research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-benzyl-4-(2,4-di­chloro­phenyl)-2-imino-1,2,5,6,7,8,9,10-octa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 October 2014; accepted 20 October 2014; online 31 October 2014)

In the title compound, C25H23Cl2N3, the cyclo­octene ring adopts a twist chair–chair conformation. The dihedral angles between the central pyridine ring (r.m.s. deviation = 0.013 Å) and the pendant chloro­benzene and benzyl rings are 78.07 (11) and 87.47 (12)°, respectively. No directional inter­actions could be identified in the crystal and the packing is governed by van der Waals inter­actions.

1. Chemical context

Synthetic and naturally occurring pyridine derivatives have a broad range of biological activities (Thorat et al., 2013[Thorat, S. A., Kang, D. W., Ryu, H. C., Chul, , Kim, H. S., Kim, H. S., Ann, J., Ha, T., Kim, S. E., Son, K., Choi, S., Blumberg, P. M., Frank, R., Bahrenberg, G., Schiene, K., Christoph, T. & Lee, J. (2013). Eur. J. Med. Chem. 64, 589-602.]), including anti­cancer and anti­microbial (Abdel-Megeed et al., 2012[Abdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252-2258.]) and anti­coagulant (de Candia et al., 2013[Candia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696-8711.]) properties. They also have numerous applications in medicinal chemistry (Passannanti et al., 1998[Cirrincione, G., Passannanti, A., Diana, P., Barraja, P., Mingoia, F. & Lauria, A. (1998). Heterocycles, 48, 1229-1235.]). The naturally occurring B6-vitamins pyridoxine, pyrodoxal, pyridoxamine and codeca­rbaxylase contain a pyridine nucleus (Shankaraiah et al., 2010[Shankaraiah, G. K., Vishnu, T. K. & Bhaskar, S. D. (2010). Pharm. Res. 2, 187-191.]). The study of the properties and the formation of imines is of great interest due to the role they play in several important chemical and biological processes (Larkin, 1990[Larkin, D. R. (1990). J. Org. Chem. 55, 1563-1568.]). Imines and their complexes have a variety of applications in biological, clinical and analytical fields (Singh et al., 1975[Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958-959.]; Patel et al., 1999[Patel, P. R., Thaker, B. T. & Zele, S. (1999). Indian J. Chem. Section A, 38, 563-567.]). Many pyridine-2-one and 3-cyano-2-imino pyridine derivatives exhibit anti­proliferative activity (McNamara & Cook, 1987[McNamara, D. J. & Cook, P. D. (1987). J. Med. Chem. 30, 340-347.]; Abadi et al.,1998[Abadi, H. & Al-Khamees, H. A. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 319-324.]). As part of our ongoing studies of substituted pyridine systems (Vishnupriya et al., 2014a[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656.],b[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o872.]), we now describe herein the synthesis and crystal structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The cyclo­octane ring adopts a twisted chair–chair conformation. Steric hindrance rotates the phenyl (C13–C18) and aromatic (C31–C36) rings out of the plane of the central pyridine ring by 87.47 (12) and 78.07 (11)°, respectively. The imino group is nearly coplanar with the pyridine ring as indicated by the torsion angle N1—C1—N3—C5 = −179.8 (2)°. The C—C and C—N bond lengths [C1—C2 = 1.453 (3), C4—C3 = 1.416 (3), C5—N3 = 1.376 (2) and C1—N3 = 1.398 (3) Å] are shorter than the standard C—C and C—N bond lengths (1.54 and 1.47 Å, respectively), while the C=C bond lengths [C4=C5 = 1.374 (3) and C2=C3 = 1.367 (3) Å] are longer than the standard C=C bond (1.34 Å). This shows that there is a homo-conjugation effect on the pyridine ring. The C38—C2 (Csp2—Csp) single bond [1.432 (3) Å] tends towards an aromatic bond length rather than a σ bond length (1.50 Å), presumably due to conjugation.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids and the atom-numbering scheme.

3. Supra­molecular features

No short directional contacts are observed in the crystal structure of (I)[link] and the packing is governed by van der Waals inter­actions[link].

[Figure 2]
Figure 2
Partial packing diagram of the title compound. For clarity, H atoms are not shown.

4. Database survey

Similar structures reported in the literature are 2-meth­oxy-4-(2-meth­oxy­phen­yl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile (Vishnupriya et al., 2014a[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656.]), 4-(2-fluoro­phen­yl)-2-meth­oxy-5,6,7,8,9,10-hexa­hydro­cycloοcta[b]pyridine-3-carbo­nitrile (Vishnupriya et al., 2014b[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o872.]) and 1-benzyl-4-(4-chloro­phen­yl)-2-imino-1,2,5,6,7,8,9,10-octa­hydro­cyclo­octa[b]pyridine-3-carbo­nitrile (Nagalakshmi et al., 2014[Nagalakshmi, R. A., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, 167-169.]). In the structure of (I) reported here, the d-planar conformation of the pyridine ring is similar to those found in related structures (Vishnupriya et al., 2014a[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656.],b[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o872.]). There are no significant intra­molecular inter­actions or inter­molecular C—H⋯N inter­actions, as in the case of the related structures (Vishnupriya et al., 2014a[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656.],b[Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o872.]). In the title compound, the bond lengths in the central pyridine ring span the range 1.367 (3)–1.453 (3) Å, which compares well with the range (1.369–1.447 Å) observed in a similar structure (Nagalakshmi et al., 2014[Nagalakshmi, R. A., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, 167-169.]), but these bonds are systematically longer in the title compound, due to the substitution by Cl atoms in the aromatic ring.

5. Synthesis and crystallization

A mixture of cyclo­octa­none (1 mmol), 2,4 dicholoro­benzaldehyde (1 mmol) and malono­nitrile (1 mmol) was taken in ethanol (10 ml) to which pTSA (p-toluene­sulfonic acid) (0.5 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. After completion of the reaction (TLC), the reaction mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using a petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to afford pure product. The product was recrystallized from ethyl acetate solution, affording colourless blocks. Melting point: 407 K, yield: 65%.

6. Refinement

C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 (aromatic CH) or 0.97 Å (methyl­ene CH2). Imine atom H1 was found in a difference map and refined freely, with the N—H distance restrained to 0.84 (2) Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(C) for CH and CH2 groups, while the Uiso factor for H1 was refined. Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C25H23Cl2N3
Mr 436.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 13.0297 (6), 8.5901 (3), 19.7449 (8)
β (°) 98.337 (1)
V3) 2186.62 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.21 × 0.19 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.967, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 24005, 4762, 3607
Rint 0.021
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.05
No. of reflections 4762
No. of parameters 275
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.55
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2014/6 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Synthetic and naturally occurring pyridine derivatives have a broad range of biological activities (Thorat et al., 2013), including anti­cancer and anti­microbial (Abdel-Megeed et al., 2012) and anti­coagulant (de Candia et al., 2013) properties. Pyridine derivatives have numerous applications in medicinal chemistry (Passannanti et al., 1998). The naturally occurring B6-vitamins pyridoxine, pyrodoxal, pyridoxamine and codecarbaxylase contain a pyridine nucleus (Shankaraiah et al. ,2010). The study of the properties and the formation of imines has great inter­est due to its proceeding in several important chemical and biological processes (Larkin, 1990). Imines and their complexes have a variety of applications in biological, clinical and analytical fields (Singh et al., 1975; Patel et al., 1999). Many pyridine-2-one and 3-cyano-2-imino pyridine derivatives exhibit anti­proliferative activity (McNamara & Cook, 1987; Abadi et al.,1998). As part of our ongoing studies of substituted pyridine systems (Vishnupriya et al., 2014a,b), we now describe the synthesis and crystal structure of the title compound, (I).

Structural commentary top

The molecular structure of (I) is shown in Fig. 1. The cyclo­octane ring adopts a twisted chair–chair conformation. Steric hindrance rotates the phenyl (C13–C18) and aromatic (C31–C36) rings out of the plane of the central pyridine ring by 87.47 (12) and 78.07 (11)°, respectively. The imino group is nearly coplanar with the pyridine ring as indicated by the torsion angle N1—C1—N3—C5 = -179.8 (2)°. The C—C and C—N bond lengths [C1—C2 = 1.453 (3), C4—C3 = 1.416 (3), C5—N3 = 1.376 (2) and C1—N3 = 1.398 (3) Å] are shorter than the standard C—C and C—N bond lengths (1.54 and 1.47 Å, respectively). On the contrary, the CC bond lengths [C4C5 = 1.374 (3) and C2C3 = 1.367 (3) Å] are longer than the standard CC bond (1.34 Å). This shows that there is a homo-conjugation effect on the pyridine ring. The C38—C2 (Csp2—Csp) single bond [1.432 (3) Å] tends towards an aromatic bond length rather than a σ bond length (~1.50 Å), presumably due to conjugation.

Supra­molecular features top

No short directional contacts are observed in the crystal structure of (I) and the packing is governed by van der Waals inter­actions.

Database survey top

\ Similar structures reported in the literature are 2-meth­oxy-4-(2-meth­oxy­phenyl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]\ pyridine-3-carbo­nitrile (Vishnupriya et al., 2014a), 4-(2-fluoro­phenyl)-2-meth­oxy-5,6,7,8,9,10-hexa­hydro­cycloοcta­[b]\ pyridine-3-carbo­nitrile (Vishnupriya et al., 2014b) and 1-benzyl-4-(4-chloro­phenyl)-2-imino-1,2,5,6,7,8,9,10-\ o­cta­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile (Nagalakshmi et al., 2014). In the structure reported here, the d-planar conformation of the pyridine ring is similar to those found in related structures (Vishnupriya et al., 2014a,b). There are no significant intra­molecular inter­actions or inter­molecular C—H···N inter­actions, as in the case of the related structures (Vishnupriya et al., 2014a,b). In the title compound, the bond lengths in the central pyridine ring span the range [1.367 (3)–1.453 (3) Å], which compares well with the ranges (1.369–1.447 Å) observed in a similar structure (Nagalakshmi et al., 2014), but these bonds are systematically longer in the title compound, due to the substitution by Cl atoms in the aromatic ring.

Synthesis and crystallization top

A mixture of cyclo­octa­none (1 mmol), 2,4 dicholorobenzaldehyde (1 mmol) and malono­nitrile (1 mmol) were taken in ethanol (10 ml) to which pTSA (p-toluene­sulfonic acid) (0.5 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. After completion of the reaction (TLC), the reaction mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using a petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to afford pure product. The product was recrystallized from ethyl acetate solution, affording colourless blocks. Melting point: 407 K, yield : 65%.

Refinement top

C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 (aromatic CH) or 0.97 Å (methyl­ene CH2). Imine atom H1 was found in a difference map and refined freely, with the N—H distance restrained to 0.84 (2) Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(C) for CH and CH2 groups, while the Uiso factor for H1 was refined. Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For related literature, see: Abadi & Al-Khamees (1998); Abdel-Megeed, Badr, Azaam & El-Hiti (2012); Candia et al. (2013); Larkin (1990); McNamara & Cook (1987); Nagalakshmi et al. (2014); Passannanti et al. (1998); Patel et al. (1999); Shankaraiah et al. (2010); Singh et al. (1975); Thorat et al. (2013); Vishnupriya et al. (2014a, 2014b).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2008).

Figures top
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Partial packing diagram of the title compound. For clarity, H atoms are not shown.
1-Benzyl-4-(2,4-dichlorophenyl)-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carbonitrile top
Crystal data top
C25H23Cl2N3F(000) = 912
Mr = 436.36Dx = 1.326 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.0297 (6) ÅCell parameters from 2000 reflections
b = 8.5901 (3) Åθ = 2–31°
c = 19.7449 (8) ŵ = 0.31 mm1
β = 98.337 (1)°T = 293 K
V = 2186.62 (15) Å3Block, colourless
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3607 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
ω and ϕ scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1616
Tmin = 0.967, Tmax = 0.974k = 1010
24005 measured reflectionsl = 2525
4762 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0654P)2 + 1.5156P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4762 reflectionsΔρmax = 0.65 e Å3
275 parametersΔρmin = 0.55 e Å3
Crystal data top
C25H23Cl2N3V = 2186.62 (15) Å3
Mr = 436.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.0297 (6) ŵ = 0.31 mm1
b = 8.5901 (3) ÅT = 293 K
c = 19.7449 (8) Å0.21 × 0.19 × 0.18 mm
β = 98.337 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
4762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3607 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.021
24005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.65 e Å3
4762 reflectionsΔρmin = 0.55 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20063 (16)0.4628 (2)0.12039 (10)0.0359 (4)
C20.18748 (15)0.4805 (2)0.04645 (10)0.0330 (4)
C30.24407 (15)0.3969 (2)0.00591 (9)0.0312 (4)
C40.31948 (15)0.2887 (2)0.03557 (9)0.0321 (4)
C50.33572 (15)0.2735 (2)0.10560 (9)0.0307 (4)
C60.41621 (16)0.1647 (3)0.14117 (10)0.0378 (5)
H6A0.44280.20770.18570.045*
H6B0.47350.15910.11490.045*
C70.3769 (2)0.0005 (3)0.15108 (12)0.0494 (6)
H7A0.42570.05180.18570.059*
H7B0.31130.00690.16870.059*
C80.3611 (2)0.1035 (3)0.08746 (14)0.0609 (7)
H8A0.42640.10910.06940.073*
H8B0.34490.20780.10150.073*
C90.2775 (2)0.0542 (3)0.02966 (14)0.0605 (7)
H9A0.24130.14680.01100.073*
H9B0.22760.01000.04890.073*
C100.3141 (2)0.0348 (3)0.02886 (12)0.0520 (6)
H10A0.25400.06040.06200.062*
H10B0.35790.03350.05140.062*
C110.37366 (17)0.1839 (3)0.00902 (10)0.0399 (5)
H11A0.44170.15750.01510.048*
H11B0.38350.23980.05030.048*
C120.29562 (17)0.3405 (3)0.22118 (9)0.0398 (5)
H12A0.31440.23350.23270.048*
H12B0.23140.36280.23870.048*
C130.37932 (18)0.4462 (3)0.25617 (11)0.0414 (5)
C140.3998 (2)0.4435 (3)0.32736 (12)0.0560 (7)
H140.36290.37570.35160.067*
C150.4736 (3)0.5392 (4)0.36243 (16)0.0791 (10)
H150.48580.53690.41000.095*
C160.5294 (3)0.6381 (4)0.3273 (2)0.0870 (11)
H160.57930.70300.35100.104*
C170.5117 (3)0.6416 (4)0.25697 (19)0.0786 (9)
H170.54980.70830.23310.094*
C180.4366 (2)0.5451 (3)0.22166 (14)0.0576 (7)
H180.42490.54750.17410.069*
C310.22607 (16)0.4217 (3)0.06963 (9)0.0358 (4)
C320.29212 (17)0.5111 (3)0.10249 (11)0.0397 (5)
C330.27671 (19)0.5318 (3)0.17275 (11)0.0485 (6)
H330.32210.59220.19390.058*
C340.19288 (19)0.4609 (4)0.21027 (11)0.0534 (6)
C350.1247 (2)0.3726 (4)0.18008 (12)0.0650 (8)
H350.06770.32650.20640.078*
C360.14182 (18)0.3531 (4)0.10991 (11)0.0547 (7)
H360.09600.29270.08920.066*
C380.11331 (17)0.5948 (3)0.01833 (11)0.0395 (5)
N10.15090 (18)0.5350 (3)0.16254 (10)0.0566 (6)
N20.05483 (17)0.6890 (3)0.00069 (12)0.0586 (6)
N30.27777 (13)0.3564 (2)0.14615 (8)0.0333 (4)
Cl10.39949 (6)0.59550 (9)0.05516 (3)0.0674 (2)
Cl20.17481 (6)0.48449 (13)0.29858 (3)0.0841 (3)
H10.109 (2)0.598 (3)0.1392 (14)0.097 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (11)0.0406 (11)0.0286 (9)0.0020 (9)0.0026 (8)0.0034 (8)
C20.0313 (10)0.0384 (11)0.0284 (9)0.0006 (8)0.0010 (7)0.0008 (8)
C30.0303 (9)0.0384 (11)0.0241 (9)0.0070 (8)0.0012 (7)0.0010 (8)
C40.0318 (10)0.0381 (11)0.0270 (9)0.0027 (8)0.0064 (7)0.0003 (8)
C50.0307 (9)0.0338 (10)0.0275 (9)0.0021 (8)0.0036 (7)0.0001 (8)
C60.0373 (11)0.0450 (12)0.0305 (10)0.0037 (9)0.0026 (8)0.0048 (9)
C70.0635 (15)0.0448 (13)0.0420 (12)0.0054 (11)0.0147 (11)0.0117 (10)
C80.089 (2)0.0399 (13)0.0577 (15)0.0023 (13)0.0241 (14)0.0028 (12)
C90.0794 (19)0.0506 (15)0.0532 (15)0.0222 (14)0.0155 (14)0.0092 (12)
C100.0692 (16)0.0524 (14)0.0359 (11)0.0017 (12)0.0128 (11)0.0112 (10)
C110.0470 (12)0.0480 (12)0.0274 (9)0.0036 (10)0.0144 (8)0.0022 (9)
C120.0493 (12)0.0488 (13)0.0213 (9)0.0015 (10)0.0049 (8)0.0001 (8)
C130.0469 (12)0.0432 (12)0.0324 (10)0.0105 (10)0.0001 (9)0.0052 (9)
C140.0644 (16)0.0678 (17)0.0335 (11)0.0078 (13)0.0010 (11)0.0101 (11)
C150.084 (2)0.102 (3)0.0453 (15)0.001 (2)0.0122 (15)0.0267 (16)
C160.081 (2)0.086 (2)0.085 (2)0.0124 (19)0.0171 (19)0.037 (2)
C170.079 (2)0.0652 (19)0.089 (2)0.0210 (17)0.0023 (18)0.0037 (17)
C180.0681 (17)0.0525 (15)0.0493 (14)0.0066 (13)0.0015 (12)0.0008 (12)
C310.0341 (10)0.0476 (12)0.0249 (9)0.0008 (9)0.0018 (8)0.0027 (8)
C320.0392 (11)0.0461 (12)0.0322 (10)0.0047 (9)0.0001 (8)0.0042 (9)
C330.0483 (13)0.0616 (15)0.0370 (11)0.0005 (11)0.0106 (10)0.0126 (11)
C340.0502 (14)0.0861 (19)0.0228 (10)0.0064 (13)0.0016 (9)0.0038 (11)
C350.0443 (13)0.116 (3)0.0318 (12)0.0175 (15)0.0042 (10)0.0060 (14)
C360.0392 (12)0.092 (2)0.0319 (11)0.0169 (13)0.0006 (9)0.0004 (12)
C380.0366 (11)0.0438 (12)0.0369 (11)0.0021 (10)0.0010 (9)0.0026 (9)
N10.0649 (14)0.0694 (15)0.0354 (10)0.0265 (12)0.0070 (9)0.0081 (10)
N20.0502 (12)0.0571 (13)0.0659 (14)0.0074 (11)0.0001 (10)0.0140 (11)
N30.0371 (9)0.0409 (9)0.0213 (7)0.0015 (7)0.0023 (6)0.0011 (7)
Cl10.0692 (4)0.0768 (5)0.0511 (4)0.0388 (4)0.0089 (3)0.0102 (3)
Cl20.0784 (5)0.1477 (8)0.0242 (3)0.0001 (5)0.0007 (3)0.0090 (4)
Geometric parameters (Å, º) top
C1—N11.286 (3)C12—N31.472 (2)
C1—N31.398 (3)C12—C131.507 (3)
C1—C21.453 (3)C12—H12A0.9700
C2—C31.367 (3)C12—H12B0.9700
C2—C381.432 (3)C13—C181.375 (4)
C3—C41.416 (3)C13—C141.392 (3)
C3—C311.491 (2)C14—C151.374 (4)
C4—C51.374 (3)C14—H140.9300
C4—C111.505 (3)C15—C161.371 (5)
C5—N31.376 (2)C15—H150.9300
C5—C61.501 (3)C16—C171.374 (5)
C6—C71.531 (3)C16—H160.9300
C6—H6A0.9700C17—C181.390 (4)
C6—H6B0.9700C17—H170.9300
C7—C81.526 (4)C18—H180.9300
C7—H7A0.9700C31—C321.383 (3)
C7—H7B0.9700C31—C361.390 (3)
C8—C91.519 (4)C32—C331.384 (3)
C8—H8A0.9700C32—Cl11.725 (2)
C8—H8B0.9700C33—C341.370 (4)
C9—C101.519 (3)C33—H330.9300
C9—H9A0.9700C34—C351.369 (4)
C9—H9B0.9700C34—Cl21.737 (2)
C10—C111.519 (3)C35—C361.381 (3)
C10—H10A0.9700C35—H350.9300
C10—H10B0.9700C36—H360.9300
C11—H11A0.9700C38—N21.138 (3)
C11—H11B0.9700N1—H10.8599 (10)
N1—C1—N3118.88 (19)C10—C11—H11B109.0
N1—C1—C2127.1 (2)H11A—C11—H11B107.8
N3—C1—C2114.05 (17)N3—C12—C13113.81 (18)
C3—C2—C38121.57 (18)N3—C12—H12A108.8
C3—C2—C1122.56 (18)C13—C12—H12A108.8
C38—C2—C1115.84 (18)N3—C12—H12B108.8
C2—C3—C4120.20 (17)C13—C12—H12B108.8
C2—C3—C31119.39 (18)H12A—C12—H12B107.7
C4—C3—C31120.41 (17)C18—C13—C14118.2 (2)
C5—C4—C3118.32 (17)C18—C13—C12123.6 (2)
C5—C4—C11121.01 (18)C14—C13—C12118.2 (2)
C3—C4—C11120.47 (17)C15—C14—C13121.1 (3)
C4—C5—N3121.26 (18)C15—C14—H14119.5
C4—C5—C6121.66 (17)C13—C14—H14119.5
N3—C5—C6117.07 (16)C16—C15—C14120.0 (3)
C5—C6—C7114.38 (18)C16—C15—H15120.0
C5—C6—H6A108.7C14—C15—H15120.0
C7—C6—H6A108.7C15—C16—C17120.1 (3)
C5—C6—H6B108.7C15—C16—H16120.0
C7—C6—H6B108.7C17—C16—H16120.0
H6A—C6—H6B107.6C16—C17—C18119.8 (3)
C8—C7—C6116.11 (19)C16—C17—H17120.1
C8—C7—H7A108.3C18—C17—H17120.1
C6—C7—H7A108.3C13—C18—C17120.9 (3)
C8—C7—H7B108.3C13—C18—H18119.6
C6—C7—H7B108.3C17—C18—H18119.6
H7A—C7—H7B107.4C32—C31—C36117.42 (19)
C9—C8—C7116.9 (2)C32—C31—C3122.01 (18)
C9—C8—H8A108.1C36—C31—C3120.56 (18)
C7—C8—H8A108.1C31—C32—C33122.1 (2)
C9—C8—H8B108.1C31—C32—Cl1119.34 (16)
C7—C8—H8B108.1C33—C32—Cl1118.51 (17)
H8A—C8—H8B107.3C34—C33—C32118.3 (2)
C10—C9—C8116.2 (2)C34—C33—H33120.9
C10—C9—H9A108.2C32—C33—H33120.9
C8—C9—H9A108.2C35—C34—C33121.8 (2)
C10—C9—H9B108.2C35—C34—Cl2119.97 (19)
C8—C9—H9B108.2C33—C34—Cl2118.19 (19)
H9A—C9—H9B107.4C34—C35—C36118.9 (2)
C9—C10—C11115.67 (19)C34—C35—H35120.6
C9—C10—H10A108.4C36—C35—H35120.6
C11—C10—H10A108.4C35—C36—C31121.5 (2)
C9—C10—H10B108.4C35—C36—H36119.3
C11—C10—H10B108.4C31—C36—H36119.3
H10A—C10—H10B107.4N2—C38—C2176.4 (2)
C4—C11—C10112.94 (18)C1—N1—H1108 (2)
C4—C11—H11A109.0C5—N3—C1123.54 (16)
C10—C11—H11A109.0C5—N3—C12121.18 (17)
C4—C11—H11B109.0C1—N3—C12115.27 (16)
N1—C1—C2—C3179.6 (2)C15—C16—C17—C180.4 (6)
N3—C1—C2—C31.6 (3)C14—C13—C18—C171.1 (4)
N1—C1—C2—C382.2 (3)C12—C13—C18—C17179.0 (3)
N3—C1—C2—C38176.61 (18)C16—C17—C18—C130.2 (5)
C38—C2—C3—C4177.73 (19)C2—C3—C31—C32101.6 (2)
C1—C2—C3—C40.4 (3)C4—C3—C31—C3278.0 (3)
C38—C2—C3—C311.9 (3)C2—C3—C31—C3679.2 (3)
C1—C2—C3—C31179.99 (19)C4—C3—C31—C36101.2 (3)
C2—C3—C4—C51.7 (3)C36—C31—C32—C330.5 (4)
C31—C3—C4—C5177.90 (18)C3—C31—C32—C33178.7 (2)
C2—C3—C4—C11173.25 (18)C36—C31—C32—Cl1178.61 (19)
C31—C3—C4—C117.1 (3)C3—C31—C32—Cl10.6 (3)
C3—C4—C5—N32.5 (3)C31—C32—C33—C340.1 (4)
C11—C4—C5—N3172.43 (18)Cl1—C32—C33—C34178.2 (2)
C3—C4—C5—C6178.29 (18)C32—C33—C34—C350.6 (4)
C11—C4—C5—C66.8 (3)C32—C33—C34—Cl2179.00 (19)
C4—C5—C6—C789.6 (2)C33—C34—C35—C360.8 (5)
N3—C5—C6—C789.7 (2)Cl2—C34—C35—C36178.7 (2)
C5—C6—C7—C875.3 (3)C34—C35—C36—C310.4 (5)
C6—C7—C8—C965.1 (3)C32—C31—C36—C350.3 (4)
C7—C8—C9—C1098.2 (3)C3—C31—C36—C35179.0 (3)
C8—C9—C10—C1157.6 (3)C4—C5—N3—C11.2 (3)
C5—C4—C11—C1088.3 (2)C6—C5—N3—C1179.53 (18)
C3—C4—C11—C1086.5 (2)C4—C5—N3—C12179.71 (19)
C9—C10—C11—C449.5 (3)C6—C5—N3—C121.1 (3)
N3—C12—C13—C182.0 (3)N1—C1—N3—C5179.8 (2)
N3—C12—C13—C14178.0 (2)C2—C1—N3—C50.8 (3)
C18—C13—C14—C151.4 (4)N1—C1—N3—C121.2 (3)
C12—C13—C14—C15178.7 (3)C2—C1—N3—C12177.74 (17)
C13—C14—C15—C160.8 (5)C13—C12—N3—C586.2 (2)
C14—C15—C16—C170.1 (6)C13—C12—N3—C192.4 (2)

Experimental details

Crystal data
Chemical formulaC25H23Cl2N3
Mr436.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.0297 (6), 8.5901 (3), 19.7449 (8)
β (°) 98.337 (1)
V3)2186.62 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
24005, 4762, 3607
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.05
No. of reflections4762
No. of parameters275
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.55

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR).

References

First citationAbadi, H. & Al-Khamees, H. A. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 319–324.  CrossRef CAS Google Scholar
First citationAbdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252–2258.  Web of Science CAS PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCandia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696–8711.  Web of Science PubMed Google Scholar
First citationCirrincione, G., Passannanti, A., Diana, P., Barraja, P., Mingoia, F. & Lauria, A. (1998). Heterocycles, 48, 1229–1235.  CrossRef Google Scholar
First citationLarkin, D. R. (1990). J. Org. Chem. 55, 1563–1568.  CrossRef CAS Web of Science Google Scholar
First citationMcNamara, D. J. & Cook, P. D. (1987). J. Med. Chem. 30, 340–347.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNagalakshmi, R. A., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, 167–169.  CSD CrossRef IUCr Journals Google Scholar
First citationPatel, P. R., Thaker, B. T. & Zele, S. (1999). Indian J. Chem. Section A, 38, 563–567.  Google Scholar
First citationShankaraiah, G. K., Vishnu, T. K. & Bhaskar, S. D. (2010). Pharm. Res. 2, 187–191.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorat, S. A., Kang, D. W., Ryu, H. C., Chul, , Kim, H. S., Kim, H. S., Ann, J., Ha, T., Kim, S. E., Son, K., Choi, S., Blumberg, P. M., Frank, R., Bahrenberg, G., Schiene, K., Christoph, T. & Lee, J. (2013). Eur. J. Med. Chem. 64, 589–602.  Google Scholar
First citationVishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationVishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o872.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds