research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-({[(morpholin-4-yl)carbono­thio­yl]sulfan­yl}acet­yl)phenyl benzoate

aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karanataka, India, and bDepartment of Physics, M S Ramaiah Institute of Technology, Bangalore 560 054, Karnataka, India
*Correspondence e-mail: anilgn@msrit.edu

Edited by P. C. Healy, Griffith University, Australia (Received 4 October 2014; accepted 22 October 2014; online 24 October 2014)

In the title compound, C20H19NO4S2, the morpholine ring adopts the expected chair conformation. The central phenyl ring makes dihedral angles of 67.97 (4) and 7.74 (3)°, respectively, with the benzoate phenyl ring and the morpholine mean plane. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains along the b-axis direction. C—H⋯π inter­actions link centrosymmetrically related mol­ecules, reinforcing the three-dimensional structure.

1. Chemical context

The title compound is a di­thio­carbamate ester derivative of 3-(2-bromacet­yl) phenyl benzoate, a key starting material used in the synthesis of phenyl­ephrine, (R)-3-[−1-hy­droxy-2-(methyl­amino)­eth­yl] phenol, which is a selective α1-adrenergic receptor agonist used primarily as a decongestant and as an agent to dilate the pupil and to increase blood pressure. Our current research work is aimed at the synthesis of a series of 3-(2-bromacet­yl) phenyl benzoate di­thio­carbamate ester derivatives. Di­thio­carbamate acid esters exhibit a range of biological effects, including anti-bacterial, anti-fungal and anti-oxidant activity (Hirschelman et al., 2002[Hirschelman, W. H., Kosmeder, J. W. II, Song, L. S., Park, E. J., Moriarty, R. M. & Pezzuto, J. M. (2002). 224th ACS National Meeting: Division of Medicinal Chemistry, 178.]) and inhibition of cardiac hypertrophy (Naoto et al. 2008[Naoto, O., Mariko, O., Takashi, S., Satoshi, K., Atsuko, M., Noriaki, U., Yoshisuke, N., Keishi, K., Masamori, S. & Yushi, K. (2008). PCT Int. Appl. WO 2008029825/A1 20080313.]). Recently, it was found that 5-oxohexyl di­thio­carbamic acid methyl esters are potent phase II enzyme inducers, which could be used as cancer chemo-preventive agents (Scozzafava et al., 2000[Scozzafava, A., Mastrolorenzo, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 1887-1891.]).

[Scheme 1]

2. Structural commentary

In the mol­ecular structure of the title compound,[link] the morpholine ring adopts the expected chair conformation. The phenyl ring makes dihedral angles of 67.97 (4) and 7.74 (3)° respectively with phenyl ring and the morpholine mean plane. This is also reflected in the deviation of the torsion angles C5—S1—C6—C7 = 175.32 (2) and C12—O3—C14—C15 = −178.91 (3)°. Weak intra­molecular C—H⋯S hydrogen bonds exist within the morpholyl di­thio­carbamate moiety (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯S1 0.97 2.41 2.938 (2) 114
C3—H3A⋯S2 0.97 2.56 3.052 (5) 111
C13—H13⋯O4i 0.93 2.43 3.224 (3) 143
C11—H11⋯Cgii 0.93 2.88 3.629 (2) 138
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% displacement ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming zigzag chains along the b axis. C—H⋯π inter­actions link centrosymmetrically related mol­ecules, reinforcing the three-dimensional structure (Fig. 2[link])

[Figure 2]
Figure 2
Packing diagram of the title compound, with C—H⋯O and C—H⋯π inter­actions indicated by dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, updates February 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 2-(4-meth­oxy­phen­yl)-2-oxoethyl di­thio­carbamate gave one hit, namely GEGGUV01 (Jian et al., 2006[Jian, F., Xiao, H., Zhu, C. & Xu, L. (2006). J. Heterocycl. Chem. 43, 925-929.]). A search for 2-oxoethyl di­thio­formate gave two related structures, viz. 2-oxo-2-(2-oxo-2H-chromen-3-yl)ethyl pyrrolidine-1-carbodi­thio­ate (Kumar et al., 2013[Kumar, K. M., Mahabhaleshwaraiah, N. M., Kotresh, O., Roopashree, K. R. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1382.]) and (6-meth­oxy-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate (Devarajegowda et al., 2013[Devarajegowda, H. C., Kumar, K. M., Seenivasa, S., Arunkashi, H. K. & Kotresh, O. (2013). Acta Cryst. E69, o192.]). Inter­estingly, dimer formation via C—H⋯O hydrogen bonds is a feature of the packing in these structures.

5. Synthesis and Crystallization

To a solution of NaOH (1 mmol) in 3 ml water was added to a mixture of morpholine (1 mmol) in ethanol (25 ml). After stirring at room temperature for about 20 min, carbon di­sulfide (1.2 mmol) was added dropwise and the resulting mixture was further stirred at room temperature for 90 min. Then 3-(2-bromacet­yl) phenyl benzoate (1 mmol) was added and stirring was continued. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum and the residue was extracted with di­chloro­methane (2 × 25 ml) and dried over anhydrous MgSO4. The solvent was evaporated and the compound recrystallized from an ethanol–chloro­form mixture (3:1) to give the title compound as colourless crystals in 81% yield.

Off-white solid, IR (KBr) νmax/cm−1: 2857, 3073 (C—H aliphatic and aromatic), 1732 (C=O), 1421, 1680 (C=C), 1264 (C—O), 1228 (C=S), 1061 (C—N). 1H NMR (300 MHz, CDCl3): δ 3.77–3.80 (t, 4H), 4.23–4.43 (t, 4H), 4.91(s, 2H), 7.26–7.47 (m, 1H), 7.48–7.51 (m, 2H), 7.53–7.60 (m, 1H), 7.63–768 (m, 1H), 7.90–7.91 (t, 1H), 7.99–8.02 (d, 1H), 8.20–8.22 (d, 2H); 13C NMR (75 MHz, CDCl3): δ 44.6 (C6), 49.5 (C2, C3), 65.6 (C1, C4), 121.83 (C13), 126.0 (C9), 127.1 (C11), 128.6 (C10), 129.8 (C17, C19), 130.2 (C15, C16, C20), 137.6 (C18), 151.2 (C8), 154.93 (C12), 182.82 (C14), 192.15 (C7), 195.75 (C5); MS m/z: 402.10 [M + H]+. Analysis calculated (%) for C20H19NO4S2: C 59.83, H 4.77, N 3.49, S 15.97%; found: C 59.72, H 4.85, N 3.61, S 15.94.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C20H19NO4S2
Mr 401.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 19.5521 (7), 5.3649 (2), 18.5142 (6)
β (°) 101.816 (2)
V3) 1900.90 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.35 × 0.31 × 0.25
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.887, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 12830, 3539, 2613
Rint 0.024
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.06
No. of reflections 3539
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.22
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

The title compound is a di­thio­carbamate ester derivative of 3-(2-bromacetyl) phenyl benzoate, a key starting material used in the synthesis of phenyl­ephrine, (R)-3-[-1-hy­droxy-2-(methyl­amino)­ethyl] phenol, which is a selective α1-adrenergic receptor agonist used primarily as a decongestant and as an agent to dilate the pupil and to increase blood pressure. Our current research work is aimed at the synthesis of a series of 3-(2-bromacetyl) phenyl benzoate di­thio­carbamate ester derivatives. Di­thio­carbamate acid esters exhibit a range of biological effects, including anti-bacterial, anti-fungal and anti-oxidant activity (Hirschelman et al., 2002) and inhibition of cardiac hypertrophy (Naoto et al. 2008). Recently, it was found that 5-oxo­hexyl di­thio­carbamic acid methyl esters are potent phase II enzyme inducers, which could be used as cancer chemo-preventive agents (Scozzafava et al., 2000).

Structural commentary top

In the molecular structure of the title compound, the morpholine ring adopts the expected chair conformation. The phenyl ring makes dihedral angles of 67.97 (4) and 7.74 (3)° respectively with phenyl ring and the morpholine mean plane. This is also reflected in the deviation of the torsion angles C5—S1—C6—C7 = 175.32 (2) and C12—O3—C14—C15 = -178.91 (3)°. Weak intra­molecular C—H···S hydrogen bonds exist within the morpholyl di­thio­carbamate moiety (Table 1).

Supra­molecular features top

In the crystal, molecules are linked by weak C—H···O hydrogen bonds, forming zigzag chains along the b axis. C—H···π inter­actions link centrosymmetrically related molecules, reinforcing the three-dimensional structure (Fig. 2)

Database survey top

A search of the Cambridge Structural Database (Version 5.35, updates February 2014; Groom & Allen, 2014) for 2-(4-meth­oxy­phenyl)-2-oxo­ethyl di­thio­carbamate gave one hit, namely GEGGUV01 (Jian et al., 2006). A search for 2-oxo­ethyl di­thio­formate gave two related structures, viz. 2-oxo-2-(2-oxo-2H-chromen-3-yl)ethyl pyrrolidine-1-carbodi­thio­ate (Kumar et al., 2013) and (6-meth­oxy-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate (Devarajegowda et al., 2013). Inter­estingly, dimer formation via C—H···O hydrogen bonds is a feature of the packing in these structures.

Synthesis and Crystallization top

To a solution of NaOH (1 mmol) in 3 ml water was added to a mixture of morpholine (1 mmol) in ethanol (25 ml). After stirring at room temperature for about 20 min, carbon di­sulfide (1.2 mmol) was added dropwise and the resulting mixture was further stirred at room temperature for 90 min. Then 3-(2-bromacetyl) phenyl benzoate (1 mmol) was added and stirring was continued. After completion of the reaction (monitored by TLC), the solvent was removed under vacuum and the residue was extracted with di­chloro­methane (2 × 25 ml) and dried over anhydrous MgSO4. The solvent was evaporated and the compound recrystallized from an ethanol–chloro­form mixture (3:1) to give the title compound as colourless crystals in 81% yield.

Off-white solid, IR (KBr) νmax/cm-1: 2857, 3073 (C—H aliphatic and aromatic), 1732 (CO), 1421, 1680 (CC),1264 (C—O), 1228 (CS), 1061 (C—N). 1H NMR (300 MHz, CDCl3): δ 3.77–3.80 (t, 4H), 4.23–4.43 (t, 4H), 4.91(s, 2H), 7.26–7.47 (m, 1H), 7.48–7.51 (m, 2H), 7.53–7.60 (m, 1H), 7.63–768 (m, 1H), 7.90–7.91 (t, 1H), 7.99–8.02 (d, 1H), 8.20–8.22 (d, 2H); 13C NMR (75 MHz, CDCl3): δ 44.6 (C6), 49.5 (C2, C3), 65.6 (C1, C4), 121.83 (C13), 126.0 (C9), 127.1 (C11), 128.6 (C10), 129.8 (C17, C19), 130.2 (C15, C16, C20), 137.6 (C18), 151.2 (C8), 154.93 (C12), 182.82 (C14), 192.15 (C7), 195.75 (C5); MS m/z: 402.10 [M + H]+. Analysis calculated (%) for C20H19NO4S2: C 59.83, H 4.77, N 3.49, S 15.97%; found: C 59.72, H 4.85, N 3.61, S 15.94.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97Å and Uiso(H) = 1.2Ueq(C).

Related literature top

For related literature, see: Groom & Allen (2014); Hirschelman et al. (2002); Jian et al. (2006); Mahesh Kumar, Mahabhaleshwaraiah, Kotresh, Roopashree & Devarajegowda (2013); Naoto et al. (2008); Scozzafava et al. (2000).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound, showing 50% displacement ellipsoids.

Fig. 2. Packing diagram of the title compound, with C—H···O and C—H···π interactions indicated by dashed lines.
3-({[(Morpholin-4-yl)carbonothioyl]sulfanyl}acetyl)phenyl benzoate top
Crystal data top
C20H19NO4S2Z = 4
Mr = 401.48F(000) = 840
Monoclinic, P21/cDx = 1.403 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 19.5521 (7) Åθ = 1.5°
b = 5.3649 (2) ŵ = 0.31 mm1
c = 18.5142 (6) ÅT = 296 K
β = 101.816 (2)°Block, colourless
V = 1900.90 (12) Å30.35 × 0.31 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3539 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2321
Tmin = 0.887, Tmax = 0.934k = 66
12830 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.4768P]
where P = (Fo2 + 2Fc2)/3
3539 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H19NO4S2V = 1900.90 (12) Å3
Mr = 401.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.5521 (7) ŵ = 0.31 mm1
b = 5.3649 (2) ÅT = 296 K
c = 18.5142 (6) Å0.35 × 0.31 × 0.25 mm
β = 101.816 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3539 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2613 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.934Rint = 0.024
12830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3539 reflectionsΔρmin = 0.22 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13247 (3)1.07076 (13)0.54256 (3)0.0473 (2)
S20.23625 (3)1.18442 (16)0.68201 (4)0.0652 (3)
O10.00887 (10)1.6886 (4)0.68361 (10)0.0733 (6)
O20.14049 (8)0.7580 (4)0.42396 (9)0.0697 (6)
O30.42171 (7)0.3229 (3)0.54362 (8)0.0483 (4)
O40.39360 (9)0.0264 (4)0.59595 (10)0.0741 (6)
N10.10421 (9)1.3302 (4)0.65235 (10)0.0531 (6)
C10.00244 (13)1.5923 (6)0.61218 (14)0.0639 (8)
H1A0.02711.70040.58410.077*
H1B0.04651.59190.5880.077*
C20.03069 (12)1.3339 (5)0.61164 (14)0.0614 (8)
H2A0.0031.22050.63470.074*
H2B0.02821.27980.56120.074*
C30.11178 (14)1.4422 (6)0.72615 (13)0.0636 (8)
H3A0.1611.45640.74870.076*
H3B0.08991.33520.75710.076*
C40.07911 (14)1.6908 (6)0.72117 (15)0.0684 (8)
H4A0.08161.75520.77060.082*
H4B0.10531.80270.69590.082*
C50.15653 (11)1.2086 (5)0.63120 (11)0.0413 (5)
C60.20694 (11)0.8751 (5)0.54092 (12)0.0456 (6)
H6A0.24830.97710.54310.055*
H6B0.2150.76480.58330.055*
C70.19298 (11)0.7242 (5)0.47079 (12)0.0452 (6)
C80.24493 (10)0.5309 (4)0.46121 (11)0.0395 (5)
C90.22848 (12)0.3671 (5)0.40227 (11)0.0479 (6)
H90.18570.38080.36960.058*
C100.27482 (12)0.1849 (5)0.39175 (12)0.0526 (7)
H100.2630.0750.35230.063*
C110.33890 (12)0.1638 (5)0.43933 (12)0.0483 (6)
H110.37050.04090.43230.058*
C120.35499 (10)0.3272 (5)0.49695 (11)0.0419 (6)
C130.30942 (10)0.5091 (4)0.50962 (11)0.0414 (5)
H130.32140.6160.54980.05*
C140.43558 (11)0.1310 (5)0.59189 (11)0.0420 (5)
C150.50633 (10)0.1476 (4)0.63896 (11)0.0372 (5)
C160.52631 (11)0.0360 (5)0.69145 (12)0.0453 (6)
H160.49620.16740.6950.054*
C170.59067 (12)0.0250 (5)0.73859 (12)0.0504 (6)
H170.6040.1490.77380.061*
C180.63503 (12)0.1690 (5)0.73352 (13)0.0513 (6)
H180.67830.17720.76560.062*
C190.61594 (12)0.3512 (5)0.68132 (14)0.0541 (7)
H190.64640.48170.6780.065*
C200.55158 (11)0.3418 (5)0.63371 (12)0.0469 (6)
H200.53880.46540.59830.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0349 (3)0.0585 (5)0.0456 (3)0.0066 (3)0.0015 (2)0.0034 (3)
S20.0367 (3)0.0894 (6)0.0619 (4)0.0102 (3)0.0081 (3)0.0198 (4)
O10.0666 (12)0.0761 (15)0.0765 (12)0.0228 (11)0.0129 (10)0.0131 (11)
O20.0453 (10)0.0814 (15)0.0702 (11)0.0143 (10)0.0169 (8)0.0206 (10)
O30.0345 (8)0.0437 (11)0.0624 (9)0.0025 (7)0.0006 (7)0.0083 (8)
O40.0600 (11)0.0719 (15)0.0788 (12)0.0315 (11)0.0128 (9)0.0217 (10)
N10.0410 (11)0.0666 (16)0.0477 (11)0.0127 (10)0.0001 (8)0.0080 (10)
C10.0484 (15)0.071 (2)0.0681 (17)0.0092 (14)0.0027 (12)0.0023 (15)
C20.0393 (13)0.076 (2)0.0649 (15)0.0129 (13)0.0018 (11)0.0099 (14)
C30.0595 (16)0.080 (2)0.0498 (14)0.0117 (15)0.0066 (11)0.0060 (14)
C40.0686 (19)0.069 (2)0.0673 (17)0.0034 (16)0.0121 (14)0.0146 (15)
C50.0359 (11)0.0424 (15)0.0444 (11)0.0010 (10)0.0051 (9)0.0039 (10)
C60.0334 (11)0.0534 (17)0.0481 (12)0.0039 (11)0.0041 (9)0.0035 (11)
C70.0341 (12)0.0490 (17)0.0492 (12)0.0040 (11)0.0004 (9)0.0029 (11)
C80.0315 (11)0.0433 (15)0.0427 (11)0.0051 (10)0.0049 (9)0.0010 (10)
C90.0429 (13)0.0561 (18)0.0417 (12)0.0031 (12)0.0014 (10)0.0037 (11)
C100.0560 (15)0.0570 (19)0.0434 (12)0.0016 (13)0.0064 (11)0.0101 (11)
C110.0477 (13)0.0488 (17)0.0499 (13)0.0060 (11)0.0134 (10)0.0011 (11)
C120.0310 (11)0.0450 (16)0.0485 (12)0.0035 (10)0.0055 (9)0.0031 (10)
C130.0357 (11)0.0413 (15)0.0447 (12)0.0064 (10)0.0024 (9)0.0039 (10)
C140.0400 (12)0.0404 (16)0.0456 (12)0.0030 (11)0.0089 (9)0.0027 (10)
C150.0344 (11)0.0326 (14)0.0449 (11)0.0006 (10)0.0092 (9)0.0050 (10)
C160.0441 (13)0.0379 (15)0.0546 (13)0.0026 (11)0.0121 (10)0.0023 (11)
C170.0482 (14)0.0488 (18)0.0527 (13)0.0085 (12)0.0066 (11)0.0091 (11)
C180.0379 (13)0.0547 (18)0.0571 (14)0.0041 (12)0.0004 (10)0.0041 (12)
C190.0384 (13)0.0465 (18)0.0740 (16)0.0093 (11)0.0039 (11)0.0008 (13)
C200.0410 (13)0.0383 (16)0.0592 (14)0.0014 (11)0.0054 (10)0.0063 (11)
Geometric parameters (Å, º) top
S1—C51.774 (2)C6—H6B0.97
S1—C61.800 (2)C7—C81.487 (3)
S2—C51.653 (2)C8—C91.387 (3)
O1—C11.401 (3)C8—C131.394 (3)
O1—C41.407 (3)C9—C101.374 (3)
O2—C71.214 (2)C9—H90.93
O3—C141.354 (3)C10—C111.381 (3)
O3—C121.410 (2)C10—H100.93
O4—C141.191 (3)C11—C121.367 (3)
N1—C51.338 (3)C11—H110.93
N1—C31.472 (3)C12—C131.374 (3)
N1—C21.480 (3)C13—H130.93
C1—C21.493 (4)C14—C151.479 (3)
C1—H1A0.97C15—C161.382 (3)
C1—H1B0.97C15—C201.383 (3)
C2—H2A0.97C16—C171.378 (3)
C2—H2B0.97C16—H160.93
C3—C41.474 (4)C17—C181.370 (3)
C3—H3A0.97C17—H170.93
C3—H3B0.97C18—C191.371 (3)
C4—H4A0.97C18—H180.93
C4—H4B0.97C19—C201.382 (3)
C6—C71.507 (3)C19—H190.93
C6—H6A0.97C20—H200.93
C5—S1—C6101.33 (10)C8—C7—C6118.02 (18)
C1—O1—C4111.06 (19)C9—C8—C13119.1 (2)
C14—O3—C12116.89 (17)C9—C8—C7118.78 (19)
C5—N1—C3122.22 (19)C13—C8—C7122.1 (2)
C5—N1—C2125.35 (19)C10—C9—C8120.6 (2)
C3—N1—C2111.70 (18)C10—C9—H9119.7
O1—C1—C2112.8 (2)C8—C9—H9119.7
O1—C1—H1A109C9—C10—C11120.4 (2)
C2—C1—H1A109C9—C10—H10119.8
O1—C1—H1B109C11—C10—H10119.8
C2—C1—H1B109C12—C11—C10118.6 (2)
H1A—C1—H1B107.8C12—C11—H11120.7
N1—C2—C1109.3 (2)C10—C11—H11120.7
N1—C2—H2A109.8C11—C12—C13122.4 (2)
C1—C2—H2A109.8C11—C12—O3120.3 (2)
N1—C2—H2B109.8C13—C12—O3117.27 (19)
C1—C2—H2B109.8C12—C13—C8118.9 (2)
H2A—C2—H2B108.3C12—C13—H13120.6
N1—C3—C4110.6 (2)C8—C13—H13120.6
N1—C3—H3A109.5O4—C14—O3122.2 (2)
C4—C3—H3A109.5O4—C14—C15125.4 (2)
N1—C3—H3B109.5O3—C14—C15112.34 (19)
C4—C3—H3B109.5C16—C15—C20119.5 (2)
H3A—C3—H3B108.1C16—C15—C14117.8 (2)
O1—C4—C3113.0 (2)C20—C15—C14122.6 (2)
O1—C4—H4A109C17—C16—C15120.3 (2)
C3—C4—H4A109C17—C16—H16119.8
O1—C4—H4B109C15—C16—H16119.8
C3—C4—H4B109C18—C17—C16119.8 (2)
H4A—C4—H4B107.8C18—C17—H17120.1
N1—C5—S2124.08 (17)C16—C17—H17120.1
N1—C5—S1113.60 (15)C17—C18—C19120.3 (2)
S2—C5—S1122.32 (13)C17—C18—H18119.8
C7—C6—S1108.88 (15)C19—C18—H18119.8
C7—C6—H6A109.9C18—C19—C20120.3 (2)
S1—C6—H6A109.9C18—C19—H19119.9
C7—C6—H6B109.9C20—C19—H19119.9
S1—C6—H6B109.9C19—C20—C15119.7 (2)
H6A—C6—H6B108.3C19—C20—H20120.2
O2—C7—C8121.2 (2)C15—C20—H20120.2
O2—C7—C6120.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···S10.972.412.938 (2)114
C3—H3A···S20.972.563.052 (5)111
C13—H13···O4i0.932.433.224 (3)143
C11—H11···Cgii0.932.883.629 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···S10.97002.41002.938 (2)114.00
C3—H3A···S20.97002.56003.052 (5)111.00
C13—H13···O4i0.93002.43003.224 (3)143.00
C11—H11···Cgii0.93002.88003.629 (2)138.00
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H19NO4S2
Mr401.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.5521 (7), 5.3649 (2), 18.5142 (6)
β (°) 101.816 (2)
V3)1900.90 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.31 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.887, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
12830, 3539, 2613
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.06
No. of reflections3539
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1993), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the University's Sophisticated Instrumentation Centre (USIC), Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. SPA is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevarajegowda, H. C., Kumar, K. M., Seenivasa, S., Arunkashi, H. K. & Kotresh, O. (2013). Acta Cryst. E69, o192.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHirschelman, W. H., Kosmeder, J. W. II, Song, L. S., Park, E. J., Moriarty, R. M. & Pezzuto, J. M. (2002). 224th ACS National Meeting: Division of Medicinal Chemistry, 178.  Google Scholar
First citationJian, F., Xiao, H., Zhu, C. & Xu, L. (2006). J. Heterocycl. Chem. 43, 925–929.  CrossRef CAS Google Scholar
First citationKumar, K. M., Mahabhaleshwaraiah, N. M., Kotresh, O., Roopashree, K. R. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o1382.  CSD CrossRef IUCr Journals Google Scholar
First citationNaoto, O., Mariko, O., Takashi, S., Satoshi, K., Atsuko, M., Noriaki, U., Yoshisuke, N., Keishi, K., Masamori, S. & Yushi, K. (2008). PCT Int. Appl. WO 2008029825/A1 20080313.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationScozzafava, A., Mastrolorenzo, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 1887–1891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds