research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [propane-1,3-diylbis(piperidine-4,1-di­yl)]bis­­[(pyridin-4-yl)methanone]–isophthalic acid (1/1)

aLyman Briggs College, Department of Chemistry, E-30 Holmes Hall, 919 East Shaw Lane, Michigan State University, East Lansing, MI 48825, USA, and bDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
*Correspondence e-mail: laduca@msu.edu

Edited by P. C. Healy, Griffith University, Australia (Received 19 September 2014; accepted 1 October 2014; online 4 October 2014)

In the crystal structure of the title co-crystal, C25H32N4O2·C8H6O4, isophthalic acid and [propane-1,3-diylbis(piperidine-4,1-di­yl)]bis­(pyridin-4-yl­methanone) mol­ecules are connected into supra­molecular chains aligned along the c axis by O—H⋯N hydrogen bonding. These aggregate into supra­molecular layers oriented parallel to the ac plane by C—H⋯O inter­actions. These layers then stack in an ABCD pattern along the b-axis direction by additional C—H⋯O inter­actions to give the full three-dimensional crystal structure. The central chain in the di­pyridyl­amide molecule has an antigauche conformation.

1. Chemical context

Some divalent metal isophthalate coordination polymers show intriguing diverse topologies in the presence of dipyridyl co-ligands (Thirumurugan & Rao, 2005[Thirumurugan, A. & Rao, C. N. R. (2005). J. Mater. Chem. 15, 3852-3858.]). We thus attempted to prepare a divalent cadmium isophthalate coordination polymer that incorporated the very long spanning dipyridyl ligand propane-1,3-diylbis(piperidine-4,1-di­yl))bis­(pyridin-4-yl­methanone) (ppbp). The title compound was obtained as colorless crystals through the hydro­thermal reaction of cadmium nitrate, isophthalic acid, and ppbp.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains a complete isophthalic acid mol­ecule, and a complete ppbp mol­ecule (Fig. 1[link]). The isophthalic acid and ppbp mol­ecules are connected into supra­molecular chains (Fig. 2[link]) aligned parallel to the c axis by O—H⋯N hydrogen-bonding donation (Table 1[link]) to the unprotonated ppbp pyridyl N atoms.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.78 2.617 (2) 176
O4—H4⋯N4i 0.84 1.81 2.650 (2) 179
C9—H9⋯O5ii 0.95 2.52 3.119 (3) 121
C33—H33⋯O6ii 0.95 2.40 3.122 (3) 133
C30—H30⋯O5iii 0.95 2.70 3.066 (3) 104
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The formula unit of the title co-crystal, showing 50% probability ellipsoids and the atom-numbering scheme. Most hydrogen atom positions are shown as grey sticks. Color codes: red O, light blue N, black C, pink H.
[Figure 2]
Figure 2
A single supra­molecular chain in the title co-crystal connected by O—H⋯N hydrogen bonding between isophthalic acid and ppbp mol­ecules.

3. Supra­molecular features

The chains aggregate into supra­molecular layers (Fig. 3[link]) oriented parallel to the ac plane by C—H⋯O inter­actions between ppbp pyridyl C atoms in one chain, and ppbp carbonyl O atoms in another chain [C⋯O distances = 3.119 (3) and 3.122 (3) Å]. These layers then stack in an ABCD pattern along the b-axis direction to give the full three-dimensional crystal structure of the title co-crystal (Fig. 4[link]). Supra­molecular C—H⋯O inter­actions [C⋯O distance = 3.066 (3) Å] between ppbp pyridyl C atoms in one layer motif, and ppbp carbonyl O atoms in another layer motif provide the impetus for the stacking of layers.

[Figure 3]
Figure 3
A single layer motif within the title co-crystal.
[Figure 4]
Figure 4
ABCD stacking pattern of supra­molecular layers within the title co-crystal.

4. Synthesis and crystallization

Cadmium(II) nitrate tetra­hydrate and isophthalic acid were obtained commercially. Propane-1,3-diylbis(piperidine-4,1-di­yl)bis­(pyridin-4-yl­methanone) (ppbp) was prepared via modification of a published procedure for the synthesis of piperazine-1,4-diylbis(pyridin-4-yl­methanone) (Hou et al., 2003[Hou, H., Song, Y., Xu, H., Wei, Y., Fan, Y., Zhu, Y., Li, L. & Du, C. (2003). Macromolecules, 36, 999-1008.]), using tri­methyl­ene­piperidine instead of piperazine as the amine precursor. A mixture of cadmium(II) nitrate tetra­hydrate (86 mg, 0.28 mmol), isophthalic acid (46 mg, 0.28 mmol), ppbp (116 mg, 0.28 mmol), 0.5 mL of a 1.0 M NaOH solution, and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. Colorless blocks of the title compound were obtained.

5. Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å for aromatic C atoms, with C—H = 0.99 Å for aliphatic secondary C atoms, and with C—H = 1.00 Å for aliphatic tertiary C atoms, All H atoms were refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to O atoms were found in a difference Fourier map, restrained with O—H = 0.84 Å and refined with Uiso = 1.5Ueq(O).[link]

Table 2
Experimental details

Crystal data
Chemical formula C25H32N4O2·C8H6O4
Mr 586.67
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 6.5224 (14), 15.216 (3), 29.934 (6)
β (°) 94.296 (3)
V3) 2962.5 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.43 × 0.12 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.643, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24167, 5459, 3315
Rint 0.070
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.110, 1.01
No. of reflections 5459
No. of parameters 390
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Some divalent metal isophthalate coordination polymers show intriguing diverse topologies in the presence of di­pyridyl co-ligands (Thirumurugan & Rao, 2005). We thus attempted to prepare a divalent cadmium isophthalate coordination polymer that incorporated the very long spanning di­pyridyl ligand propane-1,3-diylbis(piperidine-4,1-diyl))bis­(pyridin-4-yl­methanone) (ppbp). The title compound was obtained as colorless crystals through the hydro­thermal reaction of cadmium nitrate, isophthalic acid, and ppbp.

Structural commentary top

The asymmetric unit of the title compound contains a full isophthalic acid molecule, and a full ppbp molecule (Fig. 1). The isophthalic acid and ppbp molecules are connected into supra­molecular chains (Fig. 2) aligned parallel to the c axis by O—H···N hydrogen-bonding donation (Table 1) to the unprotonated ppbp pyridyl N atoms.

Supra­molecular features top

The chains aggregate into supra­molecular layers (Fig. 3) oriented parallel to the ac plane by C—H···O inter­actions between ppbp pyridyl C atoms in one chain, and ppbp carbonyl O atoms in another chain [C···O distances = 3.119 (3) and 3.122 (3) Å]. These layers then stack in an ABCD pattern along the b-axis direction to give the full three-dimensional crystal structure of the title co-crystal (Fig. 4). Supra­molecular C—H···O inter­actions [C···O distance = 3.066 (3) Å] between ppbp pyridyl C atoms in one layer motif, and ppbp carbonyl O atoms in another layer motif provide the impetus for the stacking of layers.

Synthesis and crystallization top

Cadmium(II) nitrate tetra­hydrate and isophthalic acid were obtained commercially. Propane-1,3-diylbis(piperidine-4,1-diyl)bis­(pyridin-4-yl­methanone) (ppbp) was prepared via modification of a published procedure for the synthesis of piperazine-1,4-diylbis(pyridin-4-yl­methanone) (Hou et al., 2003), using tri­methyl­ene­piperidine instead of piperazine as the amine precursor. A mixture of cadmium(II) nitrate tetra­hydrate (86 mg, 0.28 mmol), isophthalic acid (46 mg, 0.28 mmol), ppbp (116 mg, 0.28 mmol), 0.5 mL of a 1.0 M NaOH solution, and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. Colorless blocks of the title compound were obtained.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å for aromatic C atoms, with C—H = 0.99 Å for aliphatic secondary C atoms, and with C—H = 1.00 Å for aliphatic tertiary C atoms, All H atoms were refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to O atoms were found in a difference Fourier map, restrained with O—H = 0.84 Å and refined with Uiso = 1.5Ueq(O).

Related literature top

For the preparation of piperazine-1,4-diylbis(pyridin-4-ylmethanone), see: Hou et al. (2003). For the preparation of divalent metal isophthalate coordination polymers, see: Thirumurugan & Rao (2005).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
Figure 1. The formula unit of the title co-crystal, showing 50% probability ellipsoids and the atom-numbering scheme. Most hydrogen atom positions are shown as grey sticks. Color codes: red O, light blue N, black C, pink H.

Figure 2. A single supramolecular chain in the title co-crystal connected by O—H···N hydrogen bonding between isophthalic acid and ppbp molecules.

Figure 3. A single layer motif within the title co-crystal.

Figure 4. ABCD stacking pattern of supramolecular layers within the title co-crystal.
[Propane-1,3-diylbis(piperidine-4,1-diyl)]bis[(pyridin-4-yl)methanone]–isophthalic acid (1/1) top
Crystal data top
C25H32N4O2·C8H6O4F(000) = 1248
Mr = 586.67Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.5224 (14) ÅCell parameters from 5411 reflections
b = 15.216 (3) Åθ = 2.5–25.4°
c = 29.934 (6) ŵ = 0.09 mm1
β = 94.296 (3)°T = 173 K
V = 2962.5 (11) Å3Block, colourless
Z = 40.43 × 0.12 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
5459 independent reflections
Radiation source: fine-focus sealed tube3315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ and ω scansθmax = 25.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 77
Tmin = 0.643, Tmax = 0.745k = 1818
24167 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.045P)2 + 0.0804P]
where P = (Fo2 + 2Fc2)/3
5459 reflections(Δ/σ)max = 0.001
390 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C25H32N4O2·C8H6O4V = 2962.5 (11) Å3
Mr = 586.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5224 (14) ŵ = 0.09 mm1
b = 15.216 (3) ÅT = 173 K
c = 29.934 (6) Å0.43 × 0.12 × 0.12 mm
β = 94.296 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
5459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3315 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.745Rint = 0.070
24167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
5459 reflectionsΔρmin = 0.22 e Å3
390 parameters
Special details top

Experimental. SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.1152 before and 0.0538 after correction. The Ratio of minimum to maximum transmission is 0.8627. The λ/2 correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.2613 (2)0.82840 (10)0.81791 (5)0.0427 (4)
O60.4190 (2)0.93689 (10)0.40920 (5)0.0425 (4)
N10.2760 (3)0.87613 (12)0.92332 (6)0.0351 (5)
N20.0024 (3)0.86541 (12)0.76788 (6)0.0329 (5)
N30.2296 (3)0.85550 (11)0.45392 (6)0.0304 (4)
N40.1840 (3)0.89487 (12)0.30265 (6)0.0364 (5)
C90.3527 (3)0.83685 (14)0.88588 (7)0.0359 (6)
H90.48720.81270.88540.043*
C100.2478 (3)0.82941 (14)0.84797 (7)0.0331 (6)
H100.30930.80130.82200.040*
C110.0504 (3)0.86365 (13)0.84826 (7)0.0297 (5)
C120.0320 (4)0.90269 (14)0.88721 (7)0.0348 (6)
H120.16830.92510.88890.042*
C130.0851 (4)0.90880 (14)0.92357 (8)0.0363 (6)
H130.02820.93730.94990.044*
C140.0825 (3)0.85316 (14)0.80975 (7)0.0324 (5)
C150.1744 (3)0.92560 (14)0.75636 (7)0.0334 (6)
H15A0.12020.98440.74940.040*
H15B0.25910.93160.78230.040*
C160.3067 (3)0.89154 (14)0.71629 (7)0.0323 (5)
H16A0.41520.93520.70780.039*
H16B0.37480.83650.72470.039*
C170.1234 (3)0.84749 (15)0.73050 (7)0.0382 (6)
H17A0.23110.80410.73990.046*
H17B0.19220.90230.72190.046*
C180.0067 (3)0.81217 (15)0.69061 (7)0.0354 (6)
H18A0.06360.75430.69840.043*
H18B0.08090.80350.66540.043*
C190.1824 (3)0.87389 (14)0.67604 (7)0.0308 (5)
H190.12060.93100.66730.037*
C200.3205 (3)0.84136 (15)0.63591 (7)0.0358 (6)
H20A0.40610.79260.64600.043*
H20B0.41460.88970.62580.043*
C210.2096 (3)0.80959 (14)0.59585 (7)0.0363 (6)
H21A0.12970.75630.60480.044*
H21B0.31390.79240.57170.044*
C220.0653 (3)0.87621 (14)0.57712 (7)0.0358 (6)
H22A0.02720.89930.60210.043*
H22B0.14810.92610.56450.043*
C230.0663 (3)0.84122 (14)0.54101 (7)0.0303 (5)
H230.13500.78640.55290.036*
C240.0604 (3)0.81688 (14)0.49781 (7)0.0313 (5)
H24A0.15530.76840.50400.038*
H24B0.14460.86810.48740.038*
C250.0730 (3)0.78882 (14)0.46101 (7)0.0313 (5)
H25A0.14090.73230.46930.038*
H25B0.01410.77980.43290.038*
C260.2349 (3)0.90586 (14)0.53080 (7)0.0332 (5)
H26A0.17140.96280.52170.040*
H26B0.32540.91590.55840.040*
C270.3634 (3)0.87354 (15)0.49411 (7)0.0366 (6)
H27A0.46620.91870.48750.044*
H27B0.43770.81940.50400.044*
C280.2636 (3)0.89270 (14)0.41466 (7)0.0293 (5)
C290.0092 (4)0.86913 (14)0.29862 (7)0.0373 (6)
H290.04740.85290.26970.045*
C300.1566 (3)0.86480 (14)0.33408 (7)0.0325 (5)
H300.29300.84700.32950.039*
C310.1023 (3)0.88685 (13)0.37647 (7)0.0281 (5)
C320.1001 (3)0.91207 (13)0.38112 (7)0.0299 (5)
H320.14460.92620.40980.036*
C330.2347 (4)0.91624 (14)0.34342 (7)0.0345 (6)
H330.37130.93540.34680.041*
O10.4935 (2)0.88435 (11)0.99322 (5)0.0423 (4)
H10.42060.88380.97120.063*
O20.1947 (2)0.91806 (11)1.03046 (5)0.0453 (4)
O30.1616 (2)0.92741 (11)1.19606 (5)0.0487 (5)
O40.4467 (2)0.90363 (12)1.23085 (5)0.0500 (5)
H40.36300.90151.25360.075*
C10.4912 (3)0.90204 (13)1.07117 (7)0.0268 (5)
C20.7013 (3)0.88790 (13)1.07011 (8)0.0327 (6)
H20.77940.88101.04230.039*
C30.7967 (3)0.88392 (14)1.10963 (8)0.0384 (6)
H30.94090.87441.10870.046*
C40.6868 (3)0.89349 (14)1.15050 (8)0.0343 (6)
H4A0.75460.89011.17750.041*
C50.4767 (3)0.90810 (13)1.15201 (7)0.0281 (5)
C60.3822 (3)0.91280 (13)1.11221 (7)0.0281 (5)
H60.23850.92371.11310.034*
C70.3773 (3)0.90304 (14)1.03006 (7)0.0324 (5)
C80.3452 (4)0.91470 (14)1.19463 (7)0.0339 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0246 (9)0.0605 (11)0.0417 (10)0.0037 (8)0.0066 (7)0.0016 (8)
O60.0298 (10)0.0607 (11)0.0376 (10)0.0120 (8)0.0065 (7)0.0019 (8)
N10.0357 (12)0.0397 (11)0.0288 (11)0.0056 (9)0.0045 (9)0.0002 (9)
N20.0244 (11)0.0475 (12)0.0269 (11)0.0058 (9)0.0022 (8)0.0021 (9)
N30.0264 (11)0.0388 (11)0.0256 (11)0.0052 (8)0.0005 (8)0.0007 (9)
N40.0371 (13)0.0475 (12)0.0248 (11)0.0057 (9)0.0031 (9)0.0013 (9)
C90.0300 (14)0.0467 (15)0.0301 (14)0.0007 (11)0.0046 (11)0.0009 (12)
C100.0316 (14)0.0442 (14)0.0227 (13)0.0011 (11)0.0032 (10)0.0033 (11)
C110.0304 (13)0.0298 (12)0.0281 (13)0.0020 (10)0.0036 (10)0.0030 (10)
C120.0343 (14)0.0356 (13)0.0332 (14)0.0020 (11)0.0055 (11)0.0049 (11)
C130.0446 (16)0.0326 (13)0.0293 (14)0.0003 (11)0.0126 (12)0.0003 (11)
C140.0279 (14)0.0353 (13)0.0333 (14)0.0027 (10)0.0030 (11)0.0019 (11)
C150.0289 (13)0.0401 (14)0.0313 (13)0.0058 (10)0.0019 (10)0.0027 (11)
C160.0276 (13)0.0402 (13)0.0293 (13)0.0049 (10)0.0034 (10)0.0051 (11)
C170.0251 (13)0.0547 (16)0.0352 (14)0.0029 (11)0.0044 (11)0.0036 (12)
C180.0323 (14)0.0472 (14)0.0276 (13)0.0052 (11)0.0074 (11)0.0000 (11)
C190.0277 (13)0.0379 (13)0.0269 (13)0.0004 (10)0.0031 (10)0.0047 (10)
C200.0339 (14)0.0426 (14)0.0305 (13)0.0043 (11)0.0001 (11)0.0032 (11)
C210.0371 (15)0.0425 (14)0.0292 (14)0.0060 (11)0.0006 (11)0.0012 (11)
C220.0436 (15)0.0367 (13)0.0271 (13)0.0021 (11)0.0033 (11)0.0013 (11)
C230.0330 (14)0.0330 (13)0.0247 (13)0.0008 (10)0.0006 (10)0.0008 (10)
C240.0345 (14)0.0334 (13)0.0261 (13)0.0069 (10)0.0021 (10)0.0005 (10)
C250.0352 (14)0.0318 (12)0.0264 (13)0.0053 (10)0.0002 (10)0.0011 (10)
C260.0278 (13)0.0457 (14)0.0250 (13)0.0025 (11)0.0044 (10)0.0055 (11)
C270.0258 (13)0.0523 (15)0.0306 (14)0.0019 (11)0.0043 (10)0.0025 (12)
C280.0265 (13)0.0336 (13)0.0287 (14)0.0001 (10)0.0082 (10)0.0056 (11)
C290.0462 (16)0.0414 (14)0.0254 (14)0.0082 (12)0.0096 (12)0.0022 (11)
C300.0298 (13)0.0388 (14)0.0296 (14)0.0032 (10)0.0074 (11)0.0046 (11)
C310.0308 (13)0.0284 (12)0.0253 (13)0.0063 (10)0.0040 (10)0.0003 (10)
C320.0296 (13)0.0383 (13)0.0225 (12)0.0025 (10)0.0073 (10)0.0002 (10)
C330.0324 (14)0.0438 (14)0.0278 (14)0.0035 (11)0.0048 (11)0.0016 (11)
O10.0328 (10)0.0635 (11)0.0300 (9)0.0015 (8)0.0026 (7)0.0087 (9)
O20.0265 (10)0.0755 (12)0.0335 (10)0.0070 (8)0.0002 (7)0.0022 (8)
O30.0263 (10)0.0863 (13)0.0327 (10)0.0094 (9)0.0029 (8)0.0023 (9)
O40.0337 (10)0.0876 (13)0.0290 (10)0.0036 (9)0.0035 (8)0.0026 (10)
C10.0218 (12)0.0294 (12)0.0290 (13)0.0006 (9)0.0004 (10)0.0045 (10)
C20.0237 (13)0.0374 (13)0.0361 (14)0.0009 (10)0.0047 (11)0.0058 (11)
C30.0146 (12)0.0490 (15)0.0508 (16)0.0011 (10)0.0023 (11)0.0041 (12)
C40.0238 (13)0.0404 (14)0.0395 (15)0.0016 (10)0.0086 (11)0.0029 (11)
C50.0238 (13)0.0294 (12)0.0310 (13)0.0005 (9)0.0022 (10)0.0033 (10)
C60.0168 (12)0.0326 (12)0.0345 (14)0.0003 (9)0.0001 (10)0.0009 (10)
C70.0271 (14)0.0372 (13)0.0316 (14)0.0010 (10)0.0055 (11)0.0018 (11)
C80.0302 (15)0.0402 (14)0.0316 (14)0.0006 (11)0.0035 (11)0.0004 (11)
Geometric parameters (Å, º) top
O5—C141.233 (2)C22—H22B0.9900
O6—C281.237 (2)C22—C231.525 (3)
N1—C91.334 (3)C23—H231.0000
N1—C131.340 (3)C23—C241.527 (3)
N2—C141.345 (3)C23—C261.523 (3)
N2—C151.469 (3)C24—H24A0.9900
N2—C171.462 (3)C24—H24B0.9900
N3—C251.467 (3)C24—C251.516 (3)
N3—C271.458 (3)C25—H25A0.9900
N3—C281.338 (3)C25—H25B0.9900
N4—C291.334 (3)C26—H26A0.9900
N4—C331.329 (3)C26—H26B0.9900
C9—H90.9500C26—C271.513 (3)
C9—C101.373 (3)C27—H27A0.9900
C10—H100.9500C27—H27B0.9900
C10—C111.389 (3)C28—C311.498 (3)
C11—C121.381 (3)C29—H290.9500
C11—C141.501 (3)C29—C301.379 (3)
C12—H120.9500C30—H300.9500
C12—C131.379 (3)C30—C311.384 (3)
C13—H130.9500C31—C321.391 (3)
C15—H15A0.9900C32—H320.9500
C15—H15B0.9900C32—C331.378 (3)
C15—C161.515 (3)C33—H330.9500
C16—H16A0.9900O1—H10.8400
C16—H16B0.9900O1—C71.321 (2)
C16—C191.526 (3)O2—C71.212 (2)
C17—H17A0.9900O3—C81.211 (2)
C17—H17B0.9900O4—H40.8400
C17—C181.511 (3)O4—C81.323 (3)
C18—H18A0.9900C1—C21.385 (3)
C18—H18B0.9900C1—C61.383 (3)
C18—C191.520 (3)C1—C71.485 (3)
C19—H191.0000C2—H20.9500
C19—C201.529 (3)C2—C31.379 (3)
C20—H20A0.9900C3—H30.9500
C20—H20B0.9900C3—C41.379 (3)
C20—C211.525 (3)C4—H4A0.9500
C21—H21A0.9900C4—C51.386 (3)
C21—H21B0.9900C5—C61.384 (3)
C21—C221.519 (3)C5—C81.486 (3)
C22—H22A0.9900C6—H60.9500
C9—N1—C13117.4 (2)C22—C23—H23107.4
C14—N2—C15123.98 (18)C22—C23—C24112.77 (18)
C14—N2—C17118.18 (18)C24—C23—H23107.4
C17—N2—C15113.53 (16)C26—C23—C22111.70 (17)
C27—N3—C25113.01 (17)C26—C23—H23107.4
C28—N3—C25125.67 (18)C26—C23—C24109.86 (17)
C28—N3—C27121.12 (18)C23—C24—H24A109.1
C33—N4—C29117.2 (2)C23—C24—H24B109.1
N1—C9—H9118.2H24A—C24—H24B107.9
N1—C9—C10123.5 (2)C25—C24—C23112.32 (17)
C10—C9—H9118.2C25—C24—H24A109.1
C9—C10—H10120.5C25—C24—H24B109.1
C9—C10—C11118.9 (2)N3—C25—C24110.77 (16)
C11—C10—H10120.5N3—C25—H25A109.5
C10—C11—C14122.92 (19)N3—C25—H25B109.5
C12—C11—C10118.0 (2)C24—C25—H25A109.5
C12—C11—C14118.9 (2)C24—C25—H25B109.5
C11—C12—H12120.3H25A—C25—H25B108.1
C13—C12—C11119.5 (2)C23—C26—H26A109.1
C13—C12—H12120.3C23—C26—H26B109.1
N1—C13—C12122.7 (2)H26A—C26—H26B107.8
N1—C13—H13118.7C27—C26—C23112.54 (18)
C12—C13—H13118.7C27—C26—H26A109.1
O5—C14—N2123.0 (2)C27—C26—H26B109.1
O5—C14—C11118.18 (19)N3—C27—C26109.30 (17)
N2—C14—C11118.69 (19)N3—C27—H27A109.8
N2—C15—H15A109.5N3—C27—H27B109.8
N2—C15—H15B109.5C26—C27—H27A109.8
N2—C15—C16110.60 (17)C26—C27—H27B109.8
H15A—C15—H15B108.1H27A—C27—H27B108.3
C16—C15—H15A109.5O6—C28—N3122.5 (2)
C16—C15—H15B109.5O6—C28—C31117.9 (2)
C15—C16—H16A109.1N3—C28—C31119.48 (19)
C15—C16—H16B109.1N4—C29—H29118.2
C15—C16—C19112.39 (18)N4—C29—C30123.6 (2)
H16A—C16—H16B107.9C30—C29—H29118.2
C19—C16—H16A109.1C29—C30—H30120.6
C19—C16—H16B109.1C29—C30—C31118.8 (2)
N2—C17—H17A109.5C31—C30—H30120.6
N2—C17—H17B109.5C30—C31—C28120.0 (2)
N2—C17—C18110.93 (18)C30—C31—C32117.9 (2)
H17A—C17—H17B108.0C32—C31—C28121.67 (19)
C18—C17—H17A109.5C31—C32—H32120.6
C18—C17—H17B109.5C33—C32—C31118.8 (2)
C17—C18—H18A109.2C33—C32—H32120.6
C17—C18—H18B109.2N4—C33—C32123.6 (2)
C17—C18—C19111.94 (18)N4—C33—H33118.2
H18A—C18—H18B107.9C32—C33—H33118.2
C19—C18—H18A109.2C7—O1—H1109.5
C19—C18—H18B109.2C8—O4—H4109.5
C16—C19—H19107.5C2—C1—C7122.6 (2)
C16—C19—C20111.14 (18)C6—C1—C2118.8 (2)
C18—C19—C16108.41 (17)C6—C1—C7118.63 (19)
C18—C19—H19107.5C1—C2—H2120.1
C18—C19—C20114.37 (18)C3—C2—C1119.8 (2)
C20—C19—H19107.5C3—C2—H2120.1
C19—C20—H20A108.3C2—C3—H3119.4
C19—C20—H20B108.3C4—C3—C2121.2 (2)
H20A—C20—H20B107.4C4—C3—H3119.4
C21—C20—C19115.74 (18)C3—C4—H4A120.2
C21—C20—H20A108.3C3—C4—C5119.6 (2)
C21—C20—H20B108.3C5—C4—H4A120.2
C20—C21—H21A108.5C4—C5—C8123.0 (2)
C20—C21—H21B108.5C6—C5—C4118.9 (2)
H21A—C21—H21B107.5C6—C5—C8118.0 (2)
C22—C21—C20114.98 (18)C1—C6—C5121.8 (2)
C22—C21—H21A108.5C1—C6—H6119.1
C22—C21—H21B108.5C5—C6—H6119.1
C21—C22—H22A108.5O1—C7—C1113.5 (2)
C21—C22—H22B108.5O2—C7—O1123.4 (2)
C21—C22—C23115.19 (18)O2—C7—C1123.1 (2)
H22A—C22—H22B107.5O3—C8—O4123.1 (2)
C23—C22—H22A108.5O3—C8—C5123.1 (2)
C23—C22—H22B108.5O4—C8—C5113.8 (2)
O6—C28—C31—C3050.0 (3)C22—C23—C26—C27178.35 (17)
O6—C28—C31—C32123.0 (2)C23—C24—C25—N353.2 (2)
N1—C9—C10—C110.6 (3)C23—C26—C27—N356.7 (2)
N2—C15—C16—C1954.7 (2)C24—C23—C26—C2752.4 (2)
N2—C17—C18—C1956.1 (2)C25—N3—C27—C2659.6 (2)
N3—C28—C31—C30134.4 (2)C25—N3—C28—O6167.2 (2)
N3—C28—C31—C3252.6 (3)C25—N3—C28—C3117.4 (3)
N4—C29—C30—C311.1 (3)C26—C23—C24—C2550.3 (2)
C9—N1—C13—C120.4 (3)C27—N3—C25—C2458.4 (2)
C9—C10—C11—C120.9 (3)C27—N3—C28—O67.2 (3)
C9—C10—C11—C14175.5 (2)C27—N3—C28—C31168.20 (18)
C10—C11—C12—C132.0 (3)C28—N3—C25—C24126.8 (2)
C10—C11—C14—O5131.8 (2)C28—N3—C27—C26125.3 (2)
C10—C11—C14—N243.8 (3)C28—C31—C32—C33171.46 (19)
C11—C12—C13—N11.8 (3)C29—N4—C33—C320.8 (3)
C12—C11—C14—O542.7 (3)C29—C30—C31—C28173.05 (19)
C12—C11—C14—N2141.7 (2)C29—C30—C31—C320.3 (3)
C13—N1—C9—C100.8 (3)C30—C31—C32—C331.7 (3)
C14—N2—C15—C16148.8 (2)C31—C32—C33—N42.1 (3)
C14—N2—C17—C18146.5 (2)C33—N4—C29—C300.8 (3)
C14—C11—C12—C13176.83 (19)C1—C2—C3—C40.2 (3)
C15—N2—C14—O5154.4 (2)C2—C1—C6—C51.3 (3)
C15—N2—C14—C1130.2 (3)C2—C1—C7—O13.6 (3)
C15—N2—C17—C1855.9 (2)C2—C1—C7—O2177.6 (2)
C15—C16—C19—C1854.6 (2)C2—C3—C4—C50.5 (3)
C15—C16—C19—C20178.89 (18)C3—C4—C5—C60.0 (3)
C16—C19—C20—C21171.90 (18)C3—C4—C5—C8176.9 (2)
C17—N2—C14—O50.7 (3)C4—C5—C6—C11.0 (3)
C17—N2—C14—C11174.69 (19)C4—C5—C8—O3180.0 (2)
C17—N2—C15—C1655.1 (2)C4—C5—C8—O41.3 (3)
C17—C18—C19—C1655.0 (2)C6—C1—C2—C30.7 (3)
C17—C18—C19—C20179.63 (18)C6—C1—C7—O1174.24 (18)
C18—C19—C20—C2148.7 (3)C6—C1—C7—O24.5 (3)
C19—C20—C21—C2256.2 (3)C6—C5—C8—O33.0 (3)
C20—C21—C22—C23172.54 (18)C6—C5—C8—O4175.69 (19)
C21—C22—C23—C2467.1 (2)C7—C1—C2—C3177.16 (19)
C21—C22—C23—C26168.65 (18)C7—C1—C6—C5176.65 (19)
C22—C23—C24—C25175.62 (17)C8—C5—C6—C1176.11 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.782.617 (2)176
O4—H4···N4i0.841.812.650 (2)179
C9—H9···O5ii0.952.523.119 (3)121
C33—H33···O6ii0.952.403.122 (3)133
C30—H30···O5iii0.952.703.066 (3)104
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.782.617 (2)176.1
O4—H4···N4i0.841.812.650 (2)178.9
C9—H9···O5ii0.952.523.119 (3)121
C33—H33···O6ii0.952.403.122 (3)133
C30—H30···O5iii0.952.703.066 (3)104
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H32N4O2·C8H6O4
Mr586.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.5224 (14), 15.216 (3), 29.934 (6)
β (°) 94.296 (3)
V3)2962.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.12 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.643, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
24167, 5459, 3315
Rint0.070
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.110, 1.01
No. of reflections5459
No. of parameters390
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007), Olex2 (Dolomanov et al., 2009).

 

Acknowledgements

We gratefully acknowledge Lyman Briggs College and the Honors College of Michigan State University for funding this work.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHou, H., Song, Y., Xu, H., Wei, Y., Fan, Y., Zhu, Y., Li, L. & Du, C. (2003). Macromolecules, 36, 999–1008.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, A. & Rao, C. N. R. (2005). J. Mater. Chem. 15, 3852–3858.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds