organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1197-o1198

Crystal structure of (3-carb­­oxy­prop­yl)tri­phenyl­phospho­nium hexa­fluorido­phosphate

aMississippi State University, Department of Chemistry, 1115 Hand Lab, Box 9573, Mississippi State, MS 39762, USA
*Correspondence e-mail: pch110@msstate.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 October 2014; accepted 21 October 2014; online 24 October 2014)

In the title mol­ecular salt, C22H22O2P+·PF6, the side chain of the cation adopts an anti–gauche conformation [P—C—C—C and C—C—C—C torsion angles = −179.11 (10) and −77.18 (16)°, respectively]. In the crystal, the cations are linked into carb­oxy­lic acid inversion dimers by pairs of O—H⋯O hydrogen bonds. Weak C—H⋯F and C—H⋯(F,F) hydrogen bonds connect the components into a three-dimensional network, but there are no aromatic ππ stacking inter­actions.

1. Related literature

For structures of related compounds, see: Li & Mak (1996[Li, S.-L. & Mak, T. C. W. (1996). J. Mol. Struct. 384, 135-148.]); Wu et al. (2007[Wu, D.-Y., Li, F.-S., Xia, J.-Y., Mao, N.-W. & Yao, H.-L. (2007). Acta Cryst. E63, o4532.]). For compounds containing related metallated structures, see: Li & Mak (1997[Li, S.-L. & Mak, T. C. W. (1997). Polyhedron, 16, 199-205.]); Sabounchei et al. (2011[Sabounchei, S. J., Salehzadeh, S., Hosseinzadeh, M., Bagherjeri, F. A. & Khavasi, H. R. (2011). Polyhedron, 30, 2486-2492.]). For the use of phospho­nium compounds as Wittig reagents, see: Hoffman (2001[Hoffman, R. W. (2001). Angew. Chem. Int. Ed. 40, 1411-1416.]), as biocodal agents, see: Kanazawa et al. (1993[Kanazawa, A., Ikeda, T. & Endo, T. (1993). J. Polym. Sci. A Polym. Chem. 31, 1467-1472.]) and as phase transfer agents, see: Starks (1971[Starks, C. M. (1971). J. Am. Chem. Soc. 93, 195-199.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H22O2P+·PF6

  • Mr = 494.33

  • Triclinic, [P \overline 1]

  • a = 9.3307 (1) Å

  • b = 10.6773 (2) Å

  • c = 12.8129 (2) Å

  • α = 72.460 (1)°

  • β = 82.307 (1)°

  • γ = 65.495 (1)°

  • V = 1107.46 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.29 × 0.16 × 0.07 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.947

  • 37843 measured reflections

  • 5269 independent reflections

  • 4426 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.06

  • 5269 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.80 2.6285 (15) 171
C1—H1A⋯F2 0.99 2.48 3.455 (2) 168
C1—H1A⋯F3 0.99 2.50 3.1656 (19) 124
C22—H22⋯F4ii 0.95 2.51 3.3924 (18) 155
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

A 1.0g (2.3mmol) sample of 3-carb­oxy­propyl­tri­phenyl­phospho­nium chloride and 0.4g (2.4mmol) of sodium hexa­fluoro­phosphate were dissolved in 40mL of water. A white precipitate immediately formed and the slurry was stirred for 1 hour. The mixture was filtered, the solid was washed with water (3 x 25mL), and dried under high vacuum to yield a white solid. Yield: 0.65g (80.8%). Single crystals suitable for X-ray diffraction were grown from slow evaporation of di­chloro­methane. 1H NMR (CHLOROFORM-d ,300MHz): δ = 7.90–8.02 (m, 9H), 7.77–7.89 (m, 6H), 3.54–3.72 (m, 2H), 2.66 (t, J = 6.6 Hz, 2H), 2.04–2.07 p.p.m. (m, 2H). 13C NMR (CHLOROFORM-d ,75MHz): δ = 174.0, 136.4, 134.9, 131.6, 120.3, 119.1, 34.2, 34.0, 22.0, 19.2 p.p.m. HRMS (ESI–TOF) m/z: [M+] Calcd for C22H22O2P+ 349.381; found 349.1355. [M-] Calcd for PF6 144.965; found 144.9632.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å, O—H = 0.84 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Comment top

Organic phosphonium cations have been used as phase transfer catalysts (Starks, 1971), biocidal agents (Kanazawa et al. 1993), and as reagents for Wittig reactions (Hoffman, 2001). There are few examples in the crystallographic literature, however, of triphenylphosphonium cations bearing a carboxylic acid functional group.

In the title compound, 3-carboxypropyltriphenylphosphonium hexafluorophosphate (Fig. 1), crystallizes in a triclinic unit cell with a single cation-anion pair in the asymmetric unit. The dominant intermolecular interactions is hydrogen bonding from the carboxylic acid moiety on the cation (Table 1). The alkyl chain attached to the phosphorous deviates from the expected staggered conformation, showing a rotation at the C1—C2 carbons. This twist in the carbons is likely the cause of the unusual torsion angles observed in the three phenyl rings (Table 2). The phenyl ring that is located under the C2 hydrogens is nearly perpendicular when compared to the other two rings. It is suspected that this perpendicular arrangement of the phenyl ring is assumed to minimize potential steric interactions with the bent portion of the alkyl chain. Interestingly, there are no observed ππ interactions from any of the phenyl rings and there are no weak C—H···F interactions.

Related literature top

For structures of related compounds, see: Li & Mak (1996); Wu et al. (2007). For compounds containing related metallated structures, see: Li & Mak (1997); Sabounchei et al. (2011). For the use of phosphonium compounds as Wittig reagents, see: Hoffman (2001), as biocodal agents, see: Kanazawa et al. (1993) and as phase transfer agents, see: Starks (1971).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Fig. 1. Crystal structure and labeling scheme of compound (1). 50% probablility ellipsoids. Phosphorous is in green, oxygen in red, fluorine in purple, and carbon in grey.
(3-Carboxypropyl)triphenylphosphonium hexafluoridophosphate top
Crystal data top
C22H22O2P+·PF6Z = 2
Mr = 494.33F(000) = 508
Triclinic, P1Dx = 1.482 Mg m3
a = 9.3307 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6773 (2) ÅCell parameters from 9960 reflections
c = 12.8129 (2) Åθ = 2.4–27.8°
α = 72.460 (1)°µ = 0.26 mm1
β = 82.307 (1)°T = 100 K
γ = 65.495 (1)°Block, colourless
V = 1107.46 (3) Å30.29 × 0.16 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5269 independent reflections
Radiation source: fine-focus sealed tube4426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.9 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω and ϕ scansh = 1211
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1414
Tmin = 0.865, Tmax = 0.947l = 1616
37843 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.4848P]
where P = (Fo2 + 2Fc2)/3
5269 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C22H22O2P+·PF6γ = 65.495 (1)°
Mr = 494.33V = 1107.46 (3) Å3
Triclinic, P1Z = 2
a = 9.3307 (1) ÅMo Kα radiation
b = 10.6773 (2) ŵ = 0.26 mm1
c = 12.8129 (2) ÅT = 100 K
α = 72.460 (1)°0.29 × 0.16 × 0.07 mm
β = 82.307 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4426 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.947Rint = 0.035
37843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
5269 reflectionsΔρmin = 0.36 e Å3
290 parameters
Special details top

Experimental. Absorption correction: SADABS-2014/2 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0583 before and 0.0488 after correction. The Ratio of minimum to maximum transmission is 0.9133. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.42475 (4)0.61911 (4)0.72374 (3)0.01582 (9)
P20.21110 (5)0.22893 (4)0.72342 (3)0.02490 (10)
F20.18704 (11)0.33829 (11)0.79338 (8)0.0344 (2)
F60.13566 (12)0.36150 (10)0.61884 (8)0.0352 (2)
F40.23378 (12)0.12048 (10)0.65303 (8)0.0342 (2)
F50.03862 (12)0.23173 (12)0.76017 (8)0.0387 (3)
F30.38172 (12)0.22834 (11)0.68553 (9)0.0406 (3)
O20.48983 (12)0.17127 (10)0.96794 (8)0.0235 (2)
F10.28391 (14)0.09741 (11)0.82789 (9)0.0453 (3)
O10.66794 (13)0.01961 (11)0.91753 (10)0.0295 (3)
H10.61040.05980.95570.044*
C50.58121 (16)0.67621 (14)0.71818 (11)0.0172 (3)
C180.23325 (17)0.57402 (16)0.90634 (11)0.0208 (3)
H180.27850.47550.90840.025*
C110.32167 (16)0.70037 (15)0.59658 (11)0.0184 (3)
C170.28593 (16)0.67064 (15)0.82977 (11)0.0182 (3)
C40.60945 (17)0.11522 (15)0.91839 (11)0.0200 (3)
C10.51033 (16)0.42771 (14)0.74813 (12)0.0188 (3)
H1A0.42620.39100.77130.023*
H1B0.55690.40390.67890.023*
C120.25839 (16)0.62504 (16)0.55808 (12)0.0217 (3)
H120.28040.52730.59440.026*
C20.63811 (16)0.35274 (15)0.83609 (12)0.0207 (3)
H2A0.72220.38960.81370.025*
H2B0.59180.37430.90600.025*
C60.62009 (17)0.69945 (15)0.80985 (12)0.0213 (3)
H60.55260.70190.87230.026*
C190.11368 (17)0.62379 (17)0.97956 (12)0.0243 (3)
H190.07810.55851.03250.029*
C220.22021 (17)0.81526 (15)0.82747 (12)0.0239 (3)
H220.25740.88060.77620.029*
C130.16332 (17)0.69379 (18)0.46650 (12)0.0255 (3)
H130.12080.64290.43940.031*
C30.70880 (17)0.19153 (15)0.85265 (13)0.0240 (3)
H3A0.72920.17260.77990.029*
H3B0.81160.15060.88930.029*
C140.13030 (18)0.83680 (18)0.41448 (12)0.0276 (3)
H140.06260.88430.35300.033*
C160.29145 (19)0.84353 (16)0.54243 (13)0.0262 (3)
H160.33630.89420.56770.031*
C70.75827 (17)0.71902 (16)0.80929 (13)0.0253 (3)
H70.78520.73550.87140.030*
C80.85698 (18)0.71457 (17)0.71847 (14)0.0275 (3)
H80.95280.72540.71930.033*
C100.67893 (18)0.67535 (17)0.62542 (12)0.0251 (3)
H100.65110.66180.56220.030*
C210.10050 (19)0.86258 (17)0.90047 (13)0.0296 (3)
H210.05520.96090.89900.035*
C200.04614 (17)0.76728 (18)0.97598 (12)0.0271 (3)
H200.03730.80071.02510.033*
C90.81677 (19)0.69444 (19)0.62641 (14)0.0316 (4)
H90.88390.69370.56370.038*
C150.1951 (2)0.91087 (18)0.45130 (13)0.0315 (4)
H150.17351.00830.41410.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01569 (17)0.01745 (17)0.01619 (17)0.00773 (13)0.00018 (13)0.00564 (13)
P20.0302 (2)0.0301 (2)0.0236 (2)0.01993 (18)0.00010 (16)0.00870 (16)
F20.0362 (5)0.0439 (6)0.0369 (5)0.0220 (5)0.0021 (4)0.0225 (5)
F60.0485 (6)0.0327 (5)0.0294 (5)0.0224 (5)0.0021 (4)0.0055 (4)
F40.0490 (6)0.0336 (5)0.0328 (5)0.0257 (5)0.0006 (4)0.0132 (4)
F50.0403 (6)0.0640 (7)0.0306 (5)0.0381 (5)0.0065 (4)0.0166 (5)
F30.0308 (5)0.0479 (6)0.0599 (7)0.0238 (5)0.0105 (5)0.0308 (5)
O20.0238 (5)0.0203 (5)0.0248 (5)0.0076 (4)0.0042 (4)0.0074 (4)
F10.0651 (7)0.0398 (6)0.0371 (6)0.0275 (5)0.0218 (5)0.0001 (5)
O10.0294 (6)0.0194 (5)0.0389 (7)0.0107 (5)0.0116 (5)0.0102 (5)
C50.0165 (6)0.0172 (6)0.0193 (7)0.0080 (5)0.0001 (5)0.0053 (5)
C180.0214 (7)0.0237 (7)0.0199 (7)0.0115 (6)0.0009 (5)0.0058 (6)
C110.0157 (6)0.0226 (7)0.0173 (6)0.0076 (5)0.0014 (5)0.0070 (5)
C170.0149 (6)0.0221 (7)0.0175 (6)0.0070 (5)0.0012 (5)0.0054 (5)
C40.0216 (7)0.0181 (6)0.0192 (7)0.0060 (5)0.0033 (5)0.0052 (5)
C10.0192 (7)0.0192 (6)0.0209 (7)0.0089 (5)0.0005 (5)0.0077 (5)
C120.0193 (7)0.0283 (7)0.0208 (7)0.0119 (6)0.0023 (5)0.0087 (6)
C20.0182 (7)0.0185 (7)0.0260 (7)0.0077 (5)0.0021 (5)0.0054 (6)
C60.0210 (7)0.0230 (7)0.0219 (7)0.0089 (6)0.0002 (6)0.0087 (6)
C190.0216 (7)0.0361 (8)0.0194 (7)0.0169 (6)0.0012 (6)0.0060 (6)
C220.0244 (7)0.0200 (7)0.0238 (7)0.0068 (6)0.0029 (6)0.0053 (6)
C130.0201 (7)0.0415 (9)0.0212 (7)0.0151 (7)0.0017 (6)0.0138 (6)
C30.0186 (7)0.0208 (7)0.0296 (8)0.0061 (6)0.0011 (6)0.0055 (6)
C140.0199 (7)0.0402 (9)0.0183 (7)0.0071 (6)0.0011 (6)0.0084 (6)
C160.0319 (8)0.0241 (7)0.0248 (8)0.0124 (6)0.0042 (6)0.0060 (6)
C70.0233 (7)0.0252 (7)0.0307 (8)0.0088 (6)0.0061 (6)0.0108 (6)
C80.0209 (7)0.0291 (8)0.0361 (9)0.0142 (6)0.0014 (6)0.0070 (7)
C100.0264 (8)0.0345 (8)0.0204 (7)0.0167 (7)0.0038 (6)0.0107 (6)
C210.0264 (8)0.0255 (8)0.0293 (8)0.0020 (6)0.0028 (6)0.0102 (6)
C200.0175 (7)0.0396 (9)0.0217 (7)0.0071 (6)0.0029 (6)0.0122 (7)
C90.0264 (8)0.0440 (10)0.0297 (8)0.0213 (7)0.0081 (7)0.0108 (7)
C150.0356 (9)0.0268 (8)0.0251 (8)0.0078 (7)0.0054 (7)0.0018 (6)
Geometric parameters (Å, º) top
P1—C51.7867 (14)C2—H2B0.9900
P1—C111.7910 (14)C2—C31.5227 (19)
P1—C171.7930 (14)C6—H60.9500
P1—C11.8000 (14)C6—C71.388 (2)
P2—F21.6053 (10)C19—H190.9500
P2—F61.6054 (10)C19—C201.382 (2)
P2—F41.6044 (10)C22—H220.9500
P2—F51.6058 (10)C22—C211.384 (2)
P2—F31.5990 (10)C13—H130.9500
P2—F11.5951 (11)C13—C141.386 (2)
O2—C41.2216 (17)C3—H3A0.9900
O1—H10.8400C3—H3B0.9900
O1—C41.3140 (17)C14—H140.9500
C5—C61.3919 (19)C14—C151.382 (2)
C5—C101.3977 (19)C16—H160.9500
C18—H180.9500C16—C151.388 (2)
C18—C171.3964 (19)C7—H70.9500
C18—C191.391 (2)C7—C81.384 (2)
C11—C121.396 (2)C8—H80.9500
C11—C161.397 (2)C8—C91.384 (2)
C17—C221.3975 (19)C10—H100.9500
C4—C31.496 (2)C10—C91.385 (2)
C1—H1A0.9900C21—H210.9500
C1—H1B0.9900C21—C201.390 (2)
C1—C21.5352 (19)C20—H200.9500
C12—H120.9500C9—H90.9500
C12—C131.386 (2)C15—H150.9500
C2—H2A0.9900
C5—P1—C11110.19 (6)C3—C2—C1110.82 (12)
C5—P1—C17110.68 (6)C3—C2—H2A109.5
C5—P1—C1107.80 (6)C3—C2—H2B109.5
C11—P1—C17107.83 (6)C5—C6—H6120.3
C11—P1—C1109.51 (6)C7—C6—C5119.50 (13)
C17—P1—C1110.83 (7)C7—C6—H6120.3
F2—P2—F689.92 (5)C18—C19—H19119.7
F2—P2—F589.94 (5)C20—C19—C18120.63 (14)
F6—P2—F589.47 (6)C20—C19—H19119.7
F4—P2—F2179.53 (6)C17—C22—H22120.3
F4—P2—F689.72 (5)C21—C22—C17119.49 (14)
F4—P2—F589.76 (5)C21—C22—H22120.3
F3—P2—F289.89 (5)C12—C13—H13120.0
F3—P2—F689.71 (6)C12—C13—C14119.99 (14)
F3—P2—F490.41 (5)C14—C13—H13120.0
F3—P2—F5179.17 (7)C4—C3—C2115.15 (12)
F1—P2—F289.99 (6)C4—C3—H3A108.5
F1—P2—F6179.28 (6)C4—C3—H3B108.5
F1—P2—F490.37 (6)C2—C3—H3A108.5
F1—P2—F589.82 (6)C2—C3—H3B108.5
F1—P2—F391.00 (6)H3A—C3—H3B107.5
C4—O1—H1109.5C13—C14—H14119.7
C6—C5—P1120.87 (11)C15—C14—C13120.53 (14)
C6—C5—C10120.30 (13)C15—C14—H14119.7
C10—C5—P1118.10 (11)C11—C16—H16120.4
C17—C18—H18120.4C15—C16—C11119.24 (15)
C19—C18—H18120.4C15—C16—H16120.4
C19—C18—C17119.17 (13)C6—C7—H7119.9
C12—C11—P1119.73 (11)C8—C7—C6120.18 (14)
C12—C11—C16120.37 (13)C8—C7—H7119.9
C16—C11—P1119.58 (11)C7—C8—H8119.8
C18—C17—P1121.95 (11)C7—C8—C9120.35 (14)
C18—C17—C22120.34 (13)C9—C8—H8119.8
C22—C17—P1117.45 (11)C5—C10—H10120.3
O2—C4—O1124.32 (13)C9—C10—C5119.44 (14)
O2—C4—C3123.95 (13)C9—C10—H10120.3
O1—C4—C3111.72 (12)C22—C21—H21119.8
P1—C1—H1A109.1C22—C21—C20120.45 (14)
P1—C1—H1B109.1C20—C21—H21119.8
H1A—C1—H1B107.8C19—C20—C21119.90 (14)
C2—C1—P1112.67 (9)C19—C20—H20120.1
C2—C1—H1A109.1C21—C20—H20120.1
C2—C1—H1B109.1C8—C9—C10120.20 (14)
C11—C12—H12120.2C8—C9—H9119.9
C13—C12—C11119.56 (14)C10—C9—H9119.9
C13—C12—H12120.2C14—C15—C16120.28 (15)
C1—C2—H2A109.5C14—C15—H15119.9
C1—C2—H2B109.5C16—C15—H15119.9
H2A—C2—H2B108.1
P1—C5—C6—C7168.72 (11)C17—P1—C11—C1292.86 (12)
P1—C5—C10—C9168.71 (12)C17—P1—C11—C1680.66 (13)
P1—C11—C12—C13172.55 (11)C17—P1—C1—C277.68 (11)
P1—C11—C16—C15172.12 (12)C17—C18—C19—C200.8 (2)
P1—C17—C22—C21173.20 (12)C17—C22—C21—C200.3 (2)
P1—C1—C2—C3179.11 (10)C1—P1—C5—C696.79 (12)
O2—C4—C3—C29.1 (2)C1—P1—C5—C696.79 (12)
O1—C4—C3—C2171.88 (13)C1—P1—C5—C1073.39 (13)
C5—P1—C11—C12146.24 (11)C1—P1—C11—C1227.83 (13)
C5—P1—C11—C1640.23 (13)C1—P1—C11—C1227.83 (13)
C5—P1—C17—C18131.04 (12)C1—P1—C11—C16158.65 (11)
C5—P1—C17—C2254.76 (13)C1—P1—C17—C1811.48 (14)
C5—P1—C1—C243.58 (12)C1—P1—C17—C1811.48 (14)
C5—C6—C7—C80.4 (2)C1—P1—C17—C22174.32 (11)
C5—C10—C9—C80.2 (2)C1—C2—C3—C477.18 (16)
C18—C17—C22—C211.1 (2)C12—C11—C16—C151.4 (2)
C18—C19—C20—C211.6 (2)C12—C13—C14—C151.8 (2)
C11—P1—C5—C6143.74 (11)C6—C5—C10—C91.5 (2)
C11—P1—C5—C1046.07 (13)C6—C7—C8—C91.7 (2)
C11—P1—C17—C18108.38 (12)C19—C18—C17—P1173.47 (11)
C11—P1—C17—C2265.82 (13)C19—C18—C17—C220.6 (2)
C11—P1—C1—C2163.47 (10)C22—C21—C20—C191.1 (2)
C11—C12—C13—C140.7 (2)C13—C14—C15—C161.4 (2)
C11—C16—C15—C140.2 (2)C16—C11—C12—C130.9 (2)
C17—P1—C5—C624.57 (14)C7—C8—C9—C101.5 (3)
C17—P1—C5—C10165.24 (11)C10—C5—C6—C71.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.802.6285 (15)171
C1—H1A···F20.992.483.455 (2)168
C1—H1A···F30.992.503.1656 (19)124
C22—H22···F4ii0.952.513.3924 (18)155
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.802.6285 (15)171
C1—H1A···F20.992.483.455 (2)168
C1—H1A···F30.992.503.1656 (19)124
C22—H22···F4ii0.952.513.3924 (18)155
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z.
 

Acknowledgements

The authors wish to acknowledge the Mississippi State University Department of Chemistry for funding.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoffman, R. W. (2001). Angew. Chem. Int. Ed. 40, 1411–1416.  CrossRef Google Scholar
First citationKanazawa, A., Ikeda, T. & Endo, T. (1993). J. Polym. Sci. A Polym. Chem. 31, 1467–1472.  CrossRef CAS Web of Science Google Scholar
First citationLi, S.-L. & Mak, T. C. W. (1996). J. Mol. Struct. 384, 135–148.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, S.-L. & Mak, T. C. W. (1997). Polyhedron, 16, 199–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationSabounchei, S. J., Salehzadeh, S., Hosseinzadeh, M., Bagherjeri, F. A. & Khavasi, H. R. (2011). Polyhedron, 30, 2486–2492.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarks, C. M. (1971). J. Am. Chem. Soc. 93, 195–199.  CrossRef CAS Web of Science Google Scholar
First citationWu, D.-Y., Li, F.-S., Xia, J.-Y., Mao, N.-W. & Yao, H.-L. (2007). Acta Cryst. E63, o4532.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1197-o1198
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds