organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of difenoconazole

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 9 October 2014; accepted 13 October 2014; online 24 October 2014)

In the title compound difenoconazole [systematic name: 1-({2-[2-chloro-4-(4-chloro­phen­oxy)phen­yl]-4-methyl-1,3-dioxolan-2-yl}meth­yl)-1H-1,2,4-triazole], C19H17Cl2N3O3, the dihedral angle between the planes of the 4-chloro­phenyl and 2-chloro­phenyl rings is 79.34 (9)°, while the dihedral angle between the planes of the triazole ring and the dioxolanyl group is 59.45 (19)°. In the crystal, pairs of C—H⋯N hydrogen bonds link adjacent mol­ecules, forming dimers with R22(6) loops. In addition, the dimers are linked by C—H⋯O hydrogen bonds, resulting in a three-dimensional architecture. Disorder was modeled for one C atom of the dioxolanyl group over two sets of sites with an occupancy ratio of 0.566 (17):0.434 (17).

1. Related literature

For information on the toxicity and fungicidal properties of the title compound, see: Dong et al. (2013[Dong, F., Li, J., Chankvetadze, B., Cheng, Y., Xu, J., Liu, X., Li, Y., Chen, X., Bertucci, C., Tedesco, D., Zanasi, R. & Zheng, Y. (2013). Environ. Sci. Technol. 47, 3386-3394.]); Mu et al. (2013[Mu, X., Pang, S., Sun, X., Gao, J., Chen, J., Chen, X., Li, X. & Wang, C. (2013). Environ. Pollut. 175, 147-157.]). For a related crystal structure, see: Jeon et al. (2013[Jeon, Y., Kim, J., Cho, S. & Kim, T. H. (2013). Acta Cryst. E69, o1206.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H17Cl2N3O3

  • Mr = 406.26

  • Monoclinic, C 2/c

  • a = 25.6913 (13) Å

  • b = 10.0220 (4) Å

  • c = 14.6417 (6) Å

  • β = 93.439 (4)°

  • V = 3763.1 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 K

  • 0.50 × 0.42 × 0.34 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.885

  • 28161 measured reflections

  • 3694 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.06

  • 3694 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.48 3.314 (3) 146
C12—H12⋯O2ii 0.95 2.40 3.226 (3) 145
C17—H17A⋯O1iii 0.99 2.58 3.378 (3) 138
C18—H18⋯N3iv 0.95 2.57 3.323 (4) 136
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Difenoconazole, C19H17Cl2N3O3, is a member of the triazoles group of fungicides and it has been used for the control of fungal diseases on fruits, vegetables, cereals, and other field crops (Dong et al., 2013; Mu et al., 2013). The structure of this compound is reported herein. In this compound (Fig. 1), the dihedral angle between the 4-chlorophenyl ring and the 2-chlorophenyl ring is 79.34 (9)°, while the dihedral angle between the triazole ring and dioxolanyl group plane is 59.45 (19)°. Disorder was modeled for one C atom (C15) of the dioxolanyl group group over two sets of sites with an occupancy ratio of 0.566 (17):0.434 (17). All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Jeon et al., 2013).

In the crystal lattice (Fig. 2, Table 1), two C18—H18···N3 hydrogen bonds link adjacent molecules, forming dimers with R22(6) loops. In addition, the dimers linked by C6—H6···O3, C12—H12···O2, and C17—H17A···O1 hydrogen bonds, resulting in a three-dimensional architecture.

Related literature top

For information on the toxicity and fungicidal properties of the title compound, see: Dong et al. (2013); Mu et al. (2013). For a related crystal structure, see: Jeon et al. (2013).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

During refinement, the C15 atom of the dioxolanyl group was disordered and was refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.566 (17) and 0.434 (17)]. All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for Csp3—H, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H, and d(C—H) = 1.00 Å, Uiso = 1.5Ueq(C) for Csp3—H.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Only atoms of the major disorder components are shown.

Fig. 2. Crystal packing of the title compound with C—H···N and C—H···O hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity, except H atoms of hydrogen bonds. Only atoms of the major disorder components are shown.
1-({2-[2-Chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole top
Crystal data top
C19H17Cl2N3O3F(000) = 1680
Mr = 406.26Dx = 1.434 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9891 reflections
a = 25.6913 (13) Åθ = 2.2–27.5°
b = 10.0220 (4) ŵ = 0.37 mm1
c = 14.6417 (6) ÅT = 173 K
β = 93.439 (4)°Block, colourless
V = 3763.1 (3) Å30.50 × 0.42 × 0.34 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3694 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3131
Tmin = 0.837, Tmax = 0.885k = 1211
28161 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0826P)2 + 11.4923P]
where P = (Fo2 + 2Fc2)/3
3694 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C19H17Cl2N3O3V = 3763.1 (3) Å3
Mr = 406.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.6913 (13) ŵ = 0.37 mm1
b = 10.0220 (4) ÅT = 173 K
c = 14.6417 (6) Å0.50 × 0.42 × 0.34 mm
β = 93.439 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3694 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3251 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.885Rint = 0.040
28161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0826P)2 + 11.4923P]
where P = (Fo2 + 2Fc2)/3
3694 reflectionsΔρmax = 1.08 e Å3
254 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.42744 (2)0.49115 (6)0.12241 (5)0.0266 (2)
Cl20.82170 (3)0.20023 (10)0.20260 (9)0.0669 (4)
O10.62242 (7)0.48045 (19)0.13830 (15)0.0310 (5)
O20.39803 (7)0.19880 (19)0.13311 (13)0.0278 (4)
O30.44578 (7)0.04892 (18)0.05807 (14)0.0310 (5)
N10.35985 (8)0.1646 (2)0.04986 (15)0.0238 (5)
N20.35747 (10)0.0522 (3)0.10262 (18)0.0351 (6)
N30.27774 (9)0.1059 (2)0.05524 (16)0.0311 (5)
C10.48411 (10)0.2656 (3)0.08715 (18)0.0234 (5)
C20.48477 (10)0.4006 (2)0.11281 (17)0.0217 (5)
C30.53104 (10)0.4691 (3)0.13124 (17)0.0232 (5)
H30.53050.56000.14960.028*
C40.57807 (10)0.4041 (3)0.12269 (18)0.0241 (5)
C50.57897 (10)0.2708 (3)0.09724 (19)0.0280 (6)
H50.61120.22600.09170.034*
C60.53236 (10)0.2042 (3)0.08011 (19)0.0274 (6)
H60.53320.11290.06280.033*
C70.66965 (10)0.4125 (3)0.15259 (19)0.0246 (5)
C80.70587 (12)0.4212 (3)0.0878 (2)0.0368 (7)
H80.69850.47040.03310.044*
C90.75346 (12)0.3571 (3)0.1033 (3)0.0446 (8)
H90.77920.36250.05960.054*
C100.76287 (11)0.2854 (3)0.1831 (2)0.0372 (7)
C110.72675 (12)0.2774 (3)0.2478 (2)0.0337 (7)
H110.73390.22730.30220.040*
C120.67983 (11)0.3430 (3)0.23296 (19)0.0308 (6)
H120.65470.34040.27790.037*
C130.43413 (10)0.1863 (2)0.06428 (18)0.0235 (5)
C140.39958 (15)0.0777 (3)0.1848 (2)0.0465 (8)
H14A0.36460.05590.20530.056*0.566 (17)
H14B0.42410.08600.23930.056*0.566 (17)
H14C0.40470.09700.25100.056*0.434 (17)
H14D0.36660.02740.17380.056*0.434 (17)
C150.4172 (4)0.0259 (7)0.1230 (6)0.042 (3)0.566 (17)
H150.38510.05940.08830.064*0.566 (17)
C15'0.4417 (4)0.0044 (8)0.1547 (6)0.040 (3)0.434 (17)
H15'0.47360.03830.18990.059*0.434 (17)
C160.4442 (2)0.1428 (4)0.1591 (3)0.0714 (13)
H16A0.47710.15340.12930.107*0.566 (17)
H16B0.42230.22180.14720.107*0.566 (17)
H16C0.45140.13250.22520.107*0.566 (17)
H16D0.45030.17840.09830.107*0.434 (17)
H16E0.41110.17770.17920.107*0.434 (17)
H16F0.47270.16990.20250.107*0.434 (17)
C170.40879 (10)0.2322 (3)0.02759 (18)0.0245 (5)
H17A0.40260.32960.02540.029*
H17B0.43300.21480.07640.029*
C180.31254 (10)0.1939 (3)0.02307 (18)0.0248 (5)
H180.30480.26800.01420.030*
C190.30749 (12)0.0227 (3)0.1031 (2)0.0357 (7)
H190.29320.05240.13510.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0242 (3)0.0184 (3)0.0374 (4)0.0054 (2)0.0048 (3)0.0025 (2)
Cl20.0336 (5)0.0520 (6)0.1140 (9)0.0139 (4)0.0048 (5)0.0196 (5)
O10.0219 (9)0.0197 (10)0.0513 (13)0.0017 (7)0.0017 (8)0.0011 (8)
O20.0288 (10)0.0241 (10)0.0310 (10)0.0005 (8)0.0061 (8)0.0041 (7)
O30.0271 (10)0.0141 (9)0.0518 (13)0.0024 (7)0.0020 (8)0.0014 (8)
N10.0232 (11)0.0182 (11)0.0298 (12)0.0005 (8)0.0003 (8)0.0026 (8)
N20.0320 (13)0.0267 (13)0.0462 (15)0.0009 (10)0.0000 (11)0.0134 (11)
N30.0256 (12)0.0322 (13)0.0350 (13)0.0012 (10)0.0010 (9)0.0043 (10)
C10.0239 (13)0.0178 (12)0.0283 (13)0.0020 (10)0.0007 (10)0.0001 (10)
C20.0234 (12)0.0173 (12)0.0247 (13)0.0045 (10)0.0039 (10)0.0013 (9)
C30.0271 (13)0.0150 (12)0.0278 (13)0.0011 (10)0.0036 (10)0.0015 (10)
C40.0231 (13)0.0210 (13)0.0280 (13)0.0014 (10)0.0013 (10)0.0025 (10)
C50.0240 (13)0.0230 (14)0.0370 (15)0.0055 (10)0.0004 (11)0.0014 (11)
C60.0261 (13)0.0181 (13)0.0377 (15)0.0032 (10)0.0000 (11)0.0027 (10)
C70.0193 (12)0.0183 (12)0.0359 (14)0.0016 (10)0.0004 (10)0.0001 (10)
C80.0359 (16)0.0347 (16)0.0406 (17)0.0062 (13)0.0089 (13)0.0149 (13)
C90.0311 (16)0.0447 (19)0.060 (2)0.0059 (14)0.0187 (14)0.0165 (16)
C100.0263 (14)0.0254 (15)0.059 (2)0.0010 (11)0.0044 (13)0.0050 (13)
C110.0417 (16)0.0247 (14)0.0331 (15)0.0042 (12)0.0099 (12)0.0021 (11)
C120.0369 (15)0.0255 (14)0.0303 (14)0.0037 (12)0.0047 (11)0.0011 (11)
C130.0236 (12)0.0135 (12)0.0336 (14)0.0032 (10)0.0036 (10)0.0013 (10)
C140.070 (2)0.0269 (16)0.0443 (19)0.0014 (16)0.0185 (16)0.0100 (13)
C150.044 (5)0.025 (3)0.059 (5)0.004 (3)0.011 (4)0.009 (3)
C15'0.040 (5)0.023 (4)0.052 (5)0.012 (3)0.023 (4)0.007 (3)
C160.106 (4)0.035 (2)0.074 (3)0.006 (2)0.008 (3)0.0103 (19)
C170.0224 (12)0.0213 (13)0.0300 (14)0.0023 (10)0.0038 (10)0.0015 (10)
C180.0233 (12)0.0229 (13)0.0281 (13)0.0023 (10)0.0012 (10)0.0018 (10)
C190.0316 (15)0.0247 (15)0.0497 (18)0.0032 (12)0.0065 (13)0.0059 (12)
Geometric parameters (Å, º) top
Cl1—C21.743 (2)C8—H80.9500
Cl2—C101.744 (3)C9—C101.380 (5)
O1—C41.380 (3)C9—H90.9500
O1—C71.396 (3)C10—C111.367 (5)
O2—C131.416 (3)C11—C121.379 (4)
O2—C141.429 (4)C11—H110.9500
O3—C131.413 (3)C12—H120.9500
O3—C151.445 (6)C13—C171.530 (4)
O3—C15'1.493 (9)C14—C15'1.401 (10)
N1—C181.332 (3)C14—C151.467 (8)
N1—N21.365 (3)C14—H14A0.9900
N1—C171.448 (3)C14—H14B0.9900
N2—C191.317 (4)C14—H14C0.9900
N3—C181.322 (4)C14—H14D0.9900
N3—C191.354 (4)C15—C161.445 (8)
C1—C61.394 (4)C15—H151.0000
C1—C21.404 (4)C15'—C161.478 (9)
C1—C131.530 (3)C15'—H15'1.0000
C2—C31.385 (4)C16—H16A0.9800
C3—C41.385 (4)C16—H16B0.9800
C3—H30.9500C16—H16C0.9800
C4—C51.387 (4)C16—H16D0.9800
C5—C61.381 (4)C16—H16E0.9800
C5—H50.9500C16—H16F0.9800
C6—H60.9500C17—H17A0.9900
C7—C81.371 (4)C17—H17B0.9900
C7—C121.379 (4)C18—H180.9500
C8—C91.388 (4)C19—H190.9500
C4—O1—C7117.1 (2)O2—C14—H14C110.5
C13—O2—C14107.6 (2)C15—C14—H14C135.6
C13—O3—C15110.2 (3)H14A—C14—H14C79.4
C13—O3—C15'101.7 (4)H14B—C14—H14C32.2
C15—O3—C15'32.3 (3)C15'—C14—H14D110.5
C18—N1—N2109.7 (2)O2—C14—H14D110.5
C18—N1—C17128.8 (2)C15—C14—H14D80.3
N2—N1—C17121.5 (2)H14A—C14—H14D32.1
C19—N2—N1101.5 (2)H14B—C14—H14D132.1
C18—N3—C19101.8 (2)H14C—C14—H14D108.7
C6—C1—C2116.7 (2)O3—C15—C16114.2 (5)
C6—C1—C13119.5 (2)O3—C15—C14103.1 (5)
C2—C1—C13123.8 (2)C16—C15—C14120.5 (7)
C3—C2—C1121.8 (2)O3—C15—H15106.0
C3—C2—Cl1116.47 (19)C16—C15—H15106.0
C1—C2—Cl1121.8 (2)C14—C15—H15106.0
C2—C3—C4119.5 (2)C14—C15'—C16122.8 (8)
C2—C3—H3120.3C14—C15'—O3103.9 (5)
C4—C3—H3120.3C16—C15'—O3109.5 (6)
O1—C4—C3116.1 (2)C14—C15'—H15'106.5
O1—C4—C5123.5 (2)C16—C15'—H15'106.5
C3—C4—C5120.4 (2)O3—C15'—H15'106.5
C6—C5—C4119.1 (2)C15—C16—C15'32.5 (3)
C6—C5—H5120.5C15—C16—H16A109.5
C4—C5—H5120.5C15'—C16—H16A97.2
C5—C6—C1122.6 (2)C15—C16—H16B109.5
C5—C6—H6118.7C15'—C16—H16B140.9
C1—C6—H6118.7H16A—C16—H16B109.5
C8—C7—C12121.4 (3)C15—C16—H16C109.5
C8—C7—O1119.0 (2)C15'—C16—H16C86.7
C12—C7—O1119.5 (2)H16A—C16—H16C109.5
C7—C8—C9119.0 (3)H16B—C16—H16C109.5
C7—C8—H8120.5C15—C16—H16D93.6
C9—C8—H8120.5C15'—C16—H16D109.5
C10—C9—C8119.2 (3)H16A—C16—H16D50.7
C10—C9—H9120.4H16B—C16—H16D70.5
C8—C9—H9120.4H16C—C16—H16D154.7
C11—C10—C9121.7 (3)C15—C16—H16E89.7
C11—C10—Cl2118.4 (2)C15'—C16—H16E109.5
C9—C10—Cl2120.0 (3)H16A—C16—H16E151.8
C10—C11—C12119.1 (3)H16B—C16—H16E42.9
C10—C11—H11120.5H16C—C16—H16E81.7
C12—C11—H11120.5H16D—C16—H16E109.5
C7—C12—C11119.6 (3)C15—C16—H16F141.8
C7—C12—H12120.2C15'—C16—H16F109.5
C11—C12—H12120.2H16A—C16—H16F68.1
O3—C13—O2106.4 (2)H16B—C16—H16F106.8
O3—C13—C17108.5 (2)H16C—C16—H16F45.4
O2—C13—C17109.7 (2)H16D—C16—H16F109.5
O3—C13—C1110.0 (2)H16E—C16—H16F109.5
O2—C13—C1112.0 (2)N1—C17—C13112.0 (2)
C17—C13—C1110.1 (2)N1—C17—H17A109.2
C15'—C14—O2106.0 (4)C13—C17—H17A109.2
C15'—C14—C1533.0 (3)N1—C17—H17B109.2
O2—C14—C15105.9 (3)C13—C17—H17B109.2
C15'—C14—H14A135.5H17A—C17—H17B107.9
O2—C14—H14A110.6N3—C18—N1111.0 (2)
C15—C14—H14A110.6N3—C18—H18124.5
C15'—C14—H14B80.2N1—C18—H18124.5
O2—C14—H14B110.6N2—C19—N3116.1 (3)
C15—C14—H14B110.6N2—C19—H19122.0
H14A—C14—H14B108.7N3—C19—H19122.0
C15'—C14—H14C110.5
C18—N1—N2—C190.1 (3)C6—C1—C13—O313.0 (3)
C17—N1—N2—C19178.1 (2)C2—C1—C13—O3169.0 (2)
C6—C1—C2—C30.7 (4)C6—C1—C13—O2131.2 (2)
C13—C1—C2—C3178.8 (2)C2—C1—C13—O250.8 (3)
C6—C1—C2—Cl1178.9 (2)C6—C1—C13—C17106.5 (3)
C13—C1—C2—Cl10.8 (4)C2—C1—C13—C1771.5 (3)
C1—C2—C3—C41.2 (4)C13—O2—C14—C15'8.6 (6)
Cl1—C2—C3—C4178.40 (19)C13—O2—C14—C1525.8 (6)
C7—O1—C4—C3164.5 (2)C13—O3—C15—C16147.7 (6)
C7—O1—C4—C517.3 (4)C15'—O3—C15—C1668.0 (10)
C2—C3—C4—O1177.3 (2)C13—O3—C15—C1415.2 (8)
C2—C3—C4—C51.0 (4)C15'—O3—C15—C1464.5 (9)
O1—C4—C5—C6177.8 (2)C15'—C14—C15—O370.5 (8)
C3—C4—C5—C60.3 (4)O2—C14—C15—O324.6 (8)
C4—C5—C6—C10.1 (4)C15'—C14—C15—C1658.2 (11)
C2—C1—C6—C50.0 (4)O2—C14—C15—C16153.3 (6)
C13—C1—C6—C5178.2 (3)O2—C14—C15'—C16153.1 (7)
C4—O1—C7—C8111.7 (3)C15—C14—C15'—C1658.4 (10)
C4—O1—C7—C1271.1 (3)O2—C14—C15'—O328.4 (8)
C12—C7—C8—C90.8 (5)C15—C14—C15'—O366.2 (7)
O1—C7—C8—C9178.0 (3)C13—O3—C15'—C1437.8 (7)
C7—C8—C9—C100.6 (5)C15—O3—C15'—C1471.6 (9)
C8—C9—C10—C110.9 (5)C13—O3—C15'—C16170.7 (6)
C8—C9—C10—Cl2178.2 (3)C15—O3—C15'—C1661.3 (8)
C9—C10—C11—C120.2 (5)O3—C15—C16—C15'68.7 (9)
Cl2—C10—C11—C12179.3 (2)C14—C15—C16—C15'54.9 (11)
C8—C7—C12—C112.0 (4)C14—C15'—C16—C1561.5 (10)
O1—C7—C12—C11179.1 (2)O3—C15'—C16—C1560.7 (8)
C10—C11—C12—C71.6 (4)C18—N1—C17—C1383.7 (3)
C15—O3—C13—O20.1 (6)N2—N1—C17—C1394.0 (3)
C15'—O3—C13—O232.6 (5)O3—C13—C17—N162.6 (3)
C15—O3—C13—C17118.1 (6)O2—C13—C17—N153.3 (3)
C15'—O3—C13—C17150.5 (5)C1—C13—C17—N1177.0 (2)
C15—O3—C13—C1121.5 (5)C19—N3—C18—N10.2 (3)
C15'—O3—C13—C189.0 (5)N2—N1—C18—N30.1 (3)
C14—O2—C13—O316.2 (3)C17—N1—C18—N3177.8 (2)
C14—O2—C13—C17133.3 (2)N1—N2—C19—N30.2 (4)
C14—O2—C13—C1104.1 (3)C18—N3—C19—N20.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.483.314 (3)146
C12—H12···O2ii0.952.403.226 (3)145
C17—H17A···O1iii0.992.583.378 (3)138
C18—H18···N3iv0.952.573.323 (4)136
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z; (iv) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.483.314 (3)145.9
C12—H12···O2ii0.952.403.226 (3)145.3
C17—H17A···O1iii0.992.583.378 (3)137.9
C18—H18···N3iv0.952.573.323 (4)136.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1B3003337).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, F., Li, J., Chankvetadze, B., Cheng, Y., Xu, J., Liu, X., Li, Y., Chen, X., Bertucci, C., Tedesco, D., Zanasi, R. & Zheng, Y. (2013). Environ. Sci. Technol. 47, 3386–3394.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJeon, Y., Kim, J., Cho, S. & Kim, T. H. (2013). Acta Cryst. E69, o1206.  CSD CrossRef IUCr Journals Google Scholar
First citationMu, X., Pang, S., Sun, X., Gao, J., Chen, J., Chen, X., Li, X. & Wang, C. (2013). Environ. Pollut. 175, 147–157.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds