research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(4-chloro­phen­yl)-2-oxo­ethyl 3-bromo­benzoate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bSchool of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, England, cSchool of Chemistry and Bio-21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia, and dDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by P. C. Healy, Griffith University, Australia (Received 27 September 2014; accepted 1 October 2014; online 8 October 2014)

2-(4-Chloro­phen­yl)-2-oxoethyl 3-bromo­benzoate, C15H10BrClO3, was synthesized in a single-step reaction by condensation of 3-bromo­benzoic acid with 2-bromo-1-(4-chloro­phen­yl)ethanone in di­methyl­formamide in the presence of tri­ethyl­amine as a catalyst. The structure consists of an aryl ketone moiety linked to an aryl ester unit by a methyl­ene group. Both units are reasonably planar (r.m.s. deviations of 0.119 and 0.010 Å for the aryl ketone and aryl ester units, respectively) and are almost orthogonal, with an angle of 88.60 (3)° between them. In the crystal, mol­ecules form five separate sets of inversion dimers. Three of these are generated by two C—H⋯O inter­actions and a C—H⋯Br contact, and form chains along c and along the ab cell diagonal. In addition, two inversion-related ππ stacking inter­actions between like aryl rings again form chains of mol­ecules but in this instance along the bc diagonal. These contacts generate infinite layers of mol­ecules parallel to (011) and stack the mol­ecules along the a-axis direction.

1. Chemical context

Keto esters, an important class of versatile inter­mediates, have been reported to show anti­tumor activity against Ehrlich cells and HeLa cells (Kinoshita & Umezawa, 1960[Kinoshita, M. & Umezawa, S. (1960). Bull. Chem. Soc. Jpn, 33, 1075-1080.]). They also regulate the flowering times of some plants (Kai et al., 2007[Kai, K., Yano, F., Suzuki, F., Kitagawa, H., Suzuki, M., Yokoyama, M. & Watanabe, N. (2007). Tetrahedron, 63, 10630-10636.]). Recent studies have revealed that they also exhibit inhibitory activity against two isozymes of 11β-hy­droxy­steroid de­hydro­genases (11β-HSD1 and 11β-HSD2), which catalyse the inter­conversion of active cortisol and inactive cortisone (Zhang et al., 2009[Zhang, L., Shen, Y., Zhu, H. J., Wang, F., Leng, Y. & Liu, J. K. (2009). J. Antibiot. 62, 239-242.]). Dicarbonyl compounds and their deriv­atives are also among the most versatile and frequently employed synthons in organic synthesis, especially in heterocyclic chemistry (Stanovnik & Svete, 2004[Stanovnik, B. & Svete, J. (2004). Chem. Rev. 104, 2433-2480.]; Sheibani et al., 2006a[Sheibani, H., Mosslemin, M. H., Behzadi, S., Islami, M. R. & Saidi, K. (2006a). Synthesis, 3, 435-439.],b[Sheibani, H., Islami, M. R., Hassanpour, A. & Hosseininasab, F. A. (2006b). ARKIVOC, 15, 68-75.], 2007[Sheibani, H., Islami, M. R., Hassanpour, A. & Saidi, K. (2007). Phosphorus Sulfur Silicon Relat. Elem. 183, 13-20.]; Pal et al., 2008[Pal, S., Mareddy, J. & Devi, N. S. (2008). J. Braz. Chem. Soc. 19, 1207-1214.]). In this work, we report the synthesis of 2-(4-chloro­phen­yl)-2-oxoethyl 3-bromo­benzoate, (1),[link] which may be used as an effective synthon in organic chemistry.

[Scheme 1]
[Figure 1]
Figure 1
Fig, 1. The structure of (1) with displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

The structure of (1) consists of an aryl ketone moiety linked to an aryl ester unit by the C8 methyl­ene group and both groupings are reasonably planar. There is an r.m.s. deviation of 0.119 Å from the best-fit plane through atoms Br1, C1–C8, O1, O2 [maximum deviation 0.2477 (11) Å for O1] while the plane of the carboxyl­ate unit subtends an angle of 15.5 (2)° to that of the bromo­benzene ring. In addition, the plane of the aryl ketone unit C8–C15, O3, Cl1 has an r.m.s. deviation of 0.010 Å [maximum deviation 0.0171 (15) Å for C15]. The aryl ketone and aryl ester planes are almost orthogonal with an angle of 88.61 (3)° between them. Bond lengths and angles in the mol­ecule are normal and are generally similar to those found in closely related mol­ecules (see for example Fun et al., 2011a[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1528.]; Chidan Kumar et al., 2014c[Chidan Kumar, C. S., Chia, T. S., Chandraju, S., Ooi, C. W., Quah, C. H. & Fun, H.-K. (2014c). Z. Kristallogr. 229, 328-342.]).

3. Supra­molecular features

In the crystal structure, each mol­ecule forms five separate inversion dimers. C8—H8B⋯O1 and C15—H15 O3 hydrogen bonds each generate R22(10) rings, forming zigzag chains along c. Additional C4—H4⋯Br1 contacts also form inversion dimers with R22(8) rings and these combine with the C8—H8B⋯O1 contacts to link alternating pairs of dimers into infinite chains approximately along the ab cell diagonal, Table 1[link], Fig. 2[link]. Inter­estingly, infinite chains of alternating inversion dimers also result from a pair of ππ stacking inter­actions between adjacent 3-bromo­phenyl rings, Cg1⋯Cg1iv = 3.6987 (10) Å, and neighbouring 4-chloro­phenyl rings Cg2⋯Cg2v = 3.8585 (11) Å, in this case along the bc diagonal, Fig. 3[link] [Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively; symmetry codes (iv) −x, 2 − y, −z; (v) 2 − x, 1 − y, 1 − z]. These contacts combine to generate extended layers of mol­ecules parallel to (011), Fig. 4[link], and to stack mol­ecules along the a-axis direction, Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Br1i 0.95 2.97 3.8762 (18) 160
C8—H8B⋯O1ii 0.99 2.42 3.396 (2) 168
C15—H15⋯O3iii 0.95 2.60 3.418 (2) 144
Symmetry codes: (i) -x-1, -y+2, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Chains of linked inversion dimers generated by C—H⋯O and C—H⋯Br hydrogen bonds, drawn as dashed lines.
[Figure 3]
Figure 3
A chain of inversion dimers generated by ππ contacts, dotted green lines, between 3-bromo­phenyl and 4-chloro­phenyl rings. Ring centroids are displayed as coloured spheres.
[Figure 4]
Figure 4
Overall packing of (1) viewed at right angles to (011).
[Figure 5]
Figure 5
Overall packing of (1) viewed along the a-axis direction.

4. Database survey

A search of the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662-671.]) reveals only eight structures with the 2-oxo-2-phenyl­ethyl benzoate skeleton. These include the archetypal 2-oxo-2-phenyl­ethyl benzoate (Fun et al., 2011a[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1528.]), three additional 2-(4-chloro­phen­yl)-2-oxoethyl derivatives (Fun et al., 2011b[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, o1597.]; Chidan Kumar et al., 2014a[Chidan Kumar, C. S., Yohannan Panicker, C., Fun, H.-K., Sheena Mary, Y., Harikumar, B., Chandraju, S., Quah, C. H. & Ooi, C. W. (2014a). Spectrochim. Acta Part A, 126, 208-219.],b[Chidan Kumar, C. S., Yohannan Panicker, C., Fun, H.-K., Sheena Mary, Y., Harikumar, B., Chandraju, S., Quah, C. H. & Ooi, C. W. (2014b). Spectrochim. Acta Part A, 128, 327-336.]) and the corresponding compound 2-(4-bromo­phen­yl)-2-oxoethyl 3-chloro­benzoate with the chloro- and bromo-substituents reversed (Chidan Kumar et al., 2014c[Chidan Kumar, C. S., Chia, T. S., Chandraju, S., Ooi, C. W., Quah, C. H. & Fun, H.-K. (2014c). Z. Kristallogr. 229, 328-342.]). Interestingly, inversion-dimer formation is a feature of the packing in several of these structures.

5. Synthesis and crystallization

The preparation followed a procedure developed for the preparation of a related compound (Khan et al., 2012[Khan, I., Ibrar, A., Korzański, A. & Kubicki, M. (2012). Acta Cryst. E68, o3465.]). Tri­ethyl­amine (4–5 drops) was added at room temperature to a stirred solution of 3-bromo­benzoic acid (1.0 mmol) in N,N-di­methyl­formamide (DMF), followed by a solution of 2-bromo-1-(4-chloro­phen­yl)ethanone (1.0 mmol). The reaction mixture was stirred for 2 h. Progress of the reaction was monitored by TLC. After completion, the mixture was poured into water and the precipitated solid was filtered, dried and recrystallized (EtOAc/hexa­ne) to afford 2-(4-chloro­phen­yl)-2-oxoethyl 3-bromo­benzoate (1). The formation of keto ester (3) was indicated by the appearance of two typical stretching vibrations ν(C=O) ester (1724) and ν(C=O) keto (1698) cm−1, respectively and the disappearance of characteristic IR stretching absorptions ascribable to the carb­oxy­lic acid group in the region of 3400–2400 cm−1. In the 1H NMR spectrum, the signals for the aromatic protons appeared in their respective regions and the disappearance of a characteristic signal for the COOH proton confirmed the formation of the title compound (1). The 13C NMR spectrum displayed two characteristic signals for the keto and ester carbonyl carbon atoms at 190.7 and 165.3 p.p.m., respectively. Yield: 88%; m.p. 372–373 K; Rf: 0.72 (10% EtOAc/hexa­ne); IR (ATR, cm−1): 3089 (Csp2-H), 2933, 2856 (Csp3-H), 1724 (C=O ester), 1698 (C=O ketone), 1585, 1479 (C=C Ar), 1225 (C—O); 1H NMR (300 MHz, CDCl3): δ 8.06–8.03 (m, 1H, Ar-H), 7.94–7.90 (m, 2H, Ar-H), 7.73–7.70 (m, 1H, Ar-H), 7.52–7.48 (m, 2H, Ar-H), 7.46–7.36 (m, 2H, Ar-H), 5.57 (s, 2H, CH2); 13C NMR (75 MHz, CDCl3): δ 190.7, 165.3, 140.6, 134.5, 133.1, 132.4, 132.0, 131.0, 129.3, 129.3, 127.3, 122.1, 66.5.

6. Refinement

All H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methyl­ene H atoms.[link]

Table 2
Experimental details

Crystal data
Chemical formula C15H10BrClO3
Mr 353.59
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 130
a, b, c (Å) 6.6797 (3), 10.0238 (4), 10.7851 (5)
α, β, γ (°) 90.980 (4), 107.573 (4), 92.138 (3)
V3) 687.64 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.19
Crystal size (mm) 0.50 × 0.40 × 0.20
 
Data collection
Diffractometer Agilent SuperNova (Dual, Cu at zero, Atlas CCD)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.505, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10822, 3327, 3062
Rint 0.033
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.05
No. of reflections 3327
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.60
Computer programs: CrysAlis PRO, (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Keto esters, an important class of versatile inter­mediates, have been reported to show anti­tumor activity against Ehrlich cells and HeLa cells (Kinoshita & Umezawa, 1960). They also regulate the flowering times of some plants (Kai et al., 2007). Recent studies have revealed that they also exhibit inhibitory activity against two isozymes of 11β-hy­droxy­steroid de­hydrogenases (11β-HSD1 and 11β-HSD2), which catalyse the inter­conversion of active cortisol and inactive cortisone (Zhang et al., 2009). Di­carbonyl compounds and their derivatives are also among the most versatile and frequently employed synthons in organic synthesis, especially in heterocyclic chemistry (Stanovnik & Svete, 2004; Sheibani et al., 2006a,b, 2007; Pal et al., 2008). In this work, we report the synthesis of 2-(4-chloro­phenyl)-2-oxo­ethyl 3-bromo­benzoate, (1), which may be used as an effective synthon in heterocyclic chemistry.

Structural commentary top

The structure of (1) consists of an aryl ketone moiety linked to an aryl ester unit by the C8 methyl­ene group and both groupings are reasonably planar. There is an r.m.s. deviation of 0.119 Å from the best-fit plane through atoms Br1, C1–C8, O1, O2 [maximum deviation 0.2477 (11) Å for O1] while the plane of the carboxyl­ate unit subtends an angle of 15.5 (2)° to that of the bromo­benzene ring. In addition, the plane of the aryl ketone unit C8–C15, O3, Cl1 has an r.m.s. deviation of 0.010 Å [maximum deviation 0.0171 (15) Å for C15]. The aryl ketone and aryl ester planes are almost orthogonal with an angle of 88.61 (3)° between them. Bond lengths and angles in the molecule are normal and are generally similar to those found in closely related molecules (see for example Fun et al., 2011a; Chidan Kumar et al., 2014c).

Supra­molecular features top

In the crystal structure, each molecule forms three discrete inversion dimers. C8—H8B···O1 and C15—H15 O3 hydrogen bonds each generate R22(10) rings, forming zigzag chains along c. Additional C4—H4···Br1 contacts also form inversion dimers with R22(8) rings and these combine with the C8—H8B···O1 contacts to link alternating pairs of dimers into infinite chains approximately along the ab cell diagonal, Table 1, Fig. 2. Inter­estingly, infinite chains of alternating inversion dimers also result from a pair of ππ stacking inter­actions between adjacent 3-bromo­phenyl rings, Cg1···Cg1iv = 3.6987 (10) Å, and neighbouring 4-chloro­phenyl rings Cg2···Cg2v = 3.8585 (11) Å, in this case along the bc diagonal, Fig. 3 [Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively; symmetry codes (iv) -x, 2-y, -z; (v) 2-x, 1-y, 1-z]. These contacts combine to generate extended layers of molecules parallel to (011), Fig. 4, and to stack molecules along the a-axis direction, Fig. 5.

Database survey top

A search of the Cambridge Crystallographic Database (Groom & Allen, 2014) reveals only eight structures with the 2-oxo-2-phenyl­ethyl benzoate skeleton. These include the archetypal 2-oxo-2-phenyl­ethyl benzoate (Fun et al., 2011a), three additional 2-(4-chloro­phenyl)-2-oxo­ethyl derivatives (Fun et al., 2011b; Chidan Kumar et al., 2014a,b) and the corresponding compound 2-(4-bromo­phenyl)-2-oxo­ethyl 3-chloro­benzoate with the chloro- and bromo-substituents reversed (Chidan Kumar et al., 2014c).

Synthesis and crystallization top

Tri­ethyl­amine (4–5 drops) was added at room temperature to a stirred solution of 3-bromo­benzoic acid (1.0 mmol) in N,N-di­methyl­formamide (DMF), followed by a solution of 2-bromo-1-(4-chloro­phenyl)­ethanone (1.0 mmol). The reaction mixture was stirred for 2 h (Khan et al., 2012). Progress of the reaction was monitored by TLC. After completion, the mixture was poured into water and the precipitated solid was filtered, dried and recrystallized (EtOAc/hexane) to afford 2-(4-chloro­phenyl)-2-oxo­ethyl 3-bromo­benzoate (1). The formation of keto ester (3) was indicated by the appearance of two typical stretching vibrations ν(C=O) ester (1724) and ν(C=O) keto (1698) cm-1, respectively and the disappearance of characteristic IR stretching absorptions ascribable to the carb­oxy­lic acid group in the region of 3400–2400 cm-1. In the 1H NMR spectrum, the signals for the aromatic protons appeared in their respective regions and the disappearance of a characteristic signal for the COOH proton confirmed the formation of the title compound (1). The 13C NMR spectrum displayed two characteristic signals for the keto and ester carbonyl carbon atoms at 190.7 and 165.3 p.p.m., respectively. Yield: 88%; m.p. 372–373 K; Rf: 0.72 (10% EtOAc/hexane); IR (ATR, cm-1): 3089 (Csp2-H), 2933, 2856 (Csp3-H), 1724 (C=O ester), 1698 (C=O ketone), 1585, 1479 (C=C Ar), 1225 (C—O); 1H NMR (300 MHz, CDCl3): δ 8.06–8.03 (m, 1H, Ar—H), 7.94–7.90 (m, 2H, Ar—H), 7.73–7.70 (m, 1H, Ar—H), 7.52–7.48 (m, 2H, Ar—H), 7.46–7.36 (m, 2H, Ar—H), 5.57 (s, 2H, CH2); 13C NMR (75 MHz, CDCl3): δ 190.7, 165.3, 140.6, 134.5, 133.1, 132.4, 132.0, 131.0, 129.3, 129.3, 127.3, 122.1, 66.5.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methyl­ene H atoms.

Related literature top

For related literature, see: Chidan Kumar, Chia, Chandraju, Ooi, Quah & Fun (2014c); Chidan Kumar, Yohannan Panicker, Fun, Sheena Mary, Harikumar, Chandraju, Quah & Ooi (2014a, 2014b); Fun et al. (2011a, 2011b); Kai et al. (2007); Khan et al. (2012); Kinoshita & Umezawa (1960); Pal et al. (2008); Sheibani et al. (2006a, 2006b, 2007); Stanovnik & Svete (2004); Zhang et al. (2009).

Computing details top

Data collection: CrysAlis PRO, (Agilent, 2011); cell refinement: CrysAlis PRO, (Agilent, 2011); data reduction: CrysAlis PRO, (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
Fig, 1. The structure of (1) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Chains of linked inversion dimers generated by C—H···O and C—H···Br hydrogen bonds, drawn as dashed lines.

Fig. 3. A chain of inversion dimers generated by ππ contacts, dotted green lines, between 3-bromophenyl and 4-chlorophenyl rings. Ring centroids are displayed as coloured spheres.

Fig 4. Overall packing of (1) viewed at right angles to (011).

Fig. 5 Overall packing of (1) viewed along the a-axis direction.
2-(4-Chlorophenyl)-2-oxoethyl 3-bromobenzoate top
Crystal data top
C15H10BrClO3Z = 2
Mr = 353.59F(000) = 352
Triclinic, P1Dx = 1.708 Mg m3
a = 6.6797 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0238 (4) ÅCell parameters from 6648 reflections
c = 10.7851 (5) Åθ = 3.2–29.2°
α = 90.980 (4)°µ = 3.19 mm1
β = 107.573 (4)°T = 130 K
γ = 92.138 (3)°Block, colourless
V = 687.64 (5) Å30.50 × 0.40 × 0.20 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
3327 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3062 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω scansθmax = 29.2°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 88
Tmin = 0.504, Tmax = 1.000k = 1313
10822 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.1071P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3327 reflectionsΔρmax = 0.35 e Å3
181 parametersΔρmin = 0.60 e Å3
Crystal data top
C15H10BrClO3γ = 92.138 (3)°
Mr = 353.59V = 687.64 (5) Å3
Triclinic, P1Z = 2
a = 6.6797 (3) ÅMo Kα radiation
b = 10.0238 (4) ŵ = 3.19 mm1
c = 10.7851 (5) ÅT = 130 K
α = 90.980 (4)°0.50 × 0.40 × 0.20 mm
β = 107.573 (4)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
3327 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3062 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 1.000Rint = 0.033
10822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
3327 reflectionsΔρmin = 0.60 e Å3
181 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent (2011), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1452 (3)0.76183 (16)0.09834 (16)0.0153 (3)
C20.0463 (3)0.73719 (17)0.00240 (16)0.0165 (3)
H20.06710.66250.05620.020*
C30.2052 (3)0.82374 (17)0.00564 (16)0.0164 (3)
C40.1816 (3)0.93075 (18)0.08011 (17)0.0200 (4)
H40.29440.98790.07390.024*
C50.0097 (3)0.95371 (18)0.17577 (17)0.0213 (4)
H50.02801.02710.23560.026*
C60.1742 (3)0.87044 (17)0.18485 (17)0.0189 (3)
H60.30570.88740.24960.023*
C70.3120 (3)0.66531 (17)0.10555 (16)0.0169 (3)
C80.6639 (3)0.62000 (17)0.20718 (17)0.0182 (3)
H8A0.80310.66780.23880.022*
H8B0.65730.56870.12660.022*
C90.6368 (3)0.52539 (17)0.30950 (16)0.0176 (3)
C100.8001 (3)0.42573 (17)0.35889 (16)0.0166 (3)
C110.9739 (3)0.41710 (18)0.31370 (17)0.0201 (4)
H110.99190.47700.25020.024*
C121.1213 (3)0.32135 (19)0.36109 (18)0.0231 (4)
H121.24000.31520.33050.028*
C131.0919 (3)0.23586 (18)0.45295 (18)0.0229 (4)
C140.9204 (3)0.24247 (19)0.49972 (18)0.0242 (4)
H140.90290.18210.56300.029*
C150.7757 (3)0.33824 (19)0.45280 (17)0.0215 (4)
H150.65840.34460.48480.026*
O10.28187 (18)0.55756 (12)0.05094 (12)0.0222 (3)
O20.50195 (18)0.71409 (12)0.17991 (12)0.0186 (3)
O30.48450 (19)0.53074 (14)0.34811 (13)0.0257 (3)
Cl11.27582 (8)0.11559 (5)0.51284 (5)0.03372 (13)
Br10.46435 (2)0.79269 (2)0.13927 (2)0.02456 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0181 (8)0.0132 (8)0.0156 (8)0.0008 (6)0.0067 (7)0.0013 (6)
C20.0189 (8)0.0136 (8)0.0178 (8)0.0008 (6)0.0069 (7)0.0010 (6)
C30.0165 (8)0.0160 (9)0.0160 (8)0.0002 (6)0.0039 (7)0.0007 (6)
C40.0244 (9)0.0160 (9)0.0213 (9)0.0033 (7)0.0091 (7)0.0003 (7)
C50.0288 (9)0.0157 (9)0.0196 (9)0.0016 (7)0.0078 (8)0.0043 (7)
C60.0219 (8)0.0167 (9)0.0164 (8)0.0014 (7)0.0035 (7)0.0012 (6)
C70.0166 (8)0.0178 (9)0.0159 (8)0.0010 (6)0.0043 (7)0.0009 (6)
C80.0159 (8)0.0179 (9)0.0206 (9)0.0023 (6)0.0049 (7)0.0008 (7)
C90.0181 (8)0.0192 (9)0.0142 (8)0.0007 (6)0.0035 (7)0.0043 (6)
C100.0179 (8)0.0154 (9)0.0144 (8)0.0023 (6)0.0021 (7)0.0035 (6)
C110.0217 (8)0.0187 (9)0.0204 (9)0.0004 (7)0.0071 (7)0.0001 (7)
C120.0187 (8)0.0241 (10)0.0256 (10)0.0009 (7)0.0055 (8)0.0029 (7)
C130.0258 (9)0.0169 (9)0.0188 (9)0.0036 (7)0.0041 (7)0.0050 (7)
C140.0314 (10)0.0206 (10)0.0181 (9)0.0022 (7)0.0037 (8)0.0015 (7)
C150.0227 (9)0.0238 (10)0.0174 (9)0.0021 (7)0.0058 (7)0.0024 (7)
O10.0204 (6)0.0167 (7)0.0272 (7)0.0018 (5)0.0043 (5)0.0065 (5)
O20.0154 (6)0.0162 (6)0.0218 (6)0.0014 (5)0.0019 (5)0.0017 (5)
O30.0224 (6)0.0325 (8)0.0262 (7)0.0046 (5)0.0127 (6)0.0037 (6)
Cl10.0352 (3)0.0251 (3)0.0316 (3)0.0110 (2)0.0049 (2)0.0012 (2)
Br10.01750 (10)0.02591 (12)0.02626 (12)0.00457 (7)0.00057 (8)0.00652 (8)
Geometric parameters (Å, º) top
C1—C61.391 (2)C8—H8A0.9900
C1—C21.391 (2)C8—H8B0.9900
C1—C71.488 (2)C9—O31.212 (2)
C2—C31.380 (2)C9—C101.490 (2)
C2—H20.9500C10—C111.393 (2)
C3—C41.377 (2)C10—C151.393 (2)
C3—Br11.8995 (16)C11—C121.391 (2)
C4—C51.387 (3)C11—H110.9500
C4—H40.9500C12—C131.374 (3)
C5—C61.386 (2)C12—H120.9500
C5—H50.9500C13—C141.387 (3)
C6—H60.9500C13—Cl11.7429 (18)
C7—O11.202 (2)C14—C151.379 (3)
C7—O21.348 (2)C14—H140.9500
C8—O21.4283 (19)C15—H150.9500
C8—C91.515 (2)
C6—C1—C2120.59 (15)C9—C8—H8B109.7
C6—C1—C7122.35 (15)H8A—C8—H8B108.2
C2—C1—C7117.04 (15)O3—C9—C10121.67 (15)
C3—C2—C1118.46 (16)O3—C9—C8120.25 (15)
C3—C2—H2120.8C10—C9—C8118.08 (14)
C1—C2—H2120.8C11—C10—C15119.46 (16)
C4—C3—C2122.08 (16)C11—C10—C9122.21 (15)
C4—C3—Br1119.44 (13)C15—C10—C9118.33 (15)
C2—C3—Br1118.49 (13)C12—C11—C10120.38 (16)
C3—C4—C5118.85 (16)C12—C11—H11119.8
C3—C4—H4120.6C10—C11—H11119.8
C5—C4—H4120.6C13—C12—C11118.76 (17)
C6—C5—C4120.58 (17)C13—C12—H12120.6
C6—C5—H5119.7C11—C12—H12120.6
C4—C5—H5119.7C12—C13—C14122.01 (17)
C5—C6—C1119.41 (16)C12—C13—Cl1119.05 (15)
C5—C6—H6120.3C14—C13—Cl1118.94 (14)
C1—C6—H6120.3C15—C14—C13118.85 (17)
O1—C7—O2124.03 (15)C15—C14—H14120.6
O1—C7—C1124.27 (15)C13—C14—H14120.6
O2—C7—C1111.69 (15)C14—C15—C10120.54 (17)
O2—C8—C9109.80 (13)C14—C15—H15119.7
O2—C8—H8A109.7C10—C15—H15119.7
C9—C8—H8A109.7C7—O2—C8114.81 (13)
O2—C8—H8B109.7
C6—C1—C2—C30.7 (2)C8—C9—C10—C110.3 (2)
C7—C1—C2—C3179.07 (14)O3—C9—C10—C150.7 (3)
C1—C2—C3—C41.8 (2)C8—C9—C10—C15179.85 (16)
C1—C2—C3—Br1178.47 (11)C15—C10—C11—C120.5 (3)
C2—C3—C4—C51.4 (3)C9—C10—C11—C12179.10 (16)
Br1—C3—C4—C5178.85 (12)C10—C11—C12—C130.0 (3)
C3—C4—C5—C60.1 (3)C11—C12—C13—C140.1 (3)
C4—C5—C6—C11.1 (3)C11—C12—C13—Cl1180.00 (14)
C2—C1—C6—C50.7 (2)C12—C13—C14—C150.3 (3)
C7—C1—C6—C5177.59 (15)Cl1—C13—C14—C15179.61 (14)
C6—C1—C7—O1164.73 (17)C13—C14—C15—C100.8 (3)
C2—C1—C7—O113.6 (2)C11—C10—C15—C140.9 (3)
C6—C1—C7—O215.9 (2)C9—C10—C15—C14178.71 (16)
C2—C1—C7—O2165.76 (13)O1—C7—O2—C89.5 (2)
O2—C8—C9—O35.4 (2)C1—C7—O2—C8171.15 (13)
O2—C8—C9—C10175.45 (14)C9—C8—O2—C775.86 (17)
O3—C9—C10—C11178.89 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Br1i0.952.973.8762 (18)160
C8—H8B···O1ii0.992.423.396 (2)168
C15—H15···O3iii0.952.603.418 (2)144
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Br1i0.952.973.8762 (18)159.5
C8—H8B···O1ii0.992.423.396 (2)168.3
C15—H15···O3iii0.952.603.418 (2)144.2
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrClO3
Mr353.59
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)6.6797 (3), 10.0238 (4), 10.7851 (5)
α, β, γ (°)90.980 (4), 107.573 (4), 92.138 (3)
V3)687.64 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.504, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10822, 3327, 3062
Rint0.033
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.05
No. of reflections3327
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.60

Computer programs: CrysAlis PRO, (Agilent, 2011), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Chemistry Department, University of Otago, for support of the work of JS.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChidan Kumar, C. S., Chia, T. S., Chandraju, S., Ooi, C. W., Quah, C. H. & Fun, H.-K. (2014c). Z. Kristallogr. 229, 328–342.  Google Scholar
First citationChidan Kumar, C. S., Yohannan Panicker, C., Fun, H.-K., Sheena Mary, Y., Harikumar, B., Chandraju, S., Quah, C. H. & Ooi, C. W. (2014a). Spectrochim. Acta Part A, 126, 208–219.  Web of Science CSD CrossRef CAS Google Scholar
First citationChidan Kumar, C. S., Yohannan Panicker, C., Fun, H.-K., Sheena Mary, Y., Harikumar, B., Chandraju, S., Quah, C. H. & Ooi, C. W. (2014b). Spectrochim. Acta Part A, 128, 327–336.  Web of Science CSD CrossRef CAS Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, o1597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKai, K., Yano, F., Suzuki, F., Kitagawa, H., Suzuki, M., Yokoyama, M. & Watanabe, N. (2007). Tetrahedron, 63, 10630–10636.  Web of Science CrossRef CAS Google Scholar
First citationKhan, I., Ibrar, A., Korzański, A. & Kubicki, M. (2012). Acta Cryst. E68, o3465.  CSD CrossRef IUCr Journals Google Scholar
First citationKinoshita, M. & Umezawa, S. (1960). Bull. Chem. Soc. Jpn, 33, 1075–1080.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPal, S., Mareddy, J. & Devi, N. S. (2008). J. Braz. Chem. Soc. 19, 1207–1214.  Web of Science CrossRef CAS Google Scholar
First citationSheibani, H., Islami, M. R., Hassanpour, A. & Hosseininasab, F. A. (2006b). ARKIVOC, 15, 68–75.  CrossRef Google Scholar
First citationSheibani, H., Islami, M. R., Hassanpour, A. & Saidi, K. (2007). Phosphorus Sulfur Silicon Relat. Elem. 183, 13–20.  Web of Science CrossRef Google Scholar
First citationSheibani, H., Mosslemin, M. H., Behzadi, S., Islami, M. R. & Saidi, K. (2006a). Synthesis, 3, 435–439.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanovnik, B. & Svete, J. (2004). Chem. Rev. 104, 2433–2480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Shen, Y., Zhu, H. J., Wang, F., Leng, Y. & Liu, J. K. (2009). J. Antibiot. 62, 239–242.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds