organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1216-o1217

Crystal structure of (E)-N-{[3-methyl-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazol-4-yl]methyl­­idene}hydroxyl­amine

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 October 2014; accepted 25 October 2014; online 31 October 2014)

The title compound, C15H14N4O, crystallizes with two mol­ecules in the asymmetric unit with similar conformations (r.m.s. overlay fit for the 20 non-H atoms = 0.175 Å). In the first mol­ecule, the dihedral angles between the planes of the central pyrazole ring and the pendant phenyl and pyrrole rings are 42.69 (8) and 51.88 (6)°, respectively, with corresponding angles of 54.49 (7) and 49.61 (9)°, respectively, in the second mol­ecule. In the crystal, the two mol­ecules, together with their inversion-symmetry counterparts, are linked into tetra­mers by O—H⋯N hydrogen bonds. The tetra­mers form layers parallel to (211) through pairwise C—H⋯π inter­actions.

1. Related literature

For use of pyrazoles in synthesis of polyfunctionally substituted heterocycles, see: Elnagdi et al. (1987[Elnagdi, M. H., El-Moghayar, R. M. H. & Elgemeie, G. H. (1987). Adv. Heterocycl. Chem. 41, 319-376.]); Quiroga et al. (2007[Quiroga, J., Portilla, J., Serrano, H., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2007). Tetrahedron Lett. 48, 1987-1990.], 2008a[Quiroga, J., Portilla, J., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2008a). Tetrahedron Lett. 49, 6254-6256.],b[Quiroga, J., Portilla, J., Cruz, S., Abonía, R., Insuasty, B., Nogueras, M., Cobo, J. & Hursthouse, M. (2008b). Open Org. Chem. J. 2, 92-99.]); Aly et al. (1994[Aly, M. F., El-Nagger, G. M., El-Emary, T. I., Grigg, R., Metwally, S. A. & Sivagnanam, S. (1994). Tetrahedron, 50, 895-906.]). For pharmaceutical properties of pyrazole-containing compounds, see: Bazgir et al. (2008[Bazgir, A., Khanaposhtani, M. & Soorki, A. A. (2008). Bioorg. Med. Chem. Lett. 18, 5800-5803.]); Dias et al. (1994[Dias, L. R. S., Alvim, M. J., Freitas, A. C. C., Barreiro, E. J. & Miranda, A. L. P. (1994). Pharm. Acta Helv. 69, 163-169.]); El-Kashef et al. (2000[El-Kashef, H. S., el-Emary, T. I., Gasquet, M., Timon-David, P., Maldonado, J. & Vanelle, P. (2000). Pharmazie, 55, 572-576.]); El-Emary et al. (2002[El-Emary, T. I., Al-Muaikel, N. & Moustafa, O. S. (2002). Phosphorus Sulfur Silicon, 177, 195-210.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H14N4O

  • Mr = 266.30

  • Triclinic, [P \overline 1]

  • a = 9.1497 (2) Å

  • b = 12.3932 (3) Å

  • c = 12.7294 (3) Å

  • α = 87.4070 (11)°

  • β = 82.6740 (12)°

  • γ = 75.0190 (12)°

  • V = 1382.88 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 150 K

  • 0.22 × 0.15 × 0.05 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.92, Tmax = 0.97

  • 15570 measured reflections

  • 5370 independent reflections

  • 4088 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.04

  • 5370 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2i 0.84 1.95 2.7835 (19) 174
O1—H1A⋯N6ii 0.84 1.99 2.8277 (19) 172
C11—H11⋯Cgii 0.95 3.45 ? 170
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyrazoles are interested class of heterocyclic compounds for chemists and pharmacists due to their diverse synthetic and biological applications. Pyrazoles are excellent precursors for the synthesis of condensed polyfunctionally substituted heterocycles (Elnagdi et al., 1987; Quiroga et al., 2007; Quiroga et al., 2008a,b; Aly et al., 1994). Moreover, pyrazole containing compounds exhibit a broad spectrum of pharmaceutical properties such as anti-hyperglycemic and analgesic (Bazgir, et al., 2008), anti-parasitic (Dias et al., 1994) anti-microbial (El-Kashef et al., 2000) and anti-schistosomal activities (El-Emary et al., 2002). Following our on-going study in the synthesis and characterization of new bio-active heterocyclic compounds, we report here the crystal structure determination of the title compound.

There are two independent molecules of the title compound in the asymmetric unit which differ primarily in the orientation of the pendant phenyl and pyrrolyl rings. Thus the dihedral angles between these rings, respectively, and the central heterocyclic ring are 42.69 (8) and 51.88 (6)° in molecule 1 but 54.49 (7) and 49.61 (9)° in molecule 2. Molecules 1 at x, y, z and 1 - x, -1 - y, 2 - z and molecules 2 at x, -1 + y, z and 1 - x, -y, 2 - z are associated into a cyclic tetramer via O—H···N(2 or 6) hydrogen bonds (Table 1 and Fig. 2). These units form sheets approximately parallel to (100) (Fig. 2) in which the major inter-tetramer interaction within the sheet appears to be pairwise C—H···π (C11—H11···Cg: H···Cg = 3.45 Å, C—H···Cg = 170° (Cg is centroid of C1–C6 ring at 1 - x, -y, 2 - z).

Related literature top

For use of pyrazoles in synthesis of polyfunctionally substituted heterocycles, see: Elnagdi et al. (1987); Quiroga et al. (2007, 2008a,b); Aly et al. (1994). For pharmaceutical properties of pyrazole-containing compounds, see: Bazgir et al. (2008); Dias et al. (1994); El-Kashef et al. (2000); El-Emary et al. (2002).

Experimental top

A mixture of 760 mg (3 mmol) 3-methyl-1-phenyl-5-(1H-pyrrol-1-yl)-4,5-dihydro-1H-pyrazole-4-carbaldehyde and 208.5 mg (3 mmol) of hydroxylamine hydrochloride in 15 ml pyridine was heated under reflux for 3 h. After cooling, the reaction mixture was poured into cold water. The resulting solid product was filtered, washed with water, dried under vacuum and crystallized from dioxane to give colourless plates Yield 76%, m.p. 463–465 K.

Refinement top

H-atoms attached to carbon atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen atoms were placed in locations derived from a difference map and their parameters adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The asymmetric unit of the title compound with 50% probability ellipsoids.

Packing of three H-bonded tetramers viewed down the a axis. O—H···N hydrogen bonds are shown by dotted lines.

Elevation view of the layers of H-bonded tetramers.
(E)-N-{[3-Methyl-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazol-4-yl]methylidene}hydroxylamine top
Crystal data top
C15H14N4OZ = 4
Mr = 266.30F(000) = 560
Triclinic, P1Dx = 1.279 Mg m3
a = 9.1497 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.3932 (3) ÅCell parameters from 8765 reflections
c = 12.7294 (3) Åθ = 3.5–72.2°
α = 87.4070 (11)°µ = 0.68 mm1
β = 82.6740 (12)°T = 150 K
γ = 75.0190 (12)°Plate, colourless
V = 1382.88 (6) Å30.22 × 0.15 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5370 independent reflections
Radiation source: INCOATEC IµS micro-focus source4088 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.5°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1515
Tmin = 0.92, Tmax = 0.97l = 1515
15570 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.401P]
where P = (Fo2 + 2Fc2)/3
5370 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H14N4Oγ = 75.0190 (12)°
Mr = 266.30V = 1382.88 (6) Å3
Triclinic, P1Z = 4
a = 9.1497 (2) ÅCu Kα radiation
b = 12.3932 (3) ŵ = 0.68 mm1
c = 12.7294 (3) ÅT = 150 K
α = 87.4070 (11)°0.22 × 0.15 × 0.05 mm
β = 82.6740 (12)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5370 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4088 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.97Rint = 0.036
15570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
5370 reflectionsΔρmin = 0.18 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms attached to carbon

were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those

attached to oxygen were placed in locations derived from a difference

map and their parameters adjusted to give O—H = 0.84 Å. All were

included as riding contributions with isotropic displacement

parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01620 (14)0.14968 (11)1.23494 (9)0.0350 (3)
H1A0.05120.20831.26910.042*
N10.32895 (16)0.00206 (11)0.85512 (11)0.0253 (3)
N20.33432 (17)0.10531 (12)0.83004 (11)0.0283 (3)
N30.23015 (16)0.13164 (11)0.99916 (11)0.0265 (3)
N40.11882 (17)0.16601 (13)1.14130 (11)0.0305 (3)
N50.86241 (16)0.34350 (11)0.53889 (10)0.0260 (3)
C10.40366 (18)0.06699 (13)0.78205 (13)0.0252 (3)
C20.39036 (19)0.06265 (14)0.67514 (13)0.0281 (4)
H20.32870.01980.65160.034*
C30.4681 (2)0.12150 (15)0.60299 (14)0.0318 (4)
H30.46100.11810.52950.038*
C40.5558 (2)0.18502 (15)0.63761 (15)0.0332 (4)
H40.60890.22510.58780.040*
C50.5667 (2)0.19049 (15)0.74439 (15)0.0323 (4)
H50.62560.23560.76780.039*
C60.49199 (19)0.13047 (14)0.81776 (14)0.0294 (4)
H60.50110.13280.89110.035*
C70.25257 (19)0.02755 (14)0.95310 (13)0.0248 (3)
C80.20937 (19)0.06590 (14)0.99446 (13)0.0256 (3)
C90.2641 (2)0.14714 (14)0.91388 (13)0.0282 (4)
C100.2486 (3)0.26404 (15)0.91273 (16)0.0423 (5)
H10A0.29170.29690.84340.063*
H10B0.14060.26360.92600.063*
H10C0.30340.30840.96800.063*
C110.2741 (3)0.14651 (16)1.09638 (15)0.0413 (5)
H110.31520.08891.14430.050*
C120.2485 (3)0.25693 (18)1.11112 (17)0.0558 (6)
H120.26810.29111.17130.067*
C130.1869 (3)0.31322 (15)1.02105 (16)0.0416 (5)
H130.15800.39181.01010.050*
C140.1765 (2)0.23523 (14)0.95337 (14)0.0295 (4)
H140.13920.24920.88650.035*
C150.1185 (2)0.07129 (14)1.09604 (13)0.0273 (4)
H150.05870.00441.12910.033*
O20.49919 (16)0.78935 (10)0.64738 (10)0.0386 (3)
H2A0.45320.81720.70520.046*
N60.84165 (17)0.33808 (12)0.64741 (11)0.0284 (3)
N70.79776 (16)0.47398 (11)0.39594 (11)0.0261 (3)
N80.56651 (17)0.67789 (12)0.67161 (12)0.0315 (3)
C160.94172 (19)0.24537 (13)0.47988 (13)0.0257 (4)
C171.0867 (2)0.18970 (15)0.50007 (14)0.0334 (4)
H171.13490.21690.55130.040*
C181.1611 (2)0.09363 (17)0.44459 (15)0.0391 (5)
H181.26110.05460.45780.047*
C191.0912 (2)0.05402 (16)0.37017 (15)0.0362 (4)
H191.14280.01230.33270.043*
C200.9459 (2)0.11116 (16)0.35027 (14)0.0340 (4)
H200.89810.08430.29870.041*
C210.8700 (2)0.20730 (15)0.40525 (13)0.0302 (4)
H210.77020.24660.39190.036*
C220.78947 (19)0.44542 (14)0.50370 (13)0.0255 (3)
C230.7165 (2)0.50922 (14)0.59080 (13)0.0266 (4)
C240.7529 (2)0.43701 (14)0.67857 (13)0.0284 (4)
C250.7069 (2)0.45931 (16)0.79421 (14)0.0374 (4)
H25A0.75020.39240.83520.056*
H25B0.59550.47840.80890.056*
H25C0.74470.52160.81420.056*
C260.6762 (2)0.52578 (16)0.34263 (14)0.0352 (4)
H260.57210.54470.37180.042*
C270.7302 (2)0.54509 (17)0.24161 (15)0.0400 (5)
H270.67120.58000.18740.048*
C280.8895 (2)0.5042 (2)0.23135 (16)0.0507 (6)
H280.95760.50670.16890.061*
C290.9289 (2)0.46064 (19)0.32625 (16)0.0435 (5)
H291.02940.42680.34200.052*
C300.6353 (2)0.62612 (14)0.58742 (14)0.0304 (4)
H300.63300.66510.52140.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0406 (7)0.0345 (7)0.0262 (6)0.0060 (6)0.0012 (5)0.0040 (5)
N10.0317 (8)0.0214 (7)0.0232 (7)0.0070 (6)0.0033 (6)0.0022 (5)
N20.0361 (8)0.0216 (7)0.0272 (7)0.0071 (6)0.0033 (6)0.0031 (6)
N30.0352 (8)0.0225 (7)0.0221 (7)0.0070 (6)0.0049 (6)0.0021 (5)
N40.0335 (8)0.0375 (9)0.0211 (7)0.0105 (7)0.0022 (6)0.0008 (6)
N50.0319 (8)0.0248 (7)0.0210 (7)0.0067 (6)0.0034 (6)0.0009 (5)
C10.0248 (8)0.0224 (8)0.0262 (8)0.0032 (7)0.0008 (7)0.0002 (6)
C20.0308 (9)0.0255 (9)0.0271 (9)0.0056 (7)0.0036 (7)0.0011 (7)
C30.0325 (10)0.0320 (10)0.0266 (9)0.0020 (8)0.0007 (7)0.0019 (7)
C40.0292 (9)0.0271 (9)0.0389 (10)0.0035 (7)0.0020 (8)0.0066 (8)
C50.0253 (9)0.0273 (9)0.0446 (11)0.0074 (7)0.0051 (8)0.0026 (8)
C60.0285 (9)0.0275 (9)0.0316 (9)0.0044 (7)0.0063 (7)0.0008 (7)
C70.0286 (9)0.0231 (8)0.0221 (8)0.0038 (7)0.0059 (6)0.0010 (6)
C80.0298 (9)0.0232 (8)0.0239 (8)0.0057 (7)0.0063 (7)0.0008 (6)
C90.0351 (9)0.0237 (9)0.0260 (9)0.0076 (7)0.0045 (7)0.0001 (7)
C100.0643 (14)0.0278 (10)0.0358 (11)0.0178 (9)0.0049 (9)0.0050 (8)
C110.0660 (14)0.0312 (10)0.0289 (10)0.0105 (9)0.0182 (9)0.0006 (8)
C120.100 (2)0.0328 (11)0.0399 (12)0.0157 (12)0.0292 (12)0.0059 (9)
C130.0635 (14)0.0210 (9)0.0393 (11)0.0074 (9)0.0091 (9)0.0023 (8)
C140.0363 (10)0.0240 (9)0.0266 (9)0.0051 (7)0.0037 (7)0.0013 (7)
C150.0331 (9)0.0254 (9)0.0236 (8)0.0060 (7)0.0069 (7)0.0003 (7)
O20.0537 (8)0.0263 (7)0.0283 (7)0.0002 (6)0.0026 (6)0.0024 (5)
N60.0396 (8)0.0255 (7)0.0213 (7)0.0102 (6)0.0049 (6)0.0012 (6)
N70.0287 (8)0.0253 (7)0.0227 (7)0.0046 (6)0.0028 (6)0.0021 (5)
N80.0392 (9)0.0228 (7)0.0317 (8)0.0064 (6)0.0045 (6)0.0008 (6)
C160.0295 (9)0.0224 (8)0.0238 (8)0.0054 (7)0.0012 (7)0.0010 (6)
C170.0337 (10)0.0336 (10)0.0328 (10)0.0055 (8)0.0095 (8)0.0031 (8)
C180.0331 (10)0.0384 (11)0.0403 (11)0.0039 (8)0.0095 (8)0.0042 (8)
C190.0395 (11)0.0302 (10)0.0338 (10)0.0001 (8)0.0011 (8)0.0070 (8)
C200.0373 (10)0.0365 (10)0.0281 (9)0.0086 (8)0.0033 (8)0.0079 (8)
C210.0270 (9)0.0333 (10)0.0294 (9)0.0048 (8)0.0049 (7)0.0028 (7)
C220.0273 (9)0.0241 (8)0.0249 (8)0.0067 (7)0.0033 (7)0.0021 (6)
C230.0318 (9)0.0236 (8)0.0254 (8)0.0091 (7)0.0027 (7)0.0010 (7)
C240.0377 (10)0.0235 (8)0.0255 (9)0.0108 (7)0.0037 (7)0.0010 (7)
C250.0563 (13)0.0294 (10)0.0258 (9)0.0107 (9)0.0026 (8)0.0015 (7)
C260.0284 (9)0.0405 (11)0.0315 (10)0.0001 (8)0.0042 (7)0.0047 (8)
C270.0421 (11)0.0460 (12)0.0281 (10)0.0041 (9)0.0072 (8)0.0061 (8)
C280.0393 (12)0.0726 (16)0.0317 (11)0.0056 (11)0.0043 (9)0.0150 (10)
C290.0269 (10)0.0621 (14)0.0364 (11)0.0069 (9)0.0001 (8)0.0143 (9)
C300.0385 (10)0.0261 (9)0.0256 (9)0.0068 (8)0.0029 (7)0.0004 (7)
Geometric parameters (Å, º) top
O1—N41.4078 (18)C13—H130.9500
O1—H1A0.8403C14—H140.9500
N1—C71.358 (2)C15—H150.9500
N1—N21.3695 (18)O2—N81.3973 (18)
N1—C11.426 (2)O2—H2A0.8402
N2—C91.330 (2)N6—C241.329 (2)
N3—C141.381 (2)N7—C291.376 (2)
N3—C111.383 (2)N7—C261.376 (2)
N3—C71.397 (2)N7—C221.399 (2)
N4—C151.284 (2)N8—C301.280 (2)
N5—C221.353 (2)C16—C171.378 (2)
N5—N61.3713 (18)C16—C211.384 (2)
N5—C161.434 (2)C17—C181.383 (3)
C1—C21.386 (2)C17—H170.9500
C1—C61.391 (2)C18—C191.380 (3)
C2—C31.387 (2)C18—H180.9500
C2—H20.9500C19—C201.385 (3)
C3—C41.380 (3)C19—H190.9500
C3—H30.9500C20—C211.384 (2)
C4—C51.382 (3)C20—H200.9500
C4—H40.9500C21—H210.9500
C5—C61.389 (2)C22—C231.385 (2)
C5—H50.9500C23—C241.418 (2)
C6—H60.9500C23—C301.449 (2)
C7—C81.379 (2)C24—C251.496 (2)
C8—C91.421 (2)C25—H25A0.9800
C8—C151.454 (2)C25—H25B0.9800
C9—C101.493 (2)C25—H25C0.9800
C10—H10A0.9800C26—C271.351 (3)
C10—H10B0.9800C26—H260.9500
C10—H10C0.9800C27—C281.405 (3)
C11—C121.345 (3)C27—H270.9500
C11—H110.9500C28—C291.353 (3)
C12—C131.417 (3)C28—H280.9500
C12—H120.9500C29—H290.9500
C13—C141.352 (2)C30—H300.9500
N4—O1—H1A101.0N4—C15—C8120.32 (16)
C7—N1—N2110.52 (13)N4—C15—H15119.8
C7—N1—C1130.19 (14)C8—C15—H15119.8
N2—N1—C1119.25 (13)N8—O2—H2A105.0
C9—N2—N1106.20 (13)C24—N6—N5105.80 (13)
C14—N3—C11108.69 (14)C29—N7—C26108.17 (15)
C14—N3—C7127.03 (14)C29—N7—C22126.09 (15)
C11—N3—C7123.98 (15)C26—N7—C22125.65 (15)
C15—N4—O1109.56 (14)C30—N8—O2110.12 (14)
C22—N5—N6110.63 (13)C17—C16—C21121.33 (16)
C22—N5—C16129.45 (14)C17—C16—N5119.32 (15)
N6—N5—C16119.70 (13)C21—C16—N5119.33 (15)
C2—C1—C6120.97 (15)C16—C17—C18118.98 (17)
C2—C1—N1118.81 (15)C16—C17—H17120.5
C6—C1—N1120.18 (15)C18—C17—H17120.5
C1—C2—C3119.25 (16)C19—C18—C17120.55 (18)
C1—C2—H2120.4C19—C18—H18119.7
C3—C2—H2120.4C17—C18—H18119.7
C4—C3—C2120.24 (17)C18—C19—C20119.84 (17)
C4—C3—H3119.9C18—C19—H19120.1
C2—C3—H3119.9C20—C19—H19120.1
C3—C4—C5120.27 (16)C21—C20—C19120.25 (17)
C3—C4—H4119.9C21—C20—H20119.9
C5—C4—H4119.9C19—C20—H20119.9
C4—C5—C6120.36 (17)C16—C21—C20119.05 (16)
C4—C5—H5119.8C16—C21—H21120.5
C6—C5—H5119.8C20—C21—H21120.5
C5—C6—C1118.88 (16)N5—C22—C23108.17 (14)
C5—C6—H6120.6N5—C22—N7121.95 (15)
C1—C6—H6120.6C23—C22—N7129.85 (15)
N1—C7—C8107.93 (14)C22—C23—C24104.11 (15)
N1—C7—N3122.85 (15)C22—C23—C30125.38 (15)
C8—C7—N3129.20 (15)C24—C23—C30130.28 (16)
C7—C8—C9104.66 (15)N6—C24—C23111.28 (15)
C7—C8—C15125.06 (15)N6—C24—C25119.72 (15)
C9—C8—C15130.16 (15)C23—C24—C25129.00 (16)
N2—C9—C8110.67 (15)C24—C25—H25A109.5
N2—C9—C10120.20 (15)C24—C25—H25B109.5
C8—C9—C10129.11 (16)H25A—C25—H25B109.5
C9—C10—H10A109.5C24—C25—H25C109.5
C9—C10—H10B109.5H25A—C25—H25C109.5
H10A—C10—H10B109.5H25B—C25—H25C109.5
C9—C10—H10C109.5C27—C26—N7108.32 (16)
H10A—C10—H10C109.5C27—C26—H26125.8
H10B—C10—H10C109.5N7—C26—H26125.8
C12—C11—N3107.90 (17)C26—C27—C28107.58 (17)
C12—C11—H11126.1C26—C27—H27126.2
N3—C11—H11126.1C28—C27—H27126.2
C11—C12—C13107.91 (17)C29—C28—C27107.87 (18)
C11—C12—H12126.0C29—C28—H28126.1
C13—C12—H12126.0C27—C28—H28126.1
C14—C13—C12107.91 (17)C28—C29—N7108.05 (17)
C14—C13—H13126.0C28—C29—H29126.0
C12—C13—H13126.0N7—C29—H29126.0
C13—C14—N3107.60 (16)N8—C30—C23121.29 (16)
C13—C14—H14126.2N8—C30—H30119.4
N3—C14—H14126.2C23—C30—H30119.4
C7—N1—N2—C91.45 (18)C22—N5—N6—C241.11 (18)
C1—N1—N2—C9176.40 (14)C16—N5—N6—C24173.96 (14)
C7—N1—C1—C2139.98 (18)C22—N5—C16—C17130.07 (19)
N2—N1—C1—C242.7 (2)N6—N5—C16—C1755.9 (2)
C7—N1—C1—C642.0 (3)C22—N5—C16—C2151.1 (2)
N2—N1—C1—C6135.32 (16)N6—N5—C16—C21122.89 (17)
C6—C1—C2—C30.8 (3)C21—C16—C17—C180.3 (3)
N1—C1—C2—C3177.12 (15)N5—C16—C17—C18178.50 (16)
C1—C2—C3—C41.0 (3)C16—C17—C18—C190.0 (3)
C2—C3—C4—C50.0 (3)C17—C18—C19—C200.4 (3)
C3—C4—C5—C61.2 (3)C18—C19—C20—C210.5 (3)
C4—C5—C6—C11.4 (3)C17—C16—C21—C200.2 (3)
C2—C1—C6—C50.4 (3)N5—C16—C21—C20178.57 (16)
N1—C1—C6—C5178.29 (15)C19—C20—C21—C160.2 (3)
N2—N1—C7—C81.27 (19)N6—N5—C22—C230.78 (19)
C1—N1—C7—C8176.28 (16)C16—N5—C22—C23173.68 (16)
N2—N1—C7—N3179.80 (14)N6—N5—C22—N7177.44 (14)
C1—N1—C7—N32.3 (3)C16—N5—C22—N78.1 (3)
C14—N3—C7—N149.0 (2)C29—N7—C22—N550.5 (3)
C11—N3—C7—N1124.05 (19)C26—N7—C22—N5133.17 (18)
C14—N3—C7—C8132.8 (2)C29—N7—C22—C23127.3 (2)
C11—N3—C7—C854.1 (3)C26—N7—C22—C2349.0 (3)
N1—C7—C8—C90.57 (18)N5—C22—C23—C240.14 (19)
N3—C7—C8—C9178.98 (16)N7—C22—C23—C24177.89 (17)
N1—C7—C8—C15176.83 (15)N5—C22—C23—C30175.12 (16)
N3—C7—C8—C154.8 (3)N7—C22—C23—C302.9 (3)
N1—N2—C9—C81.07 (19)N5—N6—C24—C231.01 (19)
N1—N2—C9—C10179.60 (16)N5—N6—C24—C25179.69 (15)
C7—C8—C9—N20.32 (19)C22—C23—C24—N60.6 (2)
C15—C8—C9—N2175.67 (16)C30—C23—C24—N6174.07 (17)
C7—C8—C9—C10178.69 (19)C22—C23—C24—C25179.77 (18)
C15—C8—C9—C102.7 (3)C30—C23—C24—C255.1 (3)
C14—N3—C11—C120.1 (2)C29—N7—C26—C270.3 (2)
C7—N3—C11—C12174.20 (19)C22—N7—C26—C27176.57 (17)
N3—C11—C12—C130.0 (3)N7—C26—C27—C280.1 (2)
C11—C12—C13—C140.0 (3)C26—C27—C28—C290.2 (3)
C12—C13—C14—N30.0 (2)C27—C28—C29—N70.4 (3)
C11—N3—C14—C130.1 (2)C26—N7—C29—C280.5 (2)
C7—N3—C14—C13173.97 (17)C22—N7—C29—C28176.44 (18)
O1—N4—C15—C8176.70 (14)O2—N8—C30—C23179.19 (15)
C7—C8—C15—N4160.65 (17)C22—C23—C30—N8177.58 (17)
C9—C8—C15—N424.1 (3)C24—C23—C30—N88.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg is centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N2i0.841.952.7835 (19)174
O1—H1A···N6ii0.841.992.8277 (19)172
C11—H11···Cgii0.953.45?170
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg is centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N2i0.841.952.7835 (19)174
O1—H1A···N6ii0.841.992.8277 (19)172
C11—H11···Cgii0.953.45?170
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged. In addition, SKM and TIE would like to thank Professor H. M. S. El-Kashef for his contribution to this study.

References

First citationAly, M. F., El-Nagger, G. M., El-Emary, T. I., Grigg, R., Metwally, S. A. & Sivagnanam, S. (1994). Tetrahedron, 50, 895–906.  CSD CrossRef CAS Web of Science Google Scholar
First citationBazgir, A., Khanaposhtani, M. & Soorki, A. A. (2008). Bioorg. Med. Chem. Lett. 18, 5800–5803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDias, L. R. S., Alvim, M. J., Freitas, A. C. C., Barreiro, E. J. & Miranda, A. L. P. (1994). Pharm. Acta Helv. 69, 163–169.  CrossRef CAS PubMed Google Scholar
First citationEl-Emary, T. I., Al-Muaikel, N. & Moustafa, O. S. (2002). Phosphorus Sulfur Silicon, 177, 195–210.  CAS Google Scholar
First citationElnagdi, M. H., El-Moghayar, R. M. H. & Elgemeie, G. H. (1987). Adv. Heterocycl. Chem. 41, 319–376.  CrossRef CAS Web of Science Google Scholar
First citationEl-Kashef, H. S., el-Emary, T. I., Gasquet, M., Timon-David, P., Maldonado, J. & Vanelle, P. (2000). Pharmazie, 55, 572–576.  PubMed CAS Google Scholar
First citationQuiroga, J., Portilla, J., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2008a). Tetrahedron Lett. 49, 6254–6256.  Web of Science CrossRef CAS Google Scholar
First citationQuiroga, J., Portilla, J., Cruz, S., Abonía, R., Insuasty, B., Nogueras, M., Cobo, J. & Hursthouse, M. (2008b). Open Org. Chem. J. 2, 92–99.  CrossRef CAS Google Scholar
First citationQuiroga, J., Portilla, J., Serrano, H., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2007). Tetrahedron Lett. 48, 1987–1990.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1216-o1217
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds