2011 and Gaur 2003). For related structures, see: Tahir et al. (2010a,b). For further synthetic details, see: Rodríguez et al. (2007); Domínguez et al. (2011).
have applications in fields, such as organic synthesis (Meyer2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: COLLECT (Nonius, 1999); cell HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).
Supporting information
CCDC reference: 1029773
10.1107/S1600536814022892/hb7302sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814022892/hb7302Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814022892/hb7302Isup3.cml
A solution of 4-chloroaniline (0.500 g, 3.9 mmol) and piperonal (0.260 g, 3.01 mmol) in methanol (55 mL) was heated under reflux for 3h, with a Dean-Stark apparatus used for the azeotropic removal of water and allowed to cool to room temperature. Removal of solvent affords compound I as a pale yellow solid which was washed with hexane to obtain the product in 36% yield (m.p. 347-349 K). Colourless blocks were grown by slow evaporation from a solvent mixture of methanol:ethyl acetate (1:1). Spectroscopic data for the title compound are given in the archived CIF.
Data collection: COLLECT (Nonius, 1999); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C14H10ClNO2 | Dx = 1.432 Mg m−3 |
Mr = 259.69 | Melting point: 347(2) K |
Orthorhombic, Pcab | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2bc 2ac | Cell parameters from 600 reflections |
a = 6.0014 (4) Å | θ = 2.9–27.7° |
b = 13.9015 (16) Å | µ = 0.31 mm−1 |
c = 28.867 (3) Å | T = 293 K |
V = 2408.3 (4) Å3 | Block, colourless |
Z = 8 | 0.19 × 0.10 × 0.08 mm |
F(000) = 1072 |
Nonius KappaCCD diffractometer | 882 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.079 |
Graphite monochromator | θmax = 27.7°, θmin = 2.9° |
ϕ and ω scans | h = −7→5 |
5318 measured reflections | k = −18→8 |
2377 independent reflections | l = −33→37 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | All H-atom parameters refined |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0356P)2] where P = (Fo2 + 2Fc2)/3 |
2377 reflections | (Δ/σ)max < 0.001 |
203 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C14H10ClNO2 | V = 2408.3 (4) Å3 |
Mr = 259.69 | Z = 8 |
Orthorhombic, Pcab | Mo Kα radiation |
a = 6.0014 (4) Å | µ = 0.31 mm−1 |
b = 13.9015 (16) Å | T = 293 K |
c = 28.867 (3) Å | 0.19 × 0.10 × 0.08 mm |
Nonius KappaCCD diffractometer | 882 reflections with I > 2σ(I) |
5318 measured reflections | Rint = 0.079 |
2377 independent reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.121 | All H-atom parameters refined |
S = 0.88 | Δρmax = 0.14 e Å−3 |
2377 reflections | Δρmin = −0.14 e Å−3 |
203 parameters |
Experimental. Spectroscopic data for the title compound: IR(ATR) νmax cm-1: 2894 (CH2), 1600 (C=N), 1270 (C-O-C), 1490 (C=C), 827 (aromatic C-H), 789 (C-Cl) ; MS, (DIP 70 eV) for C14H10ClNO2 m/z: (%): 259([M+],100), 261 ([M+2], 32), 138 (19), 121 (21), 75 (86). 1H NMR (400 MHz, CDCl3) δ: 8.30 (s, 1H, H-7), 7.51 (d, J= 1.6 Hz, 1H, H-9), 7.34 (d, J= 8.8 Hz, 2H,H-5,3), 7.26 (dd, J= 8.0, 1.6 Hz, 1H, H-13), 7.12 (d, J= 8.8 Hz, 2H, H-6,2), 6.88 (d, J= 8.0 Hz, 1H, H-12), 6.04 (s, 2H, H-14).13C NMR (100 MHz, CDCl3)δ: 159.70 (C-7), 150.69 (C-10), 150.44 (C-11), 148.45 (C-8), 131.12 (C-4), 130.87 (C-1), 129.16 (C-5,3), 125.93 (C-13), 122.17 (C-6,2), 108.22 (C-12), 106.77 (C-9), 101.65 (C-14). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.12362 (17) | 0.14475 (7) | 0.07300 (4) | 0.0934 (5) | |
O1 | 0.5831 (4) | 0.12741 (17) | 0.47355 (10) | 0.0907 (12) | |
O2 | 0.9308 (4) | 0.07606 (17) | 0.45147 (10) | 0.0896 (11) | |
N1 | 0.9505 (4) | 0.10652 (15) | 0.27165 (11) | 0.0565 (10) | |
C1 | 0.9840 (5) | 0.11197 (19) | 0.22375 (14) | 0.0501 (14) | |
C2 | 0.8314 (6) | 0.0822 (2) | 0.19112 (17) | 0.0583 (14) | |
C3 | 0.8719 (6) | 0.0919 (2) | 0.14533 (17) | 0.0630 (14) | |
C4 | 1.0729 (6) | 0.13107 (19) | 0.13112 (13) | 0.0593 (14) | |
C5 | 1.2271 (6) | 0.1580 (2) | 0.16245 (17) | 0.0643 (16) | |
C6 | 1.1841 (5) | 0.1488 (2) | 0.20827 (18) | 0.0593 (14) | |
C7 | 0.7604 (6) | 0.1239 (2) | 0.28814 (15) | 0.0550 (14) | |
C8 | 0.7055 (5) | 0.12225 (18) | 0.33637 (13) | 0.0477 (14) | |
C9 | 0.8629 (6) | 0.0938 (2) | 0.36895 (15) | 0.0570 (14) | |
C10 | 0.8071 (6) | 0.0976 (2) | 0.41295 (16) | 0.0623 (14) | |
C11 | 0.5986 (6) | 0.1287 (2) | 0.42683 (15) | 0.0617 (14) | |
C12 | 0.4405 (6) | 0.1554 (2) | 0.39631 (15) | 0.0613 (14) | |
C13 | 0.4983 (5) | 0.1521 (2) | 0.35034 (15) | 0.0560 (14) | |
C14 | 0.7954 (9) | 0.0974 (6) | 0.4903 (2) | 0.110 (3) | |
H2 | 0.697 (5) | 0.0546 (18) | 0.1998 (10) | 0.066 (10)* | |
H3 | 0.772 (5) | 0.073 (2) | 0.1208 (12) | 0.082 (11)* | |
H5 | 1.351 (4) | 0.1855 (16) | 0.1520 (10) | 0.046 (8)* | |
H6 | 1.279 (5) | 0.1725 (16) | 0.2307 (11) | 0.059 (10)* | |
H7 | 0.649 (4) | 0.1402 (15) | 0.2697 (10) | 0.037 (8)* | |
H9 | 0.994 (4) | 0.0776 (16) | 0.3586 (10) | 0.042 (8)* | |
H12 | 0.296 (5) | 0.180 (2) | 0.4049 (11) | 0.079 (10)* | |
H13 | 0.389 (5) | 0.1706 (17) | 0.3261 (11) | 0.065 (9)* | |
H14 | 0.851 (10) | 0.150 (3) | 0.507 (2) | 0.20 (3)* | |
H14A | 0.770 (6) | 0.042 (2) | 0.5050 (16) | 0.115 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1101 (8) | 0.1037 (8) | 0.0663 (8) | −0.0003 (6) | 0.0110 (7) | 0.0115 (6) |
O1 | 0.075 (2) | 0.132 (2) | 0.065 (2) | 0.0176 (14) | 0.0076 (17) | 0.0032 (16) |
O2 | 0.0707 (17) | 0.147 (2) | 0.051 (2) | 0.0218 (14) | −0.0070 (17) | 0.0085 (16) |
N1 | 0.0407 (17) | 0.0619 (16) | 0.067 (2) | 0.0055 (11) | 0.0016 (15) | −0.0008 (14) |
C1 | 0.046 (2) | 0.0462 (19) | 0.058 (3) | 0.0047 (14) | 0.004 (2) | −0.0004 (16) |
C2 | 0.051 (2) | 0.056 (2) | 0.068 (3) | −0.0105 (16) | −0.004 (2) | −0.003 (2) |
C3 | 0.063 (2) | 0.066 (2) | 0.060 (3) | −0.0056 (18) | −0.010 (2) | −0.007 (2) |
C4 | 0.068 (2) | 0.053 (2) | 0.057 (3) | 0.0078 (17) | 0.001 (2) | 0.0004 (17) |
C5 | 0.050 (2) | 0.065 (2) | 0.078 (4) | −0.0065 (17) | 0.007 (2) | 0.006 (2) |
C6 | 0.043 (2) | 0.068 (2) | 0.067 (3) | 0.0002 (17) | −0.007 (2) | −0.006 (2) |
C7 | 0.046 (2) | 0.052 (2) | 0.067 (3) | 0.0027 (15) | −0.016 (2) | 0.0053 (18) |
C8 | 0.043 (2) | 0.0461 (19) | 0.054 (3) | 0.0013 (14) | −0.0044 (18) | 0.0058 (16) |
C9 | 0.040 (2) | 0.064 (2) | 0.067 (3) | 0.0043 (16) | 0.009 (2) | 0.0027 (19) |
C10 | 0.055 (2) | 0.069 (2) | 0.063 (3) | 0.0027 (16) | −0.001 (2) | 0.005 (2) |
C11 | 0.059 (2) | 0.071 (2) | 0.055 (3) | −0.0004 (17) | 0.007 (2) | 0.001 (2) |
C12 | 0.046 (2) | 0.066 (2) | 0.072 (3) | 0.0088 (18) | 0.003 (2) | −0.004 (2) |
C13 | 0.044 (2) | 0.060 (2) | 0.064 (3) | 0.0032 (15) | −0.005 (2) | 0.0007 (19) |
C14 | 0.098 (4) | 0.169 (7) | 0.062 (4) | 0.034 (4) | 0.003 (3) | 0.012 (4) |
Cl1—C4 | 1.716 (4) | C8—C13 | 1.372 (4) |
O1—C11 | 1.352 (5) | C9—C10 | 1.315 (6) |
O1—C14 | 1.425 (6) | C10—C11 | 1.383 (5) |
O2—C10 | 1.370 (5) | C11—C12 | 1.347 (5) |
O2—C14 | 1.416 (6) | C12—C13 | 1.372 (6) |
N1—C1 | 1.399 (5) | C2—H2 | 0.93 (3) |
N1—C7 | 1.260 (4) | C3—H3 | 0.96 (3) |
C1—C2 | 1.377 (5) | C5—H5 | 0.89 (2) |
C1—C6 | 1.380 (4) | C6—H6 | 0.92 (3) |
C2—C3 | 1.351 (7) | C7—H7 | 0.88 (3) |
C3—C4 | 1.386 (5) | C9—H9 | 0.87 (2) |
C4—C5 | 1.347 (6) | C12—H12 | 0.97 (3) |
C5—C6 | 1.354 (7) | C13—H13 | 0.99 (3) |
C7—C8 | 1.431 (6) | C14—H14 | 0.94 (5) |
C8—C9 | 1.390 (5) | C14—H14A | 0.89 (3) |
C11—O1—C14 | 106.3 (3) | C11—C12—C13 | 116.4 (3) |
C10—O2—C14 | 106.6 (3) | C8—C13—C12 | 121.6 (3) |
C1—N1—C7 | 119.6 (3) | O1—C14—O2 | 107.8 (4) |
N1—C1—C2 | 124.3 (3) | C1—C2—H2 | 121.2 (18) |
N1—C1—C6 | 117.7 (3) | C3—C2—H2 | 117.5 (18) |
C2—C1—C6 | 118.0 (4) | C2—C3—H3 | 125 (2) |
C1—C2—C3 | 121.3 (3) | C4—C3—H3 | 116 (2) |
C2—C3—C4 | 119.1 (4) | C4—C5—H5 | 117.8 (19) |
Cl1—C4—C3 | 119.2 (3) | C6—C5—H5 | 122.1 (19) |
Cl1—C4—C5 | 120.3 (3) | C1—C6—H6 | 116.3 (19) |
C3—C4—C5 | 120.6 (4) | C5—C6—H6 | 122.3 (19) |
C4—C5—C6 | 119.9 (3) | N1—C7—H7 | 120.4 (18) |
C1—C6—C5 | 121.2 (4) | C8—C7—H7 | 114.6 (18) |
N1—C7—C8 | 125.0 (3) | C8—C9—H9 | 117.1 (19) |
C7—C8—C9 | 120.4 (3) | C10—C9—H9 | 124.9 (19) |
C7—C8—C13 | 119.3 (3) | C11—C12—H12 | 124.3 (19) |
C9—C8—C13 | 120.2 (4) | C13—C12—H12 | 119.2 (19) |
C8—C9—C10 | 118.0 (3) | C8—C13—H13 | 118.0 (18) |
O2—C10—C9 | 129.6 (3) | C12—C13—H13 | 120.4 (18) |
O2—C10—C11 | 108.9 (4) | O1—C14—H14 | 105 (3) |
C9—C10—C11 | 121.5 (4) | O1—C14—H14A | 105 (2) |
O1—C11—C10 | 110.3 (3) | O2—C14—H14 | 112 (4) |
O1—C11—C12 | 127.4 (3) | O2—C14—H14A | 107 (3) |
C10—C11—C12 | 122.3 (4) | H14—C14—H14A | 119 (4) |
C14—O1—C11—C12 | −177.8 (4) | C3—C4—C5—C6 | −1.5 (4) |
C11—O1—C14—O2 | −3.3 (6) | C4—C5—C6—C1 | 0.1 (4) |
C14—O1—C11—C10 | 2.2 (5) | N1—C7—C8—C9 | −4.5 (4) |
C14—O2—C10—C11 | −1.7 (4) | N1—C7—C8—C13 | 173.3 (3) |
C14—O2—C10—C9 | 176.9 (4) | C13—C8—C9—C10 | −0.7 (4) |
C10—O2—C14—O1 | 3.1 (6) | C9—C8—C13—C12 | 0.4 (4) |
C7—N1—C1—C6 | 142.4 (3) | C7—C8—C9—C10 | 177.1 (3) |
C7—N1—C1—C2 | −38.2 (4) | C7—C8—C13—C12 | −177.5 (3) |
C1—N1—C7—C8 | −179.0 (3) | C8—C9—C10—O2 | −178.4 (3) |
C2—C1—C6—C5 | 1.8 (4) | C8—C9—C10—C11 | 0.1 (4) |
N1—C1—C6—C5 | −178.8 (3) | O2—C10—C11—O1 | −0.4 (3) |
N1—C1—C2—C3 | 178.2 (3) | O2—C10—C11—C12 | 179.7 (3) |
C6—C1—C2—C3 | −2.5 (4) | C9—C10—C11—O1 | −179.1 (3) |
C1—C2—C3—C4 | 1.2 (4) | C9—C10—C11—C12 | 1.0 (5) |
C2—C3—C4—Cl1 | −179.3 (2) | O1—C11—C12—C13 | 178.8 (3) |
C2—C3—C4—C5 | 0.8 (4) | C10—C11—C12—C13 | −1.3 (4) |
Cl1—C4—C5—C6 | 178.7 (2) | C11—C12—C13—C8 | 0.6 (4) |
Experimental details
Crystal data | |
Chemical formula | C14H10ClNO2 |
Mr | 259.69 |
Crystal system, space group | Orthorhombic, Pcab |
Temperature (K) | 293 |
a, b, c (Å) | 6.0014 (4), 13.9015 (16), 28.867 (3) |
V (Å3) | 2408.3 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.19 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5318, 2377, 882 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.654 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.121, 0.88 |
No. of reflections | 2377 |
No. of parameters | 203 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.14, −0.14 |
Computer programs: COLLECT (Nonius, 1999), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012).
Acknowledgements
Financial support from CONACYT (project No. 183980) and CIC–UMSNH is gratefully acknowledged. Furthermore the authors thank CONACYT (project No. 183980) for providing a license to use the Cambridge Structural Database. Special thanks go to Marco A. Leyva-Ramírez (CINVESTAV–IPN) for the data collection.
References
Domínguez, O., Rodríguez-Molina, B., Rodríguez, M., Ariza, A., Farfán, N. & Santillan, R. (2011). New J. Chem. 35, 156–164. Google Scholar
Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garavelli, M., Celani, P., Bernardi, F., Robb, M. A. & Olivucci, M. (1997). J. Am. Chem. Soc. 119, 6891–6901. CrossRef CAS Web of Science Google Scholar
Gaur, S. (2003). Asian J. Chem. 15, 250–254. CAS Google Scholar
Itsuno, S., Sakurai, Y., Ito, K., Maruyama, T., Nakahama, S. & Frechet, J. M. J. (1990). J. Org. Chem. 55, 304–310. CrossRef CAS Web of Science Google Scholar
MacLachlan, M. J., Park, M. K. & Thompson, L. K. (1996). Inorg. Chem. 35, 5492–5499. CSD CrossRef PubMed CAS Web of Science Google Scholar
Meyer, C. D., Joiner, C. S. & Stoddart, J. F. (2007). Chem. Soc. Rev. 36, 1705–1723. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prakash, A. & Adhikari, D. (2011). Int. J. ChemTech Res. 3, 1891-1896. Google Scholar
Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419. Web of Science CrossRef PubMed CAS Google Scholar
Rodríguez, M., Santillan, R., López, Y., Farfán, N., Barba, V., Nakatani, K., García Baéz, E. V. & Padilla-Martínez, I. I. (2007). Supramol. Chem. 19, 641–653. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliwa, M., Spangenberg, A., Malfant, I., Lacroix, P. G., Métivier, R., Pansu, R. B. & Nakatani, K. (2008). Chem. Mater. 20, 4062–4068. Web of Science CSD CrossRef CAS Google Scholar
Sreenivasulu, B. (2012). Supramolecular Chemistry: From Molecules to Nanomaterials, Vol. 8, edited by J. W. Steed and P. A. Gale, pp. 827–862. New York: John Wiley and Sons, Inc. Google Scholar
Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2672. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, R. H. (2010b). Acta Cryst. E66, o3293. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases are some of the most widely used organic compounds. They are important due to successful applications in several fields, such as organic synthesis (Meyer et al., 2007), catalysis (Itsuno et al., 1990) and materials science (Sliwa, et al., 2008), supramolecular chemistry (Sreenivasulu et al., 2012), coordination chemistry (Drozdzak et al., 2005 and MacLachlan et al., 1996), as well as for the broad spectrum of biological (Garavelli et al., 1997 and Ren et al., 2002) and pharmacological properties, such as antibacterial, analgesic, antipyretic, anti-inflammatory, anticancer, and as plant growth regulators (Prakash et al., 2011 and Gaur 2003).
In previous studies, we have described an X-ray diffraction and spectroscopic study of the ketoenol tautomeric forms of six enaminones prepared from salicylaldehyde and substituted anilines (Rodríguez et al., 2007). In addition we have reported a spectroscopic study of several ortho-hydroxy Schiff bases; the corresponding crystal structures were analyzed to identify their characteristic hydrogen bonding patterns, which was necessary in order to have evidence about the influence (electronic and/or structural) of the substituents on the tautomeric structure from a crystallographic perspective (Domínguez et al., 2011). To continue our studies on Schiff base ligands, we synthesized the title compound (I) obtained by condensation of 4-chloroaniline and piperonal.
The dihedral angle between the two aromatic rings is 43.22 (14)° and the C1—N1—C7—C8 torsion angle is -179.0 (3)° (Table 1). The C4—Cl1 and C7=N1 bond distances are 1.716 (4) Å and 1.260 (4) Å, respectively (Table 1). These values are slightly shorter than the average values reported for Car—Cl C8=N1, 1.283 (5) Å (Tahir et al., 2010a) and for C8=N1, 1.271 (2) Å in related Schiff bases containing the piperonal fragment (Tahir et al., 2010b).