organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1214-o1215

Crystal structure of ethyl (2Z)-2-cyano-3-[(3-methyl-1-phenyl-1H-pyrazol-5-yl)amino]­prop-2-enoate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 October 2014; accepted 25 October 2014; online 31 October 2014)

The title compound, C16H16N4O2, crystallizes with two mol­ecules in the asymmetric unit, one of which shows disorder of the acetate group over two sets of sites in a 0.799 (2):0.201 (2) ratio. The phenyl group has a similar but opposite sense of twist relative to the pyrazole ring in the two mol­ecules, as indicated by the syn N—N—Car—Car (ar = aromatic) torsion angles of 39.7 (2) and −36.9 (2)°. Each mol­ecule features an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, C—H⋯O and C—H⋯N inter­actions direct the packing into a layered structure parallel to (110).

1. Related literature

For the biological activities and industrial applications of acrylate compounds, see: Wang et al. (2003[Wang, Q., Sun, H., Cao, H., Cheng, M. & Huang, R. (2003). J. Agric. Food Chem. 51, 5030-5035.]); Dillingham et al. (1983[Dillingham, E. O., Lawrence, W. H., Autian, J. & Schmalz, G. (1983). J. Biomed. Mater. Res. 17, 945-957.]); Liu et al. (1999[Liu, H., Sha, Y., Tan, H., Yang, H. & Lai, L. (1999). Sc. China Ser. B-Chem. 42, 326-331.]); Hsiao et al. (2004[Hsiao, Y., Rivera, N. R., Rosner, T., Krska, S. W., Njolito, E., Wang, F., Sun, Y., Armstrong, J. D., Grabowski, E. J. J., Tillyer, R. D., Spindler, F. & Malan, C. (2004). J. Am. Chem. Soc. 126, 9918-9919.]). For chemical versatility of the acrylate moiety, see: Kang & Fang (2004[Kang, J. J. & Fang, S. B. (2004). Chin. Chem. Lett. 15, 87-89.]); Qiu et al. (2004[Qiu, T., Tang, L. M., Tuo, X. L. & Liu, D. S. (2004). Chin. Chem. Lett. 15, 931-934.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H16N4O2

  • Mr = 296.33

  • Triclinic, [P \overline 1]

  • a = 9.0656 (2) Å

  • b = 10.4085 (3) Å

  • c = 16.5551 (4) Å

  • α = 86.9930 (11)°

  • β = 81.567 (1)°

  • γ = 73.3900 (11)°

  • V = 1480.67 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 150 K

  • 0.20 × 0.12 × 0.07 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.87, Tmax = 0.95

  • 19446 measured reflections

  • 5749 independent reflections

  • 4534 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.05

  • 5749 reflections

  • 422 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯N2i 0.99 2.63 3.455 (2) 141
C16—H16C⋯O3ii 0.98 2.52 3.430 (3) 155
N3—H3A⋯O1 0.91 1.96 2.677 (4) 134
C10—H10C⋯O2iii 0.98 2.55 3.506 (2) 164
C11—H11⋯N8iv 0.95 2.37 3.306 (2) 168
N7—H7A⋯O3 0.91 2.00 2.7027 (17) 133
C24—H24⋯N4iv 0.95 2.68 3.555 (2) 153
C26—H26C⋯O4iii 0.98 2.55 3.523 (2) 172
C27—H27⋯N4iv 0.95 2.40 3.322 (2) 164
C31—H31A⋯N2v 0.99 2.57 3.366 (2) 138
C31—H31B⋯N6i 0.99 2.63 3.437 (2) 139
C32—H32C⋯O1 0.98 2.55 3.468 (3) 155
Symmetry codes: (i) x+1, y-1, z; (ii) x, y-1, z; (iii) x-1, y+1, z; (iv) -x+1, -y+1, -z; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Acrylate compounds have been receiving significant attention in the fields of materials and pharmaceutical sciences due to their physical and biological properties (Wang et al., 2003; Dillingham et al., 1983). For example, cyanoacrylates are widely used as inhibitors for the photosystem II (PSII) which inhibits the growth of weeds by disrupting photosynthetic electron transport (Liu et al., 1999). Among these cyanoacrylates, 3-(4-chlorobenzyl)amino-2-cyano-3-isobutylacrylate exhibits the highest inhibitory activity of the Hill reaction (Wang et al., 2003). Moreover, 3-aminoacrylates can also be hydrogenated into β-amino acid derivatives which have extensive application in life sciences as components of biologically active peptides and small-molecule pharmaceuticals (Hsiao et al., 2004). In addition, acrylates also represent an important class of organic compounds which are employed as important intermediates in organic synthesis due to the chemical versatility of the acrylate moiety and continue to attract considerable attention of chemists (Kang & Fang, 2004; Qiu et al., 2004). Based on such findings and following our on-going study of acrylate base pyrazoles we herein report the synthesis and crystal structure study of the title compound.

The title molecule crystallizes with two independent molecules in the asymmetric unit (Fig. 1). These differ primarily in the orientation of the phenyl ring with respect to the mean plane of the pyrazole ring. Thus the dihedral angle between the C1–C6 phenyl ring and the pyrazole ring built on N1 is 43.90 (6)° while that in the other molecule is 37.38 (6)°. The two molecules are nearly parallel as seen from the angle between the mean planes of the pyrazole cores of 2.5 (1)°. The molecular conformations are partly determined by intramolecular N3—H3a···O1 and N7—H7a···O3 hydrogen bonds (Table 2 and Fig. 1) while C—H···O and C—H···N interactions direct the packing into a layer structure (Fig. 3 and Table 2).

Related literature top

For the biological activities and industrial applications of acrylate compounds, see: Wang et al. (2003); Dillingham et al. (1983); Liu et al. (1999); Hsiao et al. (2004). For chemical versatility of the acrylate moiety, see: Kang & Fang (2004); Qiu et al. (2004).

Experimental top

A mixture of 3-methyl-1-phenyl-1H-pyrazol-5-amine 1.73 g (0.01 mol) and ethyl (2Z)-2-cyano-3-ethoxyacrylate 1.69 g (0.01 mol) in absolute ethanol (15 mL) was heated under reflux and monitored by TLC. On completion after 3 h, the reaction mixture was allowed to cool to ambient temperature. Solid yellow product was deposited, collected and dried under vacuum. Colourless crystals suitable for X-ray diffraction were obtained by recrystallisation of the product from ethanol. M.p. 448–450 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The major portion of the side chain in molecule 1 is disordered over two reasonably resolved sites in a 4:1 ratio. The two components of the disorder were refined subject to restraints that their geometries be comparable to one another and to that of the corresponding ordered portion of molecule 2.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Perspective view of the asymmetric unit with 50% probability ellipsoids and intramolecular N—H···O hydrogen bonds shown as dotted lines. Only the major portion of the disorder in molecule 1 is shown.

Packing viewed towards the [110] plane with intramolecular N—H···O hydrogen bonds shown as blue dotted lines and intermolecular C—H···O and C—H···N interactions as red and black dotted lines, respectively.

Packing showing the layer structure with intramolecular N—H···O hydrogen bonds shown as blue dotted lines and intermolecular C—H···O and C—H···N interactions as red and black dotted lines, respectively.
Ethyl (2Z)-2-cyano-3-[(3-methyl-1-phenyl-1H-pyrazol-5-yl)amino]prop-2-enoate top
Crystal data top
C16H16N4O2Z = 4
Mr = 296.33F(000) = 624
Triclinic, P1Dx = 1.329 Mg m3
a = 9.0656 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.4085 (3) ÅCell parameters from 9947 reflections
c = 16.5551 (4) Åθ = 2.7–72.2°
α = 86.9930 (11)°µ = 0.74 mm1
β = 81.567 (1)°T = 150 K
γ = 73.3900 (11)°Column, colourless
V = 1480.67 (7) Å30.20 × 0.12 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5749 independent reflections
Radiation source: INCOATEC IµS micro–focus source4534 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 2.7°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1112
Tmin = 0.87, Tmax = 0.95l = 2020
19446 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.4804P]
where P = (Fo2 + 2Fc2)/3
5749 reflections(Δ/σ)max < 0.001
422 parametersΔρmax = 0.23 e Å3
8 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H16N4O2γ = 73.3900 (11)°
Mr = 296.33V = 1480.67 (7) Å3
Triclinic, P1Z = 4
a = 9.0656 (2) ÅCu Kα radiation
b = 10.4085 (3) ŵ = 0.74 mm1
c = 16.5551 (4) ÅT = 150 K
α = 86.9930 (11)°0.20 × 0.12 × 0.07 mm
β = 81.567 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5749 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4534 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.95Rint = 0.033
19446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0428 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
5749 reflectionsΔρmin = 0.22 e Å3
422 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The major portion of the side chain in molecule 1 is disordered over two reasonably resolved sites in a 4:1 ratio. The two components of the disorder were refined subject to restraints that their geometries be comparable to one another and to that of the corresponding ordered portion of molecule 2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6238 (3)0.3465 (3)0.28680 (16)0.0306 (5)0.799 (2)
O20.77612 (17)0.15788 (14)0.22373 (8)0.0302 (3)0.799 (2)
C120.5735 (15)0.2907 (8)0.1590 (4)0.0254 (15)0.799 (2)
C130.6233 (9)0.1924 (11)0.0963 (6)0.0257 (11)0.799 (2)
C140.6579 (3)0.2695 (2)0.22932 (15)0.0253 (5)0.799 (2)
C150.8661 (3)0.1257 (2)0.29189 (13)0.0320 (5)0.799 (2)
H15A0.87490.20930.31400.038*0.799 (2)
H15B0.97220.06900.27270.038*0.799 (2)
C160.7883 (3)0.0527 (2)0.35783 (14)0.0395 (5)0.799 (2)
H16A0.84950.03150.40340.059*0.799 (2)
H16B0.68380.10960.37720.059*0.799 (2)
H16C0.78080.03050.33590.059*0.799 (2)
O1A0.5872 (14)0.3347 (15)0.2989 (8)0.0306 (5)0.201 (2)
O2A0.6939 (7)0.1234 (6)0.2493 (3)0.0302 (3)0.201 (2)
C12A0.562 (7)0.284 (3)0.164 (2)0.0254 (15)0.201 (2)
C13A0.601 (4)0.190 (5)0.098 (3)0.0257 (11)0.201 (2)
C14A0.6162 (13)0.2541 (11)0.2439 (7)0.0253 (5)0.201 (2)
C15A0.7531 (10)0.0775 (9)0.3268 (5)0.0320 (5)0.201 (2)
H15C0.76640.02000.33370.038*0.201 (2)
H15D0.67670.12370.37260.038*0.201 (2)
C16A0.9041 (11)0.1054 (10)0.3289 (6)0.0395 (5)0.201 (2)
H16D0.94130.07400.38120.059*0.201 (2)
H16E0.98020.05850.28410.059*0.201 (2)
H16F0.89060.20210.32300.059*0.201 (2)
N10.23080 (14)0.71344 (12)0.25293 (7)0.0246 (3)
N20.12067 (15)0.82212 (13)0.22657 (8)0.0272 (3)
N30.40300 (14)0.50200 (12)0.20513 (7)0.0250 (3)
H3A0.44910.48690.25130.030*
N40.65730 (18)0.11313 (15)0.04604 (9)0.0373 (3)
C10.25120 (18)0.70254 (15)0.33706 (9)0.0239 (3)
C20.12130 (19)0.73850 (17)0.39628 (10)0.0303 (4)
H20.02030.77070.38070.036*
C30.1403 (2)0.72708 (18)0.47835 (10)0.0354 (4)
H30.05180.75200.51890.042*
C40.2871 (2)0.67965 (17)0.50155 (10)0.0327 (4)
H40.29950.67080.55770.039*
C50.41506 (19)0.64536 (16)0.44225 (10)0.0306 (4)
H50.51590.61270.45810.037*
C60.39891 (18)0.65784 (16)0.35969 (9)0.0267 (3)
H60.48800.63600.31930.032*
C70.11687 (18)0.79590 (16)0.14906 (9)0.0273 (3)
C80.22272 (18)0.67160 (16)0.12446 (9)0.0272 (3)
H80.24180.63120.07240.033*
C90.29172 (17)0.62220 (15)0.19198 (9)0.0233 (3)
C100.0078 (2)0.89208 (17)0.09971 (10)0.0347 (4)
H10A0.07270.85220.08860.052*
H10B0.06540.91190.04800.052*
H10C0.04090.97520.13020.052*
C110.45577 (17)0.40469 (15)0.14963 (9)0.0251 (3)
H110.40900.41520.10110.030*
O30.66182 (14)0.82942 (11)0.26058 (7)0.0354 (3)
O40.79855 (13)0.63165 (11)0.20236 (7)0.0302 (3)
N50.23310 (15)1.18094 (13)0.23448 (8)0.0287 (3)
N60.12144 (16)1.28758 (13)0.20738 (8)0.0314 (3)
N70.42346 (15)0.97824 (13)0.18512 (8)0.0288 (3)
H7A0.48040.97110.22690.035*
N80.65249 (17)0.57821 (15)0.03377 (9)0.0369 (3)
C170.26044 (18)1.17753 (16)0.31716 (10)0.0288 (3)
C180.2914 (2)1.05786 (17)0.36117 (10)0.0363 (4)
H180.29320.97680.33670.044*
C190.3195 (2)1.05798 (19)0.44122 (11)0.0428 (4)
H190.34440.97580.47100.051*
C200.3119 (2)1.1756 (2)0.47826 (11)0.0428 (4)
H200.33081.17460.53330.051*
C210.2767 (2)1.29494 (19)0.43479 (11)0.0401 (4)
H210.26951.37650.46040.048*
C220.2519 (2)1.29647 (17)0.35414 (10)0.0332 (4)
H220.22921.37860.32430.040*
C230.12004 (19)1.26028 (17)0.12999 (10)0.0323 (4)
C240.2316 (2)1.13890 (17)0.10562 (10)0.0335 (4)
H240.25371.09850.05340.040*
C250.30107 (18)1.09202 (16)0.17336 (10)0.0288 (3)
C260.0069 (2)1.35258 (19)0.08089 (11)0.0432 (5)
H26A0.07091.30900.07040.065*
H26B0.06231.37380.02880.065*
H26C0.04481.43540.11120.065*
C270.46945 (18)0.87682 (16)0.13317 (9)0.0283 (3)
H270.41350.88190.08830.034*
C280.59263 (18)0.76496 (16)0.13985 (9)0.0270 (3)
C290.62621 (18)0.66170 (16)0.08068 (9)0.0282 (3)
C300.68579 (18)0.74789 (15)0.20653 (9)0.0269 (3)
C310.90350 (19)0.60631 (17)0.26367 (10)0.0316 (4)
H31A0.92300.69140.27630.038*
H31B1.00410.54370.24140.038*
C320.8387 (2)0.5478 (2)0.34076 (11)0.0393 (4)
H32A0.74750.61490.36740.059*
H32B0.91780.52140.37760.059*
H32C0.80840.46900.32770.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0297 (15)0.0298 (9)0.0285 (11)0.0012 (9)0.0088 (9)0.0081 (8)
O20.0315 (8)0.0278 (7)0.0259 (7)0.0031 (6)0.0076 (6)0.0044 (6)
C120.028 (2)0.0240 (12)0.0232 (12)0.0052 (15)0.0032 (16)0.0026 (10)
C130.023 (3)0.0275 (9)0.0246 (9)0.0021 (19)0.0060 (17)0.0007 (8)
C140.0240 (14)0.0240 (10)0.0253 (12)0.0021 (9)0.0034 (9)0.0024 (8)
C150.0330 (11)0.0298 (11)0.0294 (11)0.0014 (8)0.0125 (9)0.0019 (8)
C160.0514 (14)0.0342 (12)0.0337 (12)0.0091 (10)0.0145 (10)0.0000 (10)
O1A0.0297 (15)0.0298 (9)0.0285 (11)0.0012 (9)0.0088 (9)0.0081 (8)
O2A0.0315 (8)0.0278 (7)0.0259 (7)0.0031 (6)0.0076 (6)0.0044 (6)
C12A0.028 (2)0.0240 (12)0.0232 (12)0.0052 (15)0.0032 (16)0.0026 (10)
C13A0.023 (3)0.0275 (9)0.0246 (9)0.0021 (19)0.0060 (17)0.0007 (8)
C14A0.0240 (14)0.0240 (10)0.0253 (12)0.0021 (9)0.0034 (9)0.0024 (8)
C15A0.0330 (11)0.0298 (11)0.0294 (11)0.0014 (8)0.0125 (9)0.0019 (8)
C16A0.0514 (14)0.0342 (12)0.0337 (12)0.0091 (10)0.0145 (10)0.0000 (10)
N10.0252 (6)0.0237 (7)0.0227 (6)0.0019 (5)0.0060 (5)0.0011 (5)
N20.0274 (7)0.0245 (7)0.0265 (7)0.0005 (5)0.0070 (5)0.0001 (5)
N30.0262 (7)0.0241 (7)0.0218 (6)0.0009 (5)0.0062 (5)0.0011 (5)
N40.0416 (8)0.0345 (8)0.0298 (7)0.0021 (7)0.0089 (6)0.0074 (6)
C10.0289 (8)0.0211 (7)0.0223 (7)0.0064 (6)0.0060 (6)0.0021 (6)
C20.0259 (8)0.0344 (9)0.0294 (8)0.0050 (7)0.0054 (6)0.0062 (7)
C30.0353 (9)0.0422 (10)0.0268 (8)0.0090 (8)0.0007 (7)0.0092 (7)
C40.0429 (10)0.0343 (9)0.0232 (8)0.0120 (8)0.0085 (7)0.0020 (7)
C50.0322 (9)0.0306 (9)0.0304 (8)0.0071 (7)0.0122 (7)0.0007 (7)
C60.0262 (8)0.0279 (8)0.0258 (8)0.0070 (6)0.0036 (6)0.0021 (6)
C70.0274 (8)0.0273 (8)0.0256 (8)0.0049 (7)0.0051 (6)0.0009 (6)
C80.0290 (8)0.0283 (8)0.0218 (7)0.0030 (6)0.0052 (6)0.0010 (6)
C90.0229 (7)0.0232 (7)0.0227 (7)0.0046 (6)0.0039 (6)0.0004 (6)
C100.0349 (9)0.0357 (9)0.0281 (8)0.0016 (7)0.0102 (7)0.0005 (7)
C110.0270 (8)0.0264 (8)0.0210 (7)0.0055 (6)0.0046 (6)0.0011 (6)
O30.0399 (7)0.0287 (6)0.0363 (6)0.0034 (5)0.0105 (5)0.0090 (5)
O40.0302 (6)0.0273 (6)0.0307 (6)0.0009 (5)0.0093 (5)0.0044 (5)
N50.0287 (7)0.0239 (7)0.0306 (7)0.0016 (5)0.0060 (5)0.0008 (5)
N60.0325 (7)0.0247 (7)0.0331 (7)0.0001 (6)0.0080 (6)0.0003 (6)
N70.0300 (7)0.0263 (7)0.0283 (7)0.0026 (6)0.0080 (5)0.0025 (5)
N80.0409 (8)0.0357 (8)0.0303 (7)0.0013 (7)0.0104 (6)0.0047 (6)
C170.0250 (8)0.0306 (8)0.0287 (8)0.0045 (7)0.0034 (6)0.0006 (6)
C180.0410 (10)0.0279 (9)0.0351 (9)0.0033 (7)0.0024 (7)0.0005 (7)
C190.0467 (11)0.0398 (10)0.0340 (9)0.0011 (8)0.0051 (8)0.0067 (8)
C200.0415 (10)0.0523 (12)0.0329 (9)0.0070 (9)0.0116 (8)0.0010 (8)
C210.0440 (10)0.0416 (10)0.0382 (10)0.0143 (8)0.0106 (8)0.0048 (8)
C220.0355 (9)0.0308 (9)0.0346 (9)0.0103 (7)0.0073 (7)0.0005 (7)
C230.0318 (9)0.0285 (9)0.0337 (9)0.0030 (7)0.0061 (7)0.0017 (7)
C240.0353 (9)0.0306 (9)0.0323 (9)0.0043 (7)0.0051 (7)0.0050 (7)
C250.0279 (8)0.0241 (8)0.0327 (8)0.0043 (6)0.0045 (6)0.0016 (6)
C260.0433 (10)0.0405 (10)0.0377 (10)0.0051 (8)0.0126 (8)0.0026 (8)
C270.0293 (8)0.0293 (8)0.0258 (8)0.0067 (7)0.0054 (6)0.0011 (6)
C280.0273 (8)0.0258 (8)0.0267 (8)0.0058 (6)0.0039 (6)0.0000 (6)
C290.0249 (8)0.0289 (8)0.0273 (8)0.0015 (6)0.0061 (6)0.0029 (7)
C300.0277 (8)0.0219 (8)0.0296 (8)0.0059 (6)0.0011 (6)0.0021 (6)
C310.0281 (8)0.0347 (9)0.0327 (8)0.0063 (7)0.0111 (7)0.0016 (7)
C320.0380 (10)0.0470 (11)0.0352 (9)0.0134 (8)0.0106 (8)0.0031 (8)
Geometric parameters (Å, º) top
O1—C141.223 (3)C8—C91.366 (2)
O2—C141.333 (3)C8—H80.9500
O2—C151.457 (2)C10—H10A0.9800
C12—C111.370 (5)C10—H10B0.9800
C12—C131.428 (4)C10—H10C0.9800
C12—C141.458 (5)C11—H110.9500
C13—N41.149 (4)O3—C301.2186 (18)
C15—C161.503 (3)O4—C301.3396 (19)
C15—H15A0.9900O4—C311.4550 (18)
C15—H15B0.9900N5—C251.360 (2)
C16—H16A0.9800N5—N61.3772 (18)
C16—H16B0.9800N5—C171.423 (2)
C16—H16C0.9800N6—C231.329 (2)
O1A—C14A1.218 (13)N7—C271.329 (2)
O2A—C14A1.346 (12)N7—C251.400 (2)
O2A—C15A1.467 (9)N7—H7A0.9100
C12A—C111.379 (15)N8—C291.146 (2)
C12A—C13A1.442 (15)C17—C221.387 (2)
C12A—C14A1.473 (15)C17—C181.388 (2)
C13A—N41.157 (15)C18—C191.386 (2)
C15A—C16A1.484 (11)C18—H180.9500
C15A—H15C0.9900C19—C201.377 (3)
C15A—H15D0.9900C19—H190.9500
C16A—H16D0.9800C20—C211.382 (3)
C16A—H16E0.9800C20—H200.9500
C16A—H16F0.9800C21—C221.385 (2)
N1—C91.3648 (19)C21—H210.9500
N1—N21.3773 (17)C22—H220.9500
N1—C11.4261 (18)C23—C241.409 (2)
N2—C71.3331 (19)C23—C261.495 (2)
N3—C111.3382 (19)C24—C251.366 (2)
N3—C91.3945 (19)C24—H240.9500
N3—H3A0.9099C26—H26A0.9800
C1—C61.387 (2)C26—H26B0.9800
C1—C21.391 (2)C26—H26C0.9800
C2—C31.389 (2)C27—C281.376 (2)
C2—H20.9500C27—H270.9500
C3—C41.384 (2)C28—C291.429 (2)
C3—H30.9500C28—C301.460 (2)
C4—C51.380 (2)C31—C321.499 (2)
C4—H40.9500C31—H31A0.9900
C5—C61.391 (2)C31—H31B0.9900
C5—H50.9500C32—H32A0.9800
C6—H60.9500C32—H32B0.9800
C7—C81.411 (2)C32—H32C0.9800
C7—C101.494 (2)
C14—O2—C15117.05 (16)C7—C10—H10A109.5
C11—C12—C13119.8 (6)C7—C10—H10B109.5
C11—C12—C14122.0 (4)H10A—C10—H10B109.5
C13—C12—C14118.1 (6)C7—C10—H10C109.5
N4—C13—C12177.2 (9)H10A—C10—H10C109.5
O1—C14—O2124.0 (3)H10B—C10—H10C109.5
O1—C14—C12123.4 (3)N3—C11—C12123.6 (2)
O2—C14—C12112.7 (2)N3—C11—C12A123.0 (7)
O2—C15—C16110.05 (19)N3—C11—H11118.2
O2—C15—H15A109.7C12—C11—H11118.2
C16—C15—H15A109.7C30—O4—C31117.32 (12)
O2—C15—H15B109.7C25—N5—N6110.68 (13)
C16—C15—H15B109.7C25—N5—C17130.18 (13)
H15A—C15—H15B108.2N6—N5—C17119.14 (13)
C15—C16—H16A109.5C23—N6—N5104.99 (13)
C15—C16—H16B109.5C27—N7—C25121.93 (13)
H16A—C16—H16B109.5C27—N7—H7A115.7
C15—C16—H16C109.5C25—N7—H7A122.3
H16A—C16—H16C109.5C22—C17—C18120.14 (15)
H16B—C16—H16C109.5C22—C17—N5119.02 (15)
C14A—O2A—C15A116.5 (7)C18—C17—N5120.82 (15)
C11—C12A—C13A115 (3)C19—C18—C17119.25 (16)
C11—C12A—C14A120.2 (13)C19—C18—H18120.4
C13A—C12A—C14A125 (3)C17—C18—H18120.4
N4—C13A—C12A168 (4)C20—C19—C18120.91 (17)
O1A—C14A—O2A125.2 (13)C20—C19—H19119.5
O1A—C14A—C12A124.6 (14)C18—C19—H19119.5
O2A—C14A—C12A110.1 (11)C19—C20—C21119.51 (17)
O2A—C15A—C16A111.0 (8)C19—C20—H20120.2
O2A—C15A—H15C109.4C21—C20—H20120.2
C16A—C15A—H15C109.4C20—C21—C22120.45 (17)
O2A—C15A—H15D109.4C20—C21—H21119.8
C16A—C15A—H15D109.4C22—C21—H21119.8
H15C—C15A—H15D108.0C21—C22—C17119.69 (16)
C15A—C16A—H16D109.5C21—C22—H22120.2
C15A—C16A—H16E109.5C17—C22—H22120.2
H16D—C16A—H16E109.5N6—C23—C24111.52 (15)
C15A—C16A—H16F109.5N6—C23—C26120.31 (15)
H16D—C16A—H16F109.5C24—C23—C26128.16 (16)
H16E—C16A—H16F109.5C25—C24—C23104.98 (15)
C9—N1—N2110.60 (12)C25—C24—H24127.5
C9—N1—C1129.64 (12)C23—C24—H24127.5
N2—N1—C1119.23 (12)N5—C25—C24107.81 (14)
C7—N2—N1104.92 (12)N5—C25—N7121.23 (14)
C11—N3—C9122.93 (13)C24—C25—N7130.93 (15)
C11—N3—H3A115.4C23—C26—H26A109.5
C9—N3—H3A121.6C23—C26—H26B109.5
C6—C1—C2120.28 (14)H26A—C26—H26B109.5
C6—C1—N1120.43 (14)C23—C26—H26C109.5
C2—C1—N1119.29 (14)H26A—C26—H26C109.5
C3—C2—C1119.57 (15)H26B—C26—H26C109.5
C3—C2—H2120.2N7—C27—C28124.50 (14)
C1—C2—H2120.2N7—C27—H27117.8
C4—C3—C2120.55 (15)C28—C27—H27117.8
C4—C3—H3119.7C27—C28—C29118.43 (14)
C2—C3—H3119.7C27—C28—C30121.86 (14)
C5—C4—C3119.33 (15)C29—C28—C30119.69 (14)
C5—C4—H4120.3N8—C29—C28179.35 (19)
C3—C4—H4120.3O3—C30—O4123.93 (15)
C4—C5—C6121.09 (15)O3—C30—C28123.66 (14)
C4—C5—H5119.5O4—C30—C28112.41 (13)
C6—C5—H5119.5O4—C31—C32111.97 (14)
C1—C6—C5119.16 (15)O4—C31—H31A109.2
C1—C6—H6120.4C32—C31—H31A109.2
C5—C6—H6120.4O4—C31—H31B109.2
N2—C7—C8111.68 (13)C32—C31—H31B109.2
N2—C7—C10120.50 (14)H31A—C31—H31B107.9
C8—C7—C10127.81 (14)C31—C32—H32A109.5
C9—C8—C7104.81 (13)C31—C32—H32B109.5
C9—C8—H8127.6H32A—C32—H32B109.5
C7—C8—H8127.6C31—C32—H32C109.5
N1—C9—C8107.99 (13)H32A—C32—H32C109.5
N1—C9—N3120.92 (13)H32B—C32—H32C109.5
C8—C9—N3131.09 (14)
C15—O2—C14—C12178.7 (7)C13—C12—C11—N3179.5 (9)
C11—C12—C14—O14.9 (17)C14—C12—C11—N33.5 (17)
C13—C12—C14—O1179.1 (9)C13—C12—C11—C12A94 (10)
C11—C12—C14—O2174.8 (10)C14—C12—C11—C12A90 (9)
C13—C12—C14—O21.2 (15)C13A—C12A—C11—N3178 (4)
C14—O2—C15—C1684.3 (2)C14A—C12A—C11—N34 (8)
C11—C12A—C13A—N4128 (28)C13A—C12A—C11—C1285 (9)
C14A—C12A—C13A—N458 (33)C25—N5—N6—C231.57 (18)
C15A—O2A—C14A—O1A2.7 (15)C17—N5—N6—C23178.15 (14)
C15A—O2A—C14A—C12A179 (3)C25—N5—C17—C22143.45 (17)
C11—C12A—C14A—O1A8 (8)N6—N5—C17—C2236.9 (2)
C13A—C12A—C14A—O1A178 (4)C25—N5—C17—C1838.2 (3)
C11—C12A—C14A—O2A168 (4)N6—N5—C17—C18141.49 (16)
C13A—C12A—C14A—O2A6 (7)C22—C17—C18—C192.5 (3)
C14A—O2A—C15A—C16A83.1 (10)N5—C17—C18—C19179.13 (16)
C9—N1—N2—C70.50 (17)C17—C18—C19—C202.2 (3)
C1—N1—N2—C7172.92 (13)C18—C19—C20—C210.4 (3)
C12A—C13A—N4—C1315 (13)C19—C20—C21—C221.2 (3)
C9—N1—C1—C649.5 (2)C20—C21—C22—C170.9 (3)
N2—N1—C1—C6139.71 (15)C18—C17—C22—C211.0 (3)
C9—N1—C1—C2131.12 (17)N5—C17—C22—C21179.36 (15)
N2—N1—C1—C239.7 (2)N5—N6—C23—C241.36 (19)
C6—C1—C2—C31.2 (2)N5—N6—C23—C26177.54 (16)
N1—C1—C2—C3179.48 (15)N6—C23—C24—C250.7 (2)
C1—C2—C3—C40.3 (3)C26—C23—C24—C25178.12 (18)
C2—C3—C4—C50.9 (3)N6—N5—C25—C241.20 (19)
C3—C4—C5—C60.1 (3)C17—N5—C25—C24178.49 (16)
C2—C1—C6—C52.1 (2)N6—N5—C25—N7176.97 (14)
N1—C1—C6—C5178.57 (14)C17—N5—C25—N73.3 (3)
C4—C5—C6—C11.5 (2)C23—C24—C25—N50.33 (19)
N1—N2—C7—C80.09 (18)C23—C24—C25—N7177.59 (17)
N1—N2—C7—C10179.26 (14)C27—N7—C25—N5165.61 (15)
N2—C7—C8—C90.33 (19)C27—N7—C25—C2416.7 (3)
C10—C7—C8—C9178.75 (16)C25—N7—C27—C28177.38 (15)
N2—N1—C9—C80.72 (17)N7—C27—C28—C29178.21 (15)
C1—N1—C9—C8172.13 (15)N7—C27—C28—C300.0 (3)
N2—N1—C9—N3178.38 (13)C31—O4—C30—O33.8 (2)
C1—N1—C9—N37.0 (2)C31—O4—C30—C28177.29 (13)
C7—C8—C9—N10.62 (17)C27—C28—C30—O30.3 (3)
C7—C8—C9—N3178.36 (16)C29—C28—C30—O3177.87 (15)
C11—N3—C9—N1173.94 (14)C27—C28—C30—O4179.22 (14)
C11—N3—C9—C84.9 (3)C29—C28—C30—O41.0 (2)
C9—N3—C11—C12174.7 (9)C30—O4—C31—C3284.67 (18)
C9—N3—C11—C12A178 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···N2i0.992.633.455 (2)141
C16—H16C···O3ii0.982.523.430 (3)155
N3—H3A···O10.911.962.677 (4)134
C10—H10C···O2iii0.982.553.506 (2)164
C11—H11···N8iv0.952.373.306 (2)168
N7—H7A···O30.912.002.7027 (17)133
C24—H24···N4iv0.952.683.555 (2)153
C26—H26C···O4iii0.982.553.523 (2)172
C27—H27···N4iv0.952.403.322 (2)164
C31—H31A···N2v0.992.573.366 (2)138
C31—H31B···N6i0.992.633.437 (2)139
C32—H32C···O10.982.553.468 (3)155
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···N2i0.992.633.455 (2)141
C16—H16C···O3ii0.982.523.430 (3)155
N3—H3A···O10.911.962.677 (4)134
C10—H10C···O2iii0.982.553.506 (2)164
C11—H11···N8iv0.952.373.306 (2)168
N7—H7A···O30.912.002.7027 (17)133
C24—H24···N4iv0.952.683.555 (2)153
C26—H26C···O4iii0.982.553.523 (2)172
C27—H27···N4iv0.952.403.322 (2)164
C31—H31A···N2v0.992.573.366 (2)138
C31—H31B···N6i0.992.633.437 (2)139
C32—H32C···O10.982.553.468 (3)155
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged. In addition, TIE would like to thank Professor H. El-Kashef for his contribution to this study.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDillingham, E. O., Lawrence, W. H., Autian, J. & Schmalz, G. (1983). J. Biomed. Mater. Res. 17, 945–957.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHsiao, Y., Rivera, N. R., Rosner, T., Krska, S. W., Njolito, E., Wang, F., Sun, Y., Armstrong, J. D., Grabowski, E. J. J., Tillyer, R. D., Spindler, F. & Malan, C. (2004). J. Am. Chem. Soc. 126, 9918–9919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKang, J. J. & Fang, S. B. (2004). Chin. Chem. Lett. 15, 87–89.  CAS Google Scholar
First citationLiu, H., Sha, Y., Tan, H., Yang, H. & Lai, L. (1999). Sc. China Ser. B-Chem. 42, 326–331.  Web of Science CrossRef CAS Google Scholar
First citationQiu, T., Tang, L. M., Tuo, X. L. & Liu, D. S. (2004). Chin. Chem. Lett. 15, 931–934.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Sun, H., Cao, H., Cheng, M. & Huang, R. (2003). J. Agric. Food Chem. 51, 5030–5035.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1214-o1215
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds