organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1193-o1194

Crystal structure of 1,3-bis­­(2,6-diiso­propyl­phen­yl)-4,5-di­methyl-1H-imid­azol-3-ium bromide di­chloro­methane disolvate

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 October 2014; accepted 21 October 2014; online 24 October 2014)

The title solvated salt, C29H41N2+·Br·2CH2Cl2 was obtained from the reaction of the Arduengo-type carbene 1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3-dihydro-4,5-dimethyl-2H-imidazol-2-ylidene with Si2Br6 in di­chloro­methane. The complete cation is generated by a crystallographic mirror plane and the dihedral angle between the five-membered ring and the benzene ring is 89.8 (6)°; the dihedral angle between the benzene rings is 40.7 (2)°. The anion also lies on the mirror plane and both di­chloro­methane mol­ecules are disordered across the mirror plane over two equally occupied orientations. In the crystal, the cations are linked to the anions via C—H⋯Br hydrogen bonds.

1. Related literature

For the preparation of imidazolium salts, see: Arduengo et al. (1995[Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.], 1999[Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523-14534.]); Hinter­mann et al. (2007[Hintermann, L. (2007). Beilstein J. Org. Chem. 3 No. 22. doi: 10.1186/1860-5397-3-22.]); Gaillard et al. (2009[Gaillard, S., Bantreil, X., Slawin, A. M. Z. & Nolan, S. P. (2009). Dalton Trans. pp. 6967-6971.]). For silylene stabilization, see: Wang et al. (2008[Wang, Y., Xie, Y., Wei, P., King, R. B., Schaefer, H. F., von, R., Schleyer, P. & Robinson, G. H. (2008). Science, 321, 1069-1071.]); Ghadwal et al. (2009[Ghadwal, R. S., Roesky, H. W., Merkel, S., Henn, J. & Stalke, D. (2009). Angew. Chem. 121, 5793-5796.]); Filippou et al. (2009[Filippou, A. C., Chernov, O. & Schnakenburg, G. (2009). Angew. Chem. 121, 5797-5800.]). For structures with the same cation but different anions, see: Clavier et al. (2009[Clavier, H., Correa, A., Cavallo, L., Escudero-Adán, E. C., Benet-Buchholz, J., Slawin, A. M. Z. & Nolan, S. P. (2009). Eur. J. Inorg. Chem. pp. 1767-1773.]); Gaillard et al. (2009[Gaillard, S., Bantreil, X., Slawin, A. M. Z. & Nolan, S. P. (2009). Dalton Trans. pp. 6967-6971.]). For other crystallographically characterized imidazolium structures, see: Arduengo et al. (1995[Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.], 1999[Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523-14534.]); Fliedel et al. (2007[Fliedel, C., Maisse-François, A. & Bellemin-Laponnaz, S. (2007). Inorg. Chim. Acta, 360, 143-148.]); Hagos et al. (2008[Hagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357.]); Berger, Auner & Bolte (2012[Berger, M., Auner, N. & Bolte, M. (2012). Acta Cryst. E68, o1844.]); Berger, Auner, Sinke & Bolte (2012[Berger, M., Auner, N., Sinke, T. & Bolte, M. (2012). Acta Cryst. E68, o1845.]); Ikhile & Bala (2010[Ikhile, M. I. & Bala, M. D. (2010). Acta Cryst. E66, o3121.]); Giffin et al. (2010[Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090-o2091.])

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C29H41N2+·Br·2CH2Cl2

  • Mr = 667.40

  • Monoclinic, P 21 /m

  • a = 10.0644 (11) Å

  • b = 16.6082 (17) Å

  • c = 10.7107 (15) Å

  • β = 98.48 (1)°

  • V = 1770.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

2.2. Data collection

  • STOE IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.756, Tmax = 0.756

  • 21288 measured reflections

  • 3229 independent reflections

  • 2618 reflections with I > 2σ(I)

  • Rint = 0.156

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.163

  • wR(F2) = 0.393

  • S = 1.12

  • 3229 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C—H⋯Br1 0.95 2.46 3.403 (13) 172

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL2013, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Imidazolium salts are precursors for the synthesis of N-heterocyclic carbenes (NHC) and can be prepared according to Arduengo et al. (1995, 1999) and Hintermann (2007). To block deprotonation and substitution reactions at the unsaturated backbone of the imidazolium skeleton, methyl groups adjacent to the C=C bond can decrease NHC reactivity and increase the steric demand at these carbon positions (Gaillard et al., 2009). Deprotonation of these imidazolium salts by strong bases gives the free stable NHC, which is widely used as a ligand for e.g. silylene stabilization (Wang et al., 2008; Ghadwal et al., 2009; Filippou et al., 2009).

The title compound crystallizes with discrete cations, anions and solvent dichloromethane molecules. The cations and anions are located on a crystallographic mirror plane. Both dichloromethane molecules show a disorder across a mirror plane over two equally occupied positions. The Br anions are connnected to the cations via C—H···Br hydrogen bonds.

Structures with the same cation, but with different anions and solvent molecules, have been determined by Clavier et al. (2009) and Gaillard et al. (2009). For compounds with 1,3-Bis-(2,6-diisopropylphenyl)imidazolium unit, see: Ikhile et al. (2010), Giffin et al. (2010), Hagos et al. (2008), Fliedel et al. (2007), Berger, Auner & Bolte (2012); Berger, Auner, Sinke & Bolte (2012).

Related literature top

For the preparation of imidazolium salts, see: Arduengo et al. (1995, 1999); Hintermann et al. (2007); Gaillard et al. (2009). For silylene stabilization, see: Wang et al. (2008); Ghadwal et al. (2009); Filippou et al. (2009). For structures with the same cation but different anions, see: Clavier et al. (2009); Gaillard et al. (2009). For other crystallographically characterized imidazolium structures, see: Arduengo et al. (1995, 1999); Fliedel et al. (2007); Hagos et al. (2008); Berger, Auner & Bolte (2012); Berger, Auner, Sinke & Bolte (2012); Ikhile & Bala (2010); Giffin et al. (2010)

Experimental top

The title compound is synthesized according to Arduengo et al. (1995), Hintermann (2007) and Gaillard et al. (2009).

1,3-Bis(2,6-diisopropylphenyl)-4,5-dimethyl-1H-imidazol-3-ium bromide chloroform disolvate was prepared by reacting 340 mg of 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-4,5-dimethyl-2H- imidazol-2-ylidene with 300 mg of Si2Br6 in 10 ml dichloromethane. After removing the solvent in vacuo and dissolving the residue in CD2Cl2 the NMR-Tube was stored for two weeks at 253 K. Colourless needles of the title compound crystallized.

Refinement top

All atoms have been anisotropically refined. H atoms were refined using a riding model, with Caromatic—H = 0.95 Å or Cmethyl—H = 0.98 Å, C—Htertiary = 0.99 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
Figure 1. Perspective view of the title comopound with displacement ellipsoids drawn at the 50% probability level. The C—H···Br hydrogen bond is drawn as a dashed line. Atoms labelled with suffix A were generated by the symmetry operator x, -y + 1/2, z.
1,3-Bis(2,6-diisopropylphenyl)-4,5-dimethyl-1H-imidazol-3-ium bromide dichloromethane disolvate top
Crystal data top
C29H41N2+·Br·2CH2Cl2F(000) = 696
Mr = 667.40Dx = 1.252 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 10.0644 (11) ÅCell parameters from 20226 reflections
b = 16.6082 (17) Åθ = 3.2–25.8°
c = 10.7107 (15) ŵ = 1.48 mm1
β = 98.48 (1)°T = 173 K
V = 1770.7 (4) Å3Block, colourless
Z = 20.20 × 0.20 × 0.20 mm
Data collection top
STOE IPDS II two-circle
diffractometer
2618 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.156
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(X-AREA Stoe & Cie, 2001)
h = 1111
Tmin = 0.756, Tmax = 0.756k = 1919
21288 measured reflectionsl = 1212
3229 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.163H-atom parameters constrained
wR(F2) = 0.393 w = 1/[σ2(Fo2) + (0.1372P)2 + 27.7491P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3229 reflectionsΔρmax = 1.09 e Å3
190 parametersΔρmin = 1.13 e Å3
Crystal data top
C29H41N2+·Br·2CH2Cl2V = 1770.7 (4) Å3
Mr = 667.40Z = 2
Monoclinic, P21/mMo Kα radiation
a = 10.0644 (11) ŵ = 1.48 mm1
b = 16.6082 (17) ÅT = 173 K
c = 10.7107 (15) Å0.20 × 0.20 × 0.20 mm
β = 98.48 (1)°
Data collection top
STOE IPDS II two-circle
diffractometer
3229 independent reflections
Absorption correction: multi-scan
(X-AREA Stoe & Cie, 2001)
2618 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.756Rint = 0.156
21288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1630 restraints
wR(F2) = 0.393H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1372P)2 + 27.7491P]
where P = (Fo2 + 2Fc2)/3
3229 reflectionsΔρmax = 1.09 e Å3
190 parametersΔρmin = 1.13 e Å3
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. ;

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7876 (7)0.1843 (5)0.4157 (7)0.0283 (17)
C10.7093 (13)0.25000.4193 (12)0.026 (3)
H10.61570.25000.42350.031*
C20.9196 (9)0.2098 (7)0.4076 (9)0.035 (2)
C31.0285 (10)0.1493 (7)0.4038 (12)0.046 (3)
H3A0.99100.09490.40600.069*
H3B1.09820.15690.47700.069*
H3C1.06780.15620.32610.069*
C40.6880 (14)0.1029 (8)0.1817 (11)0.054 (3)
H40.73690.15530.19430.065*
C50.5431 (19)0.1214 (12)0.1280 (16)0.092 (6)
H5A0.53980.14700.04510.138*
H5B0.50490.15800.18520.138*
H5C0.49110.07140.11920.138*
C60.7583 (18)0.0522 (12)0.0899 (14)0.081 (5)
H6A0.85040.04010.12900.121*
H6B0.76020.08240.01170.121*
H6C0.70890.00170.07080.121*
C70.7974 (12)0.1111 (8)0.6591 (11)0.048 (3)
H70.84100.16180.63510.057*
C80.9077 (15)0.0617 (10)0.7486 (13)0.069 (4)
H8A0.93850.09320.82470.103*
H8B0.98400.05040.70390.103*
H8C0.86890.01080.77230.103*
C90.6840 (16)0.1355 (10)0.7316 (13)0.068 (4)
H9A0.72150.16450.80850.102*
H9B0.63700.08730.75440.102*
H9C0.62060.17050.67850.102*
C110.7393 (10)0.1030 (7)0.4224 (10)0.037 (2)
C120.6930 (11)0.0638 (7)0.3109 (11)0.045 (3)
C130.6476 (13)0.0157 (8)0.3211 (13)0.056 (3)
H130.61600.04520.24670.067*
C140.6482 (13)0.0516 (8)0.4379 (13)0.057 (3)
H140.61300.10430.44340.068*
C150.6993 (12)0.0112 (8)0.5450 (12)0.048 (3)
H150.70180.03730.62420.058*
C160.7483 (10)0.0679 (7)0.5420 (10)0.040 (2)
Br10.36891 (18)0.25000.4011 (2)0.0582 (7)
C1L0.250 (3)0.25000.711 (3)0.19 (3)
H1LA0.27110.21800.64190.228*0.5
H1LB0.23900.30420.68060.228*0.5
Cl10.3918 (6)0.25000.8208 (6)0.104 (3)
Cl20.1100 (7)0.2217 (5)0.7384 (7)0.074 (2)0.5
C2L1.165 (2)0.25000.089 (2)0.090 (9)
H2LA1.19990.27980.02330.108*0.5
H2LB1.20840.26460.17030.108*0.5
Cl31.1536 (11)0.1392 (7)0.0594 (9)0.100 (3)0.5
Cl40.9934 (12)0.25000.0734 (10)0.253 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.022 (4)0.037 (4)0.025 (4)0.004 (3)0.001 (3)0.001 (3)
C10.023 (6)0.028 (7)0.027 (6)0.0000.005 (5)0.000
C20.019 (4)0.046 (5)0.036 (5)0.011 (4)0.004 (4)0.003 (4)
C30.024 (5)0.055 (7)0.058 (7)0.003 (5)0.005 (5)0.013 (6)
C40.069 (8)0.055 (8)0.035 (6)0.007 (6)0.003 (5)0.009 (5)
C50.107 (14)0.091 (13)0.071 (10)0.020 (11)0.013 (9)0.002 (9)
C60.086 (11)0.101 (13)0.051 (8)0.012 (10)0.004 (7)0.001 (8)
C70.051 (7)0.046 (7)0.046 (6)0.008 (6)0.005 (5)0.010 (5)
C80.070 (9)0.079 (10)0.050 (8)0.015 (8)0.015 (7)0.005 (7)
C90.081 (10)0.076 (10)0.053 (8)0.008 (8)0.026 (7)0.007 (7)
C110.025 (5)0.047 (6)0.038 (5)0.006 (4)0.000 (4)0.002 (5)
C120.032 (5)0.044 (7)0.055 (7)0.004 (5)0.002 (5)0.002 (5)
C130.050 (7)0.054 (8)0.061 (8)0.002 (6)0.004 (6)0.015 (6)
C140.051 (7)0.047 (7)0.068 (8)0.003 (6)0.005 (6)0.001 (6)
C150.045 (6)0.051 (7)0.049 (7)0.003 (5)0.007 (5)0.015 (6)
C160.032 (5)0.050 (7)0.039 (6)0.009 (5)0.010 (4)0.009 (5)
Br10.0341 (9)0.0750 (13)0.0665 (12)0.0000.0107 (7)0.000
C1L0.08 (2)0.44 (8)0.048 (15)0.0000.014 (14)0.000
Cl10.044 (3)0.183 (8)0.079 (4)0.0000.006 (3)0.000
Cl20.055 (4)0.097 (7)0.068 (4)0.026 (3)0.002 (3)0.002 (3)
C2L0.057 (13)0.17 (3)0.047 (12)0.0000.010 (10)0.000
Cl30.111 (7)0.106 (7)0.076 (6)0.021 (6)0.009 (5)0.006 (5)
Cl40.119 (8)0.56 (3)0.081 (6)0.0000.031 (6)0.000
Geometric parameters (Å, º) top
N1—C11.350 (11)C8—H8C0.9800
N1—C21.409 (12)C9—H9A0.9800
N1—C111.440 (14)C9—H9B0.9800
C1—N1i1.350 (11)C9—H9C0.9800
C1—H10.9500C11—C121.380 (16)
C2—C2i1.34 (2)C11—C161.398 (15)
C2—C31.492 (14)C12—C131.406 (18)
C3—H3A0.9800C13—C141.385 (19)
C3—H3B0.9800C13—H130.9500
C3—H3C0.9800C14—C151.362 (18)
C4—C51.52 (2)C14—H140.9500
C4—C121.523 (17)C15—C161.405 (17)
C4—C61.54 (2)C15—H150.9500
C4—H41.0000C1L—Cl21.56 (3)
C5—H5A0.9800C1L—Cl2i1.56 (3)
C5—H5B0.9800C1L—Cl11.71 (3)
C5—H5C0.9800C1L—H1LA0.9592
C6—H6A0.9800C1L—H1LB0.9585
C6—H6B0.9800Cl2—Cl2i0.941 (16)
C6—H6C0.9800C2L—Cl41.71 (3)
C7—C161.466 (17)C2L—Cl31.867 (12)
C7—C91.527 (17)C2L—Cl3i1.867 (12)
C7—C81.585 (17)C2L—H2LA0.9648
C7—H71.0000C2L—H2LB0.9468
C8—H8A0.9800Cl3—Cl42.465 (14)
C8—H8B0.9800Cl4—Cl3i2.465 (14)
C1—N1—C2108.6 (8)C7—C9—H9A109.5
C1—N1—C11123.6 (8)C7—C9—H9B109.5
C2—N1—C11127.8 (8)H9A—C9—H9B109.5
N1i—C1—N1107.9 (11)C7—C9—H9C109.5
N1i—C1—H1126.1H9A—C9—H9C109.5
N1—C1—H1126.1H9B—C9—H9C109.5
C2i—C2—N1107.5 (5)C12—C11—C16124.3 (11)
C2i—C2—C3132.4 (6)C12—C11—N1118.2 (9)
N1—C2—C3120.2 (10)C16—C11—N1117.4 (9)
C2—C3—H3A109.5C11—C12—C13116.6 (11)
C2—C3—H3B109.5C11—C12—C4123.2 (11)
H3A—C3—H3B109.5C13—C12—C4120.2 (11)
C2—C3—H3C109.5C14—C13—C12121.1 (12)
H3A—C3—H3C109.5C14—C13—H13119.5
H3B—C3—H3C109.5C12—C13—H13119.5
C5—C4—C12109.4 (12)C15—C14—C13119.9 (12)
C5—C4—C6112.0 (12)C15—C14—H14120.0
C12—C4—C6112.9 (12)C13—C14—H14120.0
C5—C4—H4107.4C14—C15—C16122.1 (11)
C12—C4—H4107.4C14—C15—H15118.9
C6—C4—H4107.4C16—C15—H15118.9
C4—C5—H5A109.5C11—C16—C15115.8 (11)
C4—C5—H5B109.5C11—C16—C7123.2 (10)
H5A—C5—H5B109.5C15—C16—C7120.9 (10)
C4—C5—H5C109.5Cl2—C1L—Cl1123.9 (16)
H5A—C5—H5C109.5Cl2i—C1L—Cl1123.9 (16)
H5B—C5—H5C109.5Cl2—C1L—H1LA106.5
C4—C6—H6A109.5Cl2i—C1L—H1LA128.3
C4—C6—H6B109.5Cl1—C1L—H1LA106.1
H6A—C6—H6B109.5Cl2—C1L—H1LB106.4
C4—C6—H6C109.5Cl1—C1L—H1LB106.2
H6A—C6—H6C109.5H1LA—C1L—H1LB106.8
H6B—C6—H6C109.5Cl2i—Cl2—C1L72.4 (5)
C16—C7—C9112.5 (11)Cl4—C2L—Cl386.9 (8)
C16—C7—C8112.4 (10)Cl4—C2L—Cl3i86.9 (8)
C9—C7—C8109.9 (11)Cl3—C2L—Cl3i160.3 (15)
C16—C7—H7107.3Cl4—C2L—H2LA113.4
C9—C7—H7107.3Cl3—C2L—H2LA113.8
C8—C7—H7107.3Cl3i—C2L—H2LA52.5
C7—C8—H8A109.5Cl4—C2L—H2LB114.0
C7—C8—H8B109.5Cl3—C2L—H2LB114.6
H8A—C8—H8B109.5Cl3i—C2L—H2LB85.0
C7—C8—H8C109.5H2LA—C2L—H2LB112.0
H8A—C8—H8C109.5Cl3i—Cl4—Cl396.5 (6)
H8B—C8—H8C109.5
C2—N1—C1—N1i1.0 (13)C11—C12—C13—C140.8 (17)
C11—N1—C1—N1i177.7 (6)C4—C12—C13—C14178.3 (12)
C1—N1—C2—C2i0.6 (8)C12—C13—C14—C153.1 (19)
C11—N1—C2—C2i178.0 (8)C13—C14—C15—C162.1 (19)
C1—N1—C2—C3179.2 (10)C12—C11—C16—C153.6 (15)
C11—N1—C2—C30.6 (15)N1—C11—C16—C15179.5 (9)
C1—N1—C11—C1291.6 (12)C12—C11—C16—C7179.8 (10)
C2—N1—C11—C1289.9 (12)N1—C11—C16—C73.3 (15)
C1—N1—C11—C1691.3 (12)C14—C15—C16—C111.1 (17)
C2—N1—C11—C1687.2 (12)C14—C15—C16—C7177.4 (11)
C16—C11—C12—C132.6 (16)C9—C7—C16—C11104.4 (13)
N1—C11—C12—C13179.5 (9)C8—C7—C16—C11130.9 (12)
C16—C11—C12—C4178.2 (10)C9—C7—C16—C1571.5 (14)
N1—C11—C12—C41.3 (16)C8—C7—C16—C1553.1 (15)
C5—C4—C12—C11107.1 (14)Cl1—C1L—Cl2—Cl2i102.3 (9)
C6—C4—C12—C11127.4 (13)Cl3i—C2L—Cl3—Cl472 (4)
C5—C4—C12—C1372.0 (15)Cl3—C2L—Cl4—Cl3i161.3 (14)
C6—C4—C12—C1353.5 (16)Cl3i—C2L—Cl4—Cl3161.3 (14)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C—H···Br10.952.463.403 (13)172
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C—H···Br10.952.463.403 (13)172
 

References

First citationArduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.  CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerger, M., Auner, N. & Bolte, M. (2012). Acta Cryst. E68, o1844.  CSD CrossRef IUCr Journals Google Scholar
First citationBerger, M., Auner, N., Sinke, T. & Bolte, M. (2012). Acta Cryst. E68, o1845.  CSD CrossRef IUCr Journals Google Scholar
First citationClavier, H., Correa, A., Cavallo, L., Escudero-Adán, E. C., Benet-Buchholz, J., Slawin, A. M. Z. & Nolan, S. P. (2009). Eur. J. Inorg. Chem. pp. 1767–1773.  Web of Science CSD CrossRef Google Scholar
First citationFilippou, A. C., Chernov, O. & Schnakenburg, G. (2009). Angew. Chem. 121, 5797–5800.  CrossRef Google Scholar
First citationFliedel, C., Maisse-François, A. & Bellemin-Laponnaz, S. (2007). Inorg. Chim. Acta, 360, 143–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationGaillard, S., Bantreil, X., Slawin, A. M. Z. & Nolan, S. P. (2009). Dalton Trans. pp. 6967–6971.  Web of Science CSD CrossRef Google Scholar
First citationGhadwal, R. S., Roesky, H. W., Merkel, S., Henn, J. & Stalke, D. (2009). Angew. Chem. 121, 5793–5796.  CrossRef Google Scholar
First citationGiffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090–o2091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHintermann, L. (2007). Beilstein J. Org. Chem. 3 No. 22. doi: 10.1186/1860-5397-3-22.  Google Scholar
First citationIkhile, M. I. & Bala, M. D. (2010). Acta Cryst. E66, o3121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, Y., Xie, Y., Wei, P., King, R. B., Schaefer, H. F., von, R., Schleyer, P. & Robinson, G. H. (2008). Science, 321, 1069–1071.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1193-o1194
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds