research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Comparison of crystal structures of 4-(benzo[b]thio­phen-2-yl)-5-(3,4,5-tri­meth­­oxy­phen­yl)-2H-1,2,3-triazole and 4-(benzo[b]thio­phen-2-yl)-2-methyl-5-(3,4,5-tri­meth­­oxy­phen­yl)-2H-1,2,3-triazole

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and bDepartment of Chemistry, University of Kentucky, Lexington KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu

Edited by P. C. Healy, Griffith University, Australia (Received 16 October 2014; accepted 20 October 2014; online 24 October 2014)

The title compound, C19H17N3O3S (I), was prepared by a [3 + 2]cyclo­addition azide condensation reaction using sodium azide and L-proline as a Lewis base catalyst. N-Methyl­ation of compound (I) using CH3I gave compound (II), C20H19N3O3S. The benzo­thio­phene ring systems in (I) and (II) are almost planar, with r.m.s deviations from the mean plane = 0.0205 (14) in (I) and 0.016 (2) Å in (II). In (I) and (II), the triazole rings make dihedral angles of 32.68 (5) and 10.43 (8)°, respectively, with the mean planes of the benzo­thio­phene ring systems. The trimeth­oxy phenyl rings make dihedral angles with the benzo­thio­phene rings of 38.48 (4) in (I) and 60.43 (5)° in (II). In the crystal of (I), the mol­ecules are linked into chains by N—H⋯O hydrogen bonds with R21(5) ring motifs. After the N-methyl­ation of structure (I), no hydrogen-bonding inter­actions were observed for structure (II). The crystal structure of (II) has a minor component of disorder that corresponds to a 180° flip of the benzo­thio­phene ring system [occupancy ratio 0.9363 (14):0.0637 (14)].

1. Chemical context

In continuation of our work on the development of benzo­thio­phene cyano combretastatin A-4 analogs as anti-cancer agents (Penthala et al., 2013[Penthala, N. R., Sonar, V. N., Horn, J., Leggas, M., Yadlapalli, K. B. J. S. & Crooks, P. A. (2013). Med. Chem. Commun. 4, 1073-1078.]), we have synthesized a series of novel CA-4 analogs by constructing a triazole ring structure (I)[link] by chemical modification of the cyano group on the stilbene unit of cyano-CA-4 analogs utilizing a [3 + 2]cyclo­addition azide condensation reaction with sodium azide in the presence of L-proline Lewis base as catalyst. This chemical modification is essential to restrict the tendency toward cis–trans isomerization of the cyano-stilbene moiety in cyano-CA-4 analogs (Penthala et al., 2013[Penthala, N. R., Sonar, V. N., Horn, J., Leggas, M., Yadlapalli, K. B. J. S. & Crooks, P. A. (2013). Med. Chem. Commun. 4, 1073-1078.]). To further check the position of the hydrogen atom in the triazole ring system in (I)[link], an N-methyl­ation reaction was carried out on (I)[link] using CH3I, resulting in compound (II)[link].

[Scheme 1]

2. Structural commentary

In order to obtain detailed information on the structural conformations of (I)[link] and (II)[link] for analysis of structure–activity relationships (SAR), including the position of the hydrogen atom in the triazole ring system of (I)[link] and the position of methyl­ation on the triazole ring system in (II)[link], we determined the X-ray crystal structures of (I)[link] and (II)[link]; see Figs. 1[link] and 2[link], respectively.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], with displacement ellipsoids drawn at the 50% probability level.

Selected geometric parameters are given in Tables 1[link] and 2[link] for (I)[link] and (II)[link], respectively. The benzo­thio­phene rings are almost planar with r.m.s deviations from the mean plane of 0.0205 (14) in (I)[link] and 0.016 (2) Å in (II)[link], with bond distances and angles comparable with those reported for other benzo­thio­phene derivatives (Sonar et al., 2007[Sonar, V. N., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. C63, o743-o745.]) and triazole analogs (Madadi et al., 2014[Madadi, N. R., Penthala, N. R., Bommagani, S., Parkin, S. & Crooks, P. A. (2014). Acta Cryst. E70, o1128-o1129.]). The triazole rings make dihedral angles of 32.68 (5)° and 10.43 (8)°, respectively, in (I)[link] and (II)[link] with the mean plane of the benzo­thio­phene ring systems. The tri­meth­oxy­phenyl rings make dihedral angles of 38.48 (4) in (I)[link] and 60.43 (5)° in (II)[link] with the benzo­thio­phene ring systems. In both compounds (I)[link] and (II)[link], deviations from ideal geometry are observed in the bond angles C1—S1—C8, N2—N1—C9, N2—N3—C10, which are compressed, and C1—C9—C10, C9—C10—C11, C2—C3—C4, which are expanded (see Tables 1[link] and 2[link]). After N-methyl­ation, no significant difference is observed for the N1—N2—N3 bond angle [116.2 (1) and 115.9 (1)°, respectively, for (I)[link] and (II)]. The crystal structure of (II)[link] has a minor component of disorder that corresponds to a 180° flip of the benzo­thio­phene ring system [occupancy ratio 0.9363 (14):0.0637 (14)].

Table 1
Selected geometric parameters (Å, °) for (I)[link]

N1—N2 1.324 (2) N2—H2N 0.87 (2)
N1—C9 1.343 (2) N3—C10 1.345 (2)
N2—N3 1.330 (2)    
       
C8—S1—C1 91.50 (8) C10—C9—C1 131.64 (14)
N2—N1—C9 103.74 (13) C9—C10—C11 131.16 (14)
N2—N3—C10 103.74 (13) O1—C13—C14 114.89 (14)
C4—C3—C2 129.50 (16)    

Table 2
Selected geometric parameters (Å, °) for (II)[link]

N1—N2 1.3266 (15) N2—C20 1.4527 (16)
N1—C9 1.3477 (16) N3—C10 1.3450 (16)
N2—N3 1.3279 (15)    
       
N1—N2—N3 115.92 (10) C4′—C3′—C2′ 132 (2)
C2—C1—C9 129.94 (17) C7′—C8′—S1′ 129 (2)
C8—S1—C1 91.33 (8) C1′—C9—C10 127.3 (11)
C4—C3—C2 129.79 (17) C10—C9—C1 132.41 (13)
C9—C1′—S1′ 128.0 (18) C9—C10—C11 132.90 (12)
C8′—S1′—C1′ 95.8 (12)    

3. Supra­molecular features

Hydrogen bonding and the mode of packing of (I)[link] is illus­trated in Fig. 3[link], and the mode of packing of (II)[link] is illustrated in Fig. 4[link]. In the structure of (I)[link], the mol­ecules are linked by inter­molecular hydrogen bonds (N2—H2N⋯O2 and N2—H2N⋯O3), forming [R_{1}^{2}](5) ring motifs (Table 3[link]), which propagate as chains along the [101] direction. Contacts between adjacent chains form two-dimensional pleated-sheet networks in the ac plane. No significant hydrogen-bonding inter­actions were found in the structure of (II)[link].

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.87 (2) 2.16 (2) 2.9381 (18) 147.6 (18)
N2—H2N⋯O3i 0.87 (2) 2.20 (2) 2.8503 (18) 130.8 (17)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Hydrogen bonding in the crystal structure of (I)[link], viewed along the b axis. Dashed lines represent hydrogen bonds, which join mol­ecules into chains along the [101] direction.
[Figure 4]
Figure 4
Crystal packing of (II)[link], as viewed along the b axis.

4. Database survey

A search of the 2014 release of the Cambridge Structural Database on unit-cell dimensions for (I)[link] and (II)[link] revealed four triazole structures (HOZZAY, UPEWAO, SAFZEG & VUSNEC), although none bore any particular relation to compounds (I)[link] or (II)[link]. A search on the triazole ring fragment with either H or methyl attached to the middle N atom revealed 48 and 17 hits, respectively, none of which contained either benzo­thio­phene or tri­meth­oxy­benzene functional groups.

5. Synthesis and crystallization

The title compounds were prepared according to a previously reported procedure (Penthala et al., 2014[Penthala, N. R., Madadi, N. R., Janganati, V. & Crooks, P. A. (2014). Tetrahedron Lett. 55, 5562-5565.]). Recrystallization from methanol afforded (I)[link] and (II)[link] as yellow and pale-yellow crystalline products, respectively, which were suitable for X-ray analysis.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were found in difference Fourier maps. Carbon-bound hydrogens were subsequently placed at idealized positions with constrained distances of 0.98 (RCH3) and 0.95 Å (Csp2H). Coordinates of the N-bound hydrogen were refined freely. Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C19H17N3O3S C20H19N3O3S
Mr 367.41 381.44
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 90 90
a, b, c (Å) 11.8983 (2), 8.1860 (1), 18.4582 (3) 8.8579 (1), 11.0761 (1), 11.2626 (1)
α, β, γ (°) 90, 105.5046 (7), 90 106.859 (4), 111.668 (5), 105.498 (4)
V3) 1732.39 (5) 891.51 (4)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.21 0.21
Crystal size (mm) 0.30 × 0.30 × 0.05 0.22 × 0.20 × 0.15
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.816, 0.966 0.858, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 28105, 3984, 3093 36591, 4097, 3572
Rint 0.045 0.045
(sin θ/λ)max−1) 0.650 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.07 0.037, 0.096, 1.08
No. of reflections 3984 4097
No. of parameters 241 276
No. of restraints 0 161
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.29 0.31, −0.28
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). Collect Nonius BV, Delft, The Netherlands.]), SCALEPACK and DENZO-SMN (Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226-235. Dordrecht: Kluwer Academic Publishers.]), SHELXS97, SHELXL2013, SHELXL2014 and XP in SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffix]).

Refinement progress was checked using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and by an R-tensor (Parkin, 2000[Parkin, S. (2000). Acta Cryst. A56, 157-162.]). To ensure satisfactory refinement of disordered groups in the structure, a combination of constraints and restraints was employed. The constraints (SHELXL command EADP) were used to fix overlapping fragments. Restraints were used to maintain the integrity of ill-defined or disordered groups (SHELXL commands SAME and RIGU).

In structure (II)[link], there was a small amount of a second conformation for the benzo­thio­phene ring systems, with major and minor component fractions of 93.63 (14) and 6.37 (14)%, respectively.

Supporting information


Chemical context top

In continuation of our work on the development of benzo­thio­phene cyano combretastatin A-4 analogs as anti-cancer agents (Penthala et al., 2013), we have synthesized a series of novel CA-4 analogs by constructing a triazole ring structure (I) by chemical modification of the cyano group on the stilbene unit of cyano-CA-4 analogs utilizing a [3+2]cyclo­addition azide condensation reaction with sodium azide in the presence of L-proline Lewis base as catalyst. This chemical modification is essential to restrict the tendency toward cis–trans isomerization of the cyano-stilbene moiety in cyano-CA-4 analogs (Penthala et al., 2013). To further check the position of the hydrogen atom in the triazole ring system in (I), an N-methyl­ation reaction was carried out on (I) using CH3I, resulting in compound (II).

Structural commentary top

To obtain detailed information on the structural conformations of (I) and (II) for analysis of structure–activity relationships (SAR), including the position of the hydrogen atom in the triazole ring system of (I) and the position of methyl­ation on the triazole ring system in (II), we determined the X-ray crystal structures of (I) and (II); see Figs. 1 and 2, respectively.

Selected geometric parameters are given in Tables 1 and 2 for (I) and (II), respectively. The benzo­thio­phene rings are almost planar with r.m.s deviations from the mean plane of 0.0205 (14) in (I) and 0.016 (2) Å in (II), with bond distances and angles comparable with those reported for other benzo­thio­phene derivatives (Sonar et al., 2007) and triazole analogs (Madadi et al., 2014). The triazole rings make dihedral angles of 32.68 (5)° and 10.43 (8)°, respectively, in (I) and (II) with the mean plane of the benzo­thio­phene ring systems. The tri­meth­oxy­phenyl rings make dihedral angles of 38.48 (4) in (I) and 60.43 (5)° in (II) with the benzo­thio­phene ring systems. In both compounds (I) and (II), deviations from ideal geometry are observed in the bond angles C1—S1—C8, N2—N1—C9, N2—N3—C10, which are compressed, and C1—C9—C10, C9—C10—C11, C2—C3—C4, which are expanded (see Tables 1 and 2). After N-methyl­ation, no significant difference is observed for the N1—N2—N3 bond angle [116.2 (1) and 115.9 (1)°, respectively, for (I) and (II)]. The crystal structure of (II) has a minor component of disorder that corresponds to a ~180° flip of the benzo­thio­phene ring system [occupancy 6.37 (14)%].

Supra­molecular features top

Hydrogen bonding and the mode of packing of (I) is illustrated in Fig. 3, and the mode of packing of (II) is illustrated in Fig. 4. In structure (I), the molecules are linked by inter­molecular hydrogen bonds (N2—H2N···O2 and N2—H2N···O3), forming R21(5) ring motifs (Table 3), which propagate as chains along the [101] direction. Contacts between adjacent chains form two-dimensional pleated-sheet networks in the ac plane. No significant hydrogen-bonding inter­actions were found in structure (II).

Database survey top

A search of the 2014 release of the Cambridge Structural Database on unit-cell dimensions for (I) and (II) revealed four triazole structures (HOZZAY, UPEWAO, SAFZEG & VUSNEC), although none bore any particular relation to compounds (I) or (II). A search on the triazole ring fragment with either H or methyl attached to the middle N atom revealed 48 and 17 hits respectively, none of which contained either benzo­thio­phene or tri­meth­oxy­benzene functional groups.

Synthesis and crystallization top

The title compounds were prepared according to a previously reported procedure (Penthala et al., 2014). Recrystallization from methanol afforded (I) and (II) as yellow and pale-yellow crystalline products, respectively, which were suitable for X-ray analysis. The crystals were placed directly into the cold stream of a liquid-nitro­gen-based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were found in difference Fourier maps. Carbon-bound hydrogens were subsequently placed at idealized positions with constrained distances of 0.98 (RCH3) and 0.95 Å (Csp2H). Coordinates of the N-bound hydrogen were refined freely. Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). To ensure satisfactory refinement of disordered groups in the structure, a combination of constraints and restraints was employed. The constraints (SHELXL command EADP) were used to fix overlapping fragments. Restraints were used to maintain the integrity of ill-defined or disordered groups (SHELXL commands SAME and RIGU).

In structure (II), there was a small amount of a second conformation for the benzo­thio­phene ring systems, with major and minor component fractions of 93.63 (14) and 6.37 (14)%, respectively.

Related literature top

For related literature, see: Madadi et al. (2014); Penthala et al. (2013, 2014); Sonar et al. (2007).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 2006); data reduction: DENZO-SMN (Otwinowski & Minor, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b) for (I); SHELXL2014 (Sheldrick, 2008b) for (II). For both compounds, molecular graphics: XP in SHELXTL (Sheldrick, 2008b). Software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008b) and CIFFIX (Parkin, 2013) for (I); SHELXL2014 (Sheldrick, 2008b) and CIFFIX (Parkin, 2013) for (II).

Figures top
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

The molecular structure of (II), with displacement ellipsoids drawn at the 50% probability level.

Hydrogen bonding in the crystal structure of (I), viewed down the b axis. Dashed lines represent hydrogen bonds, which join molecules into chains along the [101] direction.

Crystal packing of (II), as viewed down the b axis.
(I) 4-(Benzo[b]thiophen-2-yl)-5-(3,4,5-trimethoxyphenyl)-2H-1,2,3-triazole top
Crystal data top
C19H17N3O3SF(000) = 768
Mr = 367.41Dx = 1.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8983 (2) ÅCell parameters from 4236 reflections
b = 8.1860 (1) Åθ = 1.0–27.5°
c = 18.4582 (3) ŵ = 0.21 mm1
β = 105.5046 (7)°T = 90 K
V = 1732.39 (5) Å3Plate, yellow
Z = 40.30 × 0.30 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3984 independent reflections
Radiation source: fine-focus sealed-tube3093 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.045
ϕ and ω scans at fixed χ = 55°θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1515
Tmin = 0.816, Tmax = 0.966k = 1010
28105 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.6092P]
where P = (Fo2 + 2Fc2)/3
3984 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H17N3O3SV = 1732.39 (5) Å3
Mr = 367.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8983 (2) ŵ = 0.21 mm1
b = 8.1860 (1) ÅT = 90 K
c = 18.4582 (3) Å0.30 × 0.30 × 0.05 mm
β = 105.5046 (7)°
Data collection top
Nonius KappaCCD
diffractometer
3984 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3093 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.966Rint = 0.045
28105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.55 e Å3
3984 reflectionsΔρmin = 0.29 e Å3
241 parameters
Special details top

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, fastened in a copper mounting pin with electrical solder. It was placed directly into the cold stream of a liquid nitrogen based cryostat, according to published methods (Hope, H. (1994). Prog. Inorg. Chem. 41, 1–19; Parkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945–953.).

Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39424 (4)0.67530 (6)0.05935 (2)0.02500 (14)
N10.13369 (12)0.64131 (18)0.05222 (8)0.0209 (3)
N20.03228 (12)0.67054 (18)0.06649 (8)0.0214 (3)
H2N0.0306 (18)0.686 (2)0.0298 (12)0.026*
N30.03376 (12)0.68041 (18)0.13868 (8)0.0201 (3)
O10.07856 (10)0.60706 (15)0.42702 (6)0.0223 (3)
O20.30089 (10)0.69738 (14)0.49128 (6)0.0196 (3)
O30.44759 (9)0.76268 (15)0.40977 (6)0.0208 (3)
C10.33215 (14)0.5986 (2)0.12815 (9)0.0186 (3)
C20.41132 (14)0.5191 (2)0.18353 (9)0.0195 (3)
H20.39200.46760.22470.023*
C30.52685 (14)0.5204 (2)0.17387 (9)0.0200 (4)
C40.63017 (15)0.4549 (2)0.22005 (10)0.0268 (4)
H40.62910.39610.26420.032*
C50.73349 (15)0.4767 (2)0.20067 (11)0.0307 (4)
H50.80370.43220.23170.037*
C60.73606 (16)0.5633 (3)0.13592 (12)0.0331 (5)
H60.80840.57870.12420.040*
C70.63591 (16)0.6268 (2)0.08883 (12)0.0299 (4)
H70.63800.68410.04450.036*
C80.53112 (14)0.6047 (2)0.10787 (10)0.0217 (4)
C90.20875 (14)0.6295 (2)0.12074 (9)0.0173 (3)
C100.14626 (13)0.6547 (2)0.17521 (9)0.0169 (3)
C110.18559 (14)0.6599 (2)0.25781 (9)0.0171 (3)
C120.10917 (14)0.6200 (2)0.30137 (9)0.0185 (3)
H120.03230.58370.27780.022*
C130.14657 (14)0.6340 (2)0.37917 (9)0.0181 (3)
C140.26154 (14)0.6801 (2)0.41410 (9)0.0171 (3)
C150.33703 (13)0.7182 (2)0.37040 (9)0.0176 (3)
C160.29866 (14)0.7127 (2)0.29248 (9)0.0172 (3)
H160.34920.74480.26290.021*
C170.04088 (14)0.5647 (3)0.39398 (10)0.0260 (4)
H17A0.07970.65370.36120.039*
H17B0.08000.54680.43380.039*
H17C0.04470.46460.36430.039*
C180.32569 (16)0.5438 (2)0.53021 (10)0.0259 (4)
H18A0.25660.47350.51590.039*
H18B0.34640.56300.58460.039*
H18C0.39090.49040.51670.039*
C190.53268 (14)0.7777 (2)0.36776 (9)0.0212 (4)
H19A0.53530.67610.34020.032*
H19B0.60950.79870.40230.032*
H19C0.51130.86850.33210.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0206 (2)0.0338 (3)0.0226 (2)0.00439 (18)0.00931 (17)0.00745 (18)
N10.0158 (7)0.0285 (8)0.0174 (7)0.0002 (6)0.0024 (5)0.0010 (6)
N20.0157 (7)0.0307 (8)0.0159 (7)0.0012 (6)0.0006 (6)0.0012 (6)
N30.0156 (7)0.0280 (8)0.0155 (7)0.0002 (6)0.0018 (5)0.0006 (6)
O10.0161 (6)0.0335 (7)0.0177 (6)0.0042 (5)0.0052 (5)0.0008 (5)
O20.0195 (6)0.0246 (6)0.0131 (5)0.0010 (5)0.0018 (4)0.0004 (5)
O30.0130 (5)0.0316 (7)0.0172 (6)0.0039 (5)0.0028 (4)0.0021 (5)
C10.0164 (8)0.0221 (9)0.0172 (8)0.0025 (6)0.0043 (6)0.0024 (6)
C20.0180 (8)0.0209 (9)0.0192 (8)0.0007 (7)0.0043 (6)0.0000 (6)
C30.0174 (8)0.0200 (9)0.0228 (8)0.0011 (6)0.0054 (6)0.0037 (7)
C40.0222 (9)0.0298 (10)0.0265 (9)0.0032 (7)0.0033 (7)0.0050 (8)
C50.0172 (8)0.0348 (11)0.0370 (10)0.0046 (8)0.0021 (7)0.0094 (9)
C60.0187 (9)0.0350 (11)0.0487 (12)0.0004 (8)0.0143 (8)0.0058 (9)
C70.0246 (9)0.0310 (10)0.0389 (11)0.0005 (8)0.0169 (8)0.0014 (8)
C80.0189 (8)0.0234 (9)0.0239 (9)0.0007 (7)0.0076 (7)0.0002 (7)
C90.0157 (8)0.0197 (8)0.0156 (8)0.0001 (6)0.0025 (6)0.0009 (6)
C100.0134 (7)0.0201 (8)0.0164 (8)0.0004 (6)0.0025 (6)0.0011 (6)
C110.0160 (8)0.0181 (8)0.0165 (8)0.0012 (6)0.0030 (6)0.0001 (6)
C120.0155 (8)0.0211 (9)0.0174 (8)0.0014 (6)0.0016 (6)0.0001 (6)
C130.0168 (8)0.0211 (9)0.0170 (8)0.0007 (6)0.0055 (6)0.0014 (6)
C140.0176 (8)0.0197 (8)0.0132 (7)0.0008 (6)0.0028 (6)0.0011 (6)
C150.0129 (7)0.0196 (8)0.0183 (8)0.0004 (6)0.0007 (6)0.0021 (6)
C160.0159 (8)0.0196 (8)0.0160 (8)0.0006 (6)0.0037 (6)0.0004 (6)
C170.0139 (8)0.0400 (11)0.0235 (9)0.0043 (7)0.0041 (7)0.0044 (8)
C180.0266 (9)0.0292 (10)0.0197 (8)0.0005 (7)0.0024 (7)0.0069 (7)
C190.0143 (8)0.0301 (9)0.0193 (8)0.0014 (7)0.0047 (6)0.0006 (7)
Geometric parameters (Å, º) top
S1—C81.7345 (17)C6—C71.375 (3)
S1—C11.7474 (17)C6—H60.9500
N1—N21.324 (2)C7—C81.395 (2)
N1—C91.343 (2)C7—H70.9500
N2—N31.330 (2)C9—C101.416 (2)
N2—H2N0.87 (2)C10—C111.471 (2)
N3—C101.345 (2)C11—C161.395 (2)
O1—C131.3660 (19)C11—C121.404 (2)
O1—C171.4313 (19)C12—C131.390 (2)
O2—C141.3829 (19)C12—H120.9500
O2—C181.439 (2)C13—C141.399 (2)
O3—C151.3712 (19)C14—C151.394 (2)
O3—C191.4356 (19)C15—C161.389 (2)
C1—C21.357 (2)C16—H160.9500
C1—C91.460 (2)C17—H17A0.9800
C2—C31.433 (2)C17—H17B0.9800
C2—H20.9500C17—H17C0.9800
C3—C41.402 (2)C18—H18A0.9800
C3—C81.413 (2)C18—H18B0.9800
C4—C51.381 (3)C18—H18C0.9800
C4—H40.9500C19—H19A0.9800
C5—C61.397 (3)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C8—S1—C191.50 (8)C9—C10—C11131.16 (14)
N2—N1—C9103.74 (13)C16—C11—C12120.15 (15)
N1—N2—N3116.21 (14)C16—C11—C10119.01 (14)
N1—N2—H2N120.6 (13)C12—C11—C10120.77 (14)
N3—N2—H2N123.2 (13)C13—C12—C11119.68 (15)
N2—N3—C10103.74 (13)C13—C12—H12120.2
C13—O1—C17117.13 (13)C11—C12—H12120.2
C14—O2—C18113.13 (13)O1—C13—C12124.98 (14)
C15—O3—C19116.85 (12)O1—C13—C14114.89 (14)
C2—C1—C9129.19 (15)C12—C13—C14120.12 (15)
C2—C1—S1112.12 (12)O2—C14—C15118.70 (14)
C9—C1—S1118.67 (12)O2—C14—C13121.49 (14)
C1—C2—C3113.49 (15)C15—C14—C13119.72 (14)
C1—C2—H2123.3O3—C15—C16124.11 (15)
C3—C2—H2123.3O3—C15—C14115.35 (14)
C4—C3—C8118.91 (16)C16—C15—C14120.54 (14)
C4—C3—C2129.50 (16)C15—C16—C11119.66 (15)
C8—C3—C2111.58 (15)C15—C16—H16120.2
C5—C4—C3119.33 (18)C11—C16—H16120.2
C5—C4—H4120.3O1—C17—H17A109.5
C3—C4—H4120.3O1—C17—H17B109.5
C4—C5—C6120.79 (17)H17A—C17—H17B109.5
C4—C5—H5119.6O1—C17—H17C109.5
C6—C5—H5119.6H17A—C17—H17C109.5
C7—C6—C5121.26 (17)H17B—C17—H17C109.5
C7—C6—H6119.4O2—C18—H18A109.5
C5—C6—H6119.4O2—C18—H18B109.5
C6—C7—C8118.28 (18)H18A—C18—H18B109.5
C6—C7—H7120.9O2—C18—H18C109.5
C8—C7—H7120.9H18A—C18—H18C109.5
C7—C8—C3121.41 (16)H18B—C18—H18C109.5
C7—C8—S1127.30 (15)O3—C19—H19A109.5
C3—C8—S1111.27 (12)O3—C19—H19B109.5
N1—C9—C10108.37 (14)H19A—C19—H19B109.5
N1—C9—C1119.98 (15)O3—C19—H19C109.5
C10—C9—C1131.64 (14)H19A—C19—H19C109.5
N3—C10—C9107.94 (14)H19B—C19—H19C109.5
N3—C10—C11120.88 (14)
C9—N1—N2—N30.50 (19)C1—C9—C10—N3179.11 (17)
N1—N2—N3—C100.27 (19)N1—C9—C10—C11177.91 (16)
C8—S1—C1—C21.94 (14)C1—C9—C10—C110.8 (3)
C8—S1—C1—C9176.59 (14)N3—C10—C11—C16148.68 (16)
C9—C1—C2—C3176.73 (16)C9—C10—C11—C1629.4 (3)
S1—C1—C2—C31.60 (19)N3—C10—C11—C1228.3 (2)
C1—C2—C3—C4178.36 (18)C9—C10—C11—C12153.60 (18)
C1—C2—C3—C80.3 (2)C16—C11—C12—C130.3 (2)
C8—C3—C4—C51.1 (3)C10—C11—C12—C13176.69 (15)
C2—C3—C4—C5177.44 (17)C17—O1—C13—C121.4 (2)
C3—C4—C5—C60.2 (3)C17—O1—C13—C14178.07 (15)
C4—C5—C6—C71.2 (3)C11—C12—C13—O1176.42 (15)
C5—C6—C7—C81.0 (3)C11—C12—C13—C143.1 (2)
C6—C7—C8—C30.3 (3)C18—O2—C14—C15105.70 (17)
C6—C7—C8—S1178.72 (15)C18—O2—C14—C1377.81 (19)
C4—C3—C8—C71.4 (3)O1—C13—C14—O20.5 (2)
C2—C3—C8—C7177.41 (16)C12—C13—C14—O2179.04 (15)
C4—C3—C8—S1179.98 (13)O1—C13—C14—C15176.96 (14)
C2—C3—C8—S11.20 (19)C12—C13—C14—C152.6 (2)
C1—S1—C8—C7176.74 (18)C19—O3—C15—C1610.7 (2)
C1—S1—C8—C31.76 (14)C19—O3—C15—C14170.44 (14)
N2—N1—C9—C100.50 (18)O2—C14—C15—O33.1 (2)
N2—N1—C9—C1179.41 (15)C13—C14—C15—O3179.67 (15)
C2—C1—C9—N1150.00 (18)O2—C14—C15—C16175.80 (15)
S1—C1—C9—N131.8 (2)C13—C14—C15—C160.8 (2)
C2—C1—C9—C1031.4 (3)O3—C15—C16—C11177.62 (15)
S1—C1—C9—C10146.86 (16)C14—C15—C16—C113.6 (2)
N2—N3—C10—C90.08 (18)C12—C11—C16—C153.1 (2)
N2—N3—C10—C11178.42 (15)C10—C11—C16—C15179.95 (15)
N1—C9—C10—N30.37 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.87 (2)2.16 (2)2.9381 (18)147.6 (18)
N2—H2N···O3i0.87 (2)2.20 (2)2.8503 (18)130.8 (17)
Symmetry code: (i) x1/2, y+3/2, z1/2.
(II) 4-(Benzo[b]thiophen-2-yl)-2-methyl-5-(3,4,5-trimethoxyphenyl)-2H-1,2,3-triazole top
Crystal data top
C20H19N3O3SZ = 2
Mr = 381.44F(000) = 400
Triclinic, P1Dx = 1.421 Mg m3
a = 8.8579 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0761 (1) ÅCell parameters from 4076 reflections
c = 11.2626 (1) Åθ = 1.0–27.5°
α = 106.859 (4)°µ = 0.21 mm1
β = 111.668 (5)°T = 90 K
γ = 105.498 (4)°Cut block, pale yellow
V = 891.51 (4) Å30.22 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4097 independent reflections
Radiation source: fine-focus sealed-tube3572 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.045
ϕ and ω scans at fixed χ = 55°θmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.858, Tmax = 0.962k = 1414
36591 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.096H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.4023P]
where P = (Fo2 + 2Fc2)/3
4097 reflections(Δ/σ)max = 0.001
276 parametersΔρmax = 0.31 e Å3
161 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H19N3O3Sγ = 105.498 (4)°
Mr = 381.44V = 891.51 (4) Å3
Triclinic, P1Z = 2
a = 8.8579 (1) ÅMo Kα radiation
b = 11.0761 (1) ŵ = 0.21 mm1
c = 11.2626 (1) ÅT = 90 K
α = 106.859 (4)°0.22 × 0.20 × 0.15 mm
β = 111.668 (5)°
Data collection top
Nonius KappaCCD
diffractometer
4097 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3572 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.962Rint = 0.045
36591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037161 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
4097 reflectionsΔρmin = 0.28 e Å3
276 parameters
Special details top

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.41837 (14)0.62237 (11)0.61716 (11)0.0160 (2)
N20.56418 (15)0.73837 (11)0.71234 (11)0.0158 (2)
N30.65185 (15)0.80574 (11)0.66113 (11)0.0163 (2)
O10.75768 (14)1.08896 (10)0.37490 (10)0.0234 (2)
O20.77188 (12)0.90655 (10)0.16639 (9)0.0178 (2)
O30.72458 (13)0.64975 (10)0.14267 (10)0.0197 (2)
C10.2506 (5)0.5036 (4)0.36036 (19)0.0145 (4)0.9363 (14)
S10.08551 (5)0.39081 (4)0.37446 (4)0.01741 (12)0.9363 (14)
C20.2034 (2)0.48053 (18)0.22483 (17)0.0176 (3)0.9363 (14)
H20.27760.53360.19860.021*0.9363 (14)
C30.0313 (3)0.3687 (3)0.1242 (2)0.0164 (4)0.9363 (14)
C40.0638 (3)0.31782 (16)0.0245 (2)0.0203 (4)0.9363 (14)
H40.01170.35650.07250.024*0.9363 (14)
C50.2341 (3)0.21078 (18)0.09952 (19)0.0210 (4)0.9363 (14)
H50.29900.17660.19960.025*0.9363 (14)
C60.3125 (2)0.1519 (2)0.03024 (16)0.0195 (4)0.9363 (14)
H60.42950.07840.08410.023*0.9363 (14)
C70.2218 (2)0.19944 (19)0.11543 (18)0.0186 (4)0.9363 (14)
H70.27420.15910.16240.022*0.9363 (14)
C80.0508 (2)0.3086 (2)0.19147 (18)0.0161 (3)0.9363 (14)
C1'0.269 (8)0.522 (7)0.368 (2)0.0145 (4)0.0637 (14)
S1'0.2341 (9)0.5088 (7)0.2013 (7)0.0176 (3)0.0637 (14)
C2'0.134 (3)0.418 (2)0.3485 (19)0.01741 (12)0.0637 (14)
H2'0.13470.39800.42510.021*0.0637 (14)
C3'0.013 (4)0.335 (4)0.207 (2)0.0161 (3)0.0637 (14)
C4'0.173 (3)0.221 (3)0.150 (3)0.0186 (4)0.0637 (14)
H4'0.19490.18280.21060.022*0.0637 (14)
C5'0.297 (4)0.162 (3)0.013 (3)0.0195 (4)0.0637 (14)
H5'0.41840.10700.01670.023*0.0637 (14)
C6'0.248 (4)0.183 (3)0.086 (3)0.0210 (4)0.0637 (14)
H6'0.32830.13030.18510.025*0.0637 (14)
C7'0.079 (4)0.284 (3)0.036 (3)0.0203 (4)0.0637 (14)
H7'0.03140.28920.09850.024*0.0637 (14)
C8'0.020 (4)0.377 (5)0.108 (2)0.0164 (4)0.0637 (14)
C90.40890 (17)0.61277 (13)0.49233 (13)0.0147 (2)
C100.55623 (17)0.72729 (13)0.52005 (13)0.0146 (2)
C110.61431 (17)0.77268 (13)0.42743 (13)0.0152 (3)
C120.65731 (17)0.91063 (13)0.44855 (13)0.0166 (3)
H120.64720.97300.52040.020*
C130.71519 (17)0.95607 (13)0.36342 (14)0.0168 (3)
C140.72907 (16)0.86471 (13)0.25757 (13)0.0152 (3)
C150.69315 (17)0.72810 (13)0.24151 (13)0.0157 (3)
C160.63395 (17)0.68128 (13)0.32534 (13)0.0158 (3)
H160.60730.58810.31310.019*
C170.8251 (2)1.19553 (14)0.51199 (15)0.0231 (3)
H17A0.72871.18710.53660.035*
H17B0.87071.28660.51220.035*
H17C0.92221.18640.58170.035*
C180.96108 (18)0.98269 (14)0.22249 (14)0.0202 (3)
H18A1.00931.06240.31340.030*
H18B0.98131.01580.15550.030*
H18C1.02140.92170.23680.030*
C190.7008 (2)0.51278 (14)0.13104 (16)0.0231 (3)
H19A0.77810.51910.22330.035*
H19B0.73240.46800.06080.035*
H19C0.57540.45770.10100.035*
C200.63205 (18)0.78558 (14)0.86407 (13)0.0185 (3)
H20A0.70160.73560.89770.028*
H20B0.53140.76730.88380.028*
H20C0.70890.88560.91310.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0151 (5)0.0152 (5)0.0154 (5)0.0047 (4)0.0069 (4)0.0059 (4)
N20.0165 (5)0.0154 (5)0.0138 (5)0.0042 (4)0.0078 (4)0.0059 (4)
N30.0167 (5)0.0171 (5)0.0156 (5)0.0054 (4)0.0087 (4)0.0080 (4)
O10.0339 (6)0.0148 (5)0.0214 (5)0.0074 (4)0.0139 (4)0.0095 (4)
O20.0152 (5)0.0207 (5)0.0139 (4)0.0021 (4)0.0061 (4)0.0093 (4)
O30.0235 (5)0.0176 (5)0.0206 (5)0.0070 (4)0.0147 (4)0.0077 (4)
C10.0134 (11)0.0112 (15)0.0170 (6)0.0034 (6)0.0072 (6)0.0057 (6)
S10.01419 (19)0.01807 (19)0.01687 (18)0.00243 (14)0.00642 (14)0.00913 (14)
C20.0158 (7)0.0180 (8)0.0178 (7)0.0032 (6)0.0091 (6)0.0086 (6)
C30.0152 (7)0.0161 (7)0.0178 (7)0.0070 (6)0.0078 (6)0.0069 (6)
C40.0197 (8)0.0183 (10)0.0186 (7)0.0045 (8)0.0098 (6)0.0051 (7)
C50.0192 (7)0.0194 (9)0.0169 (7)0.0056 (7)0.0054 (6)0.0051 (6)
C60.0139 (7)0.0159 (7)0.0197 (9)0.0032 (5)0.0030 (7)0.0059 (8)
C70.0123 (8)0.0167 (8)0.0219 (10)0.0039 (7)0.0043 (7)0.0096 (8)
C80.0138 (10)0.0135 (11)0.0179 (7)0.0048 (7)0.0057 (6)0.0062 (7)
C1'0.0134 (11)0.0112 (15)0.0170 (6)0.0034 (6)0.0072 (6)0.0057 (6)
S1'0.0158 (7)0.0180 (8)0.0178 (7)0.0032 (6)0.0091 (6)0.0086 (6)
C2'0.01419 (19)0.01807 (19)0.01687 (18)0.00243 (14)0.00642 (14)0.00913 (14)
C3'0.0138 (10)0.0135 (11)0.0179 (7)0.0048 (7)0.0057 (6)0.0062 (7)
C4'0.0123 (8)0.0167 (8)0.0219 (10)0.0039 (7)0.0043 (7)0.0096 (8)
C5'0.0139 (7)0.0159 (7)0.0197 (9)0.0032 (5)0.0030 (7)0.0059 (8)
C6'0.0192 (7)0.0194 (9)0.0169 (7)0.0056 (7)0.0054 (6)0.0051 (6)
C7'0.0197 (8)0.0183 (10)0.0186 (7)0.0045 (8)0.0098 (6)0.0051 (7)
C8'0.0152 (7)0.0161 (7)0.0178 (7)0.0070 (6)0.0078 (6)0.0069 (6)
C90.0155 (6)0.0149 (6)0.0143 (6)0.0065 (5)0.0072 (5)0.0073 (5)
C100.0139 (6)0.0148 (6)0.0145 (6)0.0059 (5)0.0067 (5)0.0062 (5)
C110.0129 (6)0.0168 (6)0.0139 (6)0.0042 (5)0.0055 (5)0.0074 (5)
C120.0168 (6)0.0161 (6)0.0143 (6)0.0053 (5)0.0070 (5)0.0057 (5)
C130.0161 (6)0.0145 (6)0.0161 (6)0.0038 (5)0.0055 (5)0.0075 (5)
C140.0122 (6)0.0179 (6)0.0123 (6)0.0027 (5)0.0045 (5)0.0076 (5)
C150.0126 (6)0.0171 (6)0.0129 (6)0.0039 (5)0.0049 (5)0.0048 (5)
C160.0144 (6)0.0149 (6)0.0162 (6)0.0040 (5)0.0068 (5)0.0070 (5)
C170.0271 (7)0.0144 (6)0.0252 (7)0.0079 (6)0.0121 (6)0.0066 (6)
C180.0161 (6)0.0214 (7)0.0201 (7)0.0034 (5)0.0086 (5)0.0094 (6)
C190.0295 (8)0.0184 (7)0.0257 (7)0.0106 (6)0.0178 (6)0.0085 (6)
C200.0225 (7)0.0193 (6)0.0126 (6)0.0070 (5)0.0089 (5)0.0063 (5)
Geometric parameters (Å, º) top
N1—N21.3266 (15)C3'—C4'1.383 (17)
N1—C91.3477 (16)C3'—C8'1.413 (17)
N2—N31.3279 (15)C4'—C5'1.346 (17)
N2—C201.4527 (16)C4'—H4'0.9500
N3—C101.3450 (16)C5'—C6'1.393 (18)
O1—C131.3720 (15)C5'—H5'0.9500
O1—C171.4210 (17)C6'—C7'1.385 (18)
O2—C141.3721 (14)C6'—H6'0.9500
O2—C181.4398 (16)C7'—C8'1.405 (18)
O3—C151.3666 (15)C7'—H7'0.9500
O3—C191.4340 (16)C9—C101.4122 (17)
C1—C21.347 (3)C10—C111.4723 (17)
C1—C91.466 (2)C11—C161.3943 (18)
C1—S11.742 (2)C11—C121.3956 (18)
S1—C81.7380 (17)C12—C131.3930 (18)
C2—C31.429 (2)C12—H120.9500
C2—H20.9500C13—C141.3911 (18)
C3—C81.409 (2)C14—C151.4018 (18)
C3—C41.410 (2)C15—C161.3926 (17)
C4—C51.384 (2)C16—H160.9500
C4—H40.9500C17—H17A0.9800
C5—C61.404 (2)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—C71.383 (2)C18—H18A0.9800
C6—H60.9500C18—H18B0.9800
C7—C81.397 (2)C18—H18C0.9800
C7—H70.9500C19—H19A0.9800
C1'—C2'1.318 (19)C19—H19B0.9800
C1'—C91.32 (2)C19—H19C0.9800
C1'—S1'1.74 (2)C20—H20A0.9800
S1'—C8'1.731 (18)C20—H20B0.9800
C2'—C3'1.439 (17)C20—H20C0.9800
C2'—H2'0.9500
N2—N1—C9103.78 (10)C8'—C7'—H7'120.8
N1—N2—N3115.92 (10)C7'—C8'—C3'119 (2)
N1—N2—C20122.69 (11)C7'—C8'—S1'129 (2)
N3—N2—C20121.27 (11)C3'—C8'—S1'106.9 (14)
N2—N3—C10104.04 (10)C1'—C9—N1123.7 (13)
C13—O1—C17116.24 (10)C1'—C9—C10127.3 (11)
C14—O2—C18113.82 (10)N1—C9—C10108.26 (11)
C15—O3—C19116.41 (10)N1—C9—C1118.94 (13)
C2—C1—C9129.94 (17)C10—C9—C1132.41 (13)
C2—C1—S1112.33 (14)N3—C10—C9108.00 (11)
C9—C1—S1117.55 (13)N3—C10—C11119.08 (11)
C8—S1—C191.33 (8)C9—C10—C11132.90 (12)
C1—C2—C3113.73 (19)C16—C11—C12120.79 (11)
C1—C2—H2123.1C16—C11—C10120.52 (11)
C3—C2—H2123.1C12—C11—C10118.61 (11)
C8—C3—C4118.66 (16)C13—C12—C11119.45 (12)
C8—C3—C2111.50 (15)C13—C12—H12120.3
C4—C3—C2129.79 (17)C11—C12—H12120.3
C5—C4—C3119.15 (16)O1—C13—C14116.02 (11)
C5—C4—H4120.4O1—C13—C12123.56 (12)
C3—C4—H4120.4C14—C13—C12120.40 (12)
C4—C5—C6121.14 (16)O2—C14—C13120.25 (11)
C4—C5—H5119.4O2—C14—C15120.12 (11)
C6—C5—H5119.4C13—C14—C15119.60 (11)
C7—C6—C5120.88 (16)O3—C15—C16124.29 (12)
C7—C6—H6119.6O3—C15—C14115.29 (11)
C5—C6—H6119.6C16—C15—C14120.40 (12)
C6—C7—C8118.04 (16)C15—C16—C11119.24 (12)
C6—C7—H7121.0C15—C16—H16120.4
C8—C7—H7121.0C11—C16—H16120.4
C7—C8—C3122.13 (15)O1—C17—H17A109.5
C7—C8—S1126.75 (13)O1—C17—H17B109.5
C3—C8—S1111.11 (11)H17A—C17—H17B109.5
C2'—C1'—C9124.6 (18)O1—C17—H17C109.5
C2'—C1'—S1'107.3 (15)H17A—C17—H17C109.5
C9—C1'—S1'128.0 (18)H17B—C17—H17C109.5
C8'—S1'—C1'95.8 (12)O2—C18—H18A109.5
C1'—C2'—C3'117.3 (18)O2—C18—H18B109.5
C1'—C2'—H2'121.4H18A—C18—H18B109.5
C3'—C2'—H2'121.4O2—C18—H18C109.5
C4'—C3'—C8'115.8 (17)H18A—C18—H18C109.5
C4'—C3'—C2'132 (2)H18B—C18—H18C109.5
C8'—C3'—C2'111.8 (16)O3—C19—H19A109.5
C5'—C4'—C3'122 (2)O3—C19—H19B109.5
C5'—C4'—H4'118.9H19A—C19—H19B109.5
C3'—C4'—H4'118.9O3—C19—H19C109.5
C4'—C5'—C6'120 (2)H19A—C19—H19C109.5
C4'—C5'—H5'120.2H19B—C19—H19C109.5
C6'—C5'—H5'120.2N2—C20—H20A109.5
C7'—C6'—C5'118 (2)N2—C20—H20B109.5
C7'—C6'—H6'121.0H20A—C20—H20B109.5
C5'—C6'—H6'121.0N2—C20—H20C109.5
C6'—C7'—C8'118 (2)H20A—C20—H20C109.5
C6'—C7'—H7'120.8H20B—C20—H20C109.5
C9—N1—N2—N30.21 (14)S1'—C1'—C9—C106 (12)
C9—N1—N2—C20176.39 (11)S1'—C1'—C9—C1157 (59)
N1—N2—N3—C100.26 (14)N2—N1—C9—C1'170 (6)
C20—N2—N3—C10175.99 (11)N2—N1—C9—C100.57 (13)
C2—C1—S1—C80.6 (4)N2—N1—C9—C1173.1 (3)
C9—C1—S1—C8176.2 (4)S1—C1—C9—C1'154 (51)
C9—C1—C2—C3175.7 (5)C2—C1—C9—N1173.7 (5)
S1—C1—C2—C30.7 (5)S1—C1—C9—N11.1 (5)
C1—C2—C3—C80.5 (4)C2—C1—C9—C101.8 (8)
C1—C2—C3—C4177.8 (4)S1—C1—C9—C10172.95 (18)
C8—C3—C4—C50.0 (4)N2—N3—C10—C90.60 (13)
C2—C3—C4—C5177.2 (3)N2—N3—C10—C11179.11 (11)
C3—C4—C5—C60.4 (3)C1'—C9—C10—N3170 (6)
C4—C5—C6—C70.1 (3)N1—C9—C10—N30.76 (14)
C5—C6—C7—C80.6 (3)C1—C9—C10—N3171.7 (4)
C6—C7—C8—C31.1 (4)C1'—C9—C10—C119 (6)
C6—C7—C8—S1177.16 (19)N1—C9—C10—C11178.99 (13)
C4—C3—C8—C70.8 (4)C1—C9—C10—C116.5 (4)
C2—C3—C8—C7178.4 (2)N3—C10—C11—C16129.29 (13)
C4—C3—C8—S1177.7 (2)C9—C10—C11—C1652.6 (2)
C2—C3—C8—S10.1 (3)N3—C10—C11—C1247.72 (17)
C1—S1—C8—C7178.7 (3)C9—C10—C11—C12130.36 (15)
C1—S1—C8—C30.3 (3)C16—C11—C12—C132.02 (19)
C2'—C1'—S1'—C8'9 (7)C10—C11—C12—C13179.01 (12)
C9—C1'—S1'—C8'176 (9)C17—O1—C13—C14151.61 (12)
C9—C1'—C2'—C3'175 (7)C17—O1—C13—C1229.78 (18)
S1'—C1'—C2'—C3'8 (8)C11—C12—C13—O1178.95 (12)
C1'—C2'—C3'—C4'180 (7)C11—C12—C13—C140.40 (19)
C1'—C2'—C3'—C8'4 (8)C18—O2—C14—C1382.87 (15)
C8'—C3'—C4'—C5'7 (7)C18—O2—C14—C1599.29 (14)
C2'—C3'—C4'—C5'177 (4)O1—C13—C14—O24.02 (18)
C3'—C4'—C5'—C6'21 (6)C12—C13—C14—O2174.63 (11)
C4'—C5'—C6'—C7'11 (6)O1—C13—C14—C15178.13 (11)
C5'—C6'—C7'—C8'12 (7)C12—C13—C14—C153.22 (19)
C6'—C7'—C8'—C3'27 (8)C19—O3—C15—C162.60 (18)
C6'—C7'—C8'—S1'178 (4)C19—O3—C15—C14175.84 (11)
C4'—C3'—C8'—C7'17 (8)O2—C14—C15—O37.32 (17)
C2'—C3'—C8'—C7'160 (5)C13—C14—C15—O3174.83 (11)
C4'—C3'—C8'—S1'174 (4)O2—C14—C15—C16174.18 (11)
C2'—C3'—C8'—S1'3 (6)C13—C14—C15—C163.68 (19)
C1'—S1'—C8'—C7'160 (6)O3—C15—C16—C11177.06 (12)
C1'—S1'—C8'—C3'6 (6)C14—C15—C16—C111.30 (19)
C2'—C1'—C9—N110 (12)C12—C11—C16—C151.56 (19)
S1'—C1'—C9—N1174 (5)C10—C11—C16—C15178.49 (12)
C2'—C1'—C9—C10179 (6)
Selected geometric parameters (Å, º) for (I) top
N1—N21.324 (2)N2—H2N0.87 (2)
N1—C91.343 (2)N3—C101.345 (2)
N2—N31.330 (2)
C8—S1—C191.50 (8)C10—C9—C1131.64 (14)
N2—N1—C9103.74 (13)C9—C10—C11131.16 (14)
N2—N3—C10103.74 (13)O1—C13—C14114.89 (14)
C4—C3—C2129.50 (16)
Selected geometric parameters (Å, º) for (II) top
N1—N21.3266 (15)N2—C201.4527 (16)
N1—C91.3477 (16)N3—C101.3450 (16)
N2—N31.3279 (15)
N1—N2—N3115.92 (10)C4'—C3'—C2'132 (2)
C2—C1—C9129.94 (17)C7'—C8'—S1'129 (2)
C8—S1—C191.33 (8)C1'—C9—C10127.3 (11)
C4—C3—C2129.79 (17)C10—C9—C1132.41 (13)
C9—C1'—S1'128.0 (18)C9—C10—C11132.90 (12)
C8'—S1'—C1'95.8 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.87 (2)2.16 (2)2.9381 (18)147.6 (18)
N2—H2N···O3i0.87 (2)2.20 (2)2.8503 (18)130.8 (17)
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H17N3O3SC20H19N3O3S
Mr367.41381.44
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)9090
a, b, c (Å)11.8983 (2), 8.1860 (1), 18.4582 (3)8.8579 (1), 11.0761 (1), 11.2626 (1)
α, β, γ (°)90, 105.5046 (7), 90106.859 (4), 111.668 (5), 105.498 (4)
V3)1732.39 (5)891.51 (4)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.210.21
Crystal size (mm)0.30 × 0.30 × 0.050.22 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.816, 0.9660.858, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
28105, 3984, 3093 36591, 4097, 3572
Rint0.0450.045
(sin θ/λ)max1)0.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.07 0.037, 0.096, 1.08
No. of reflections39844097
No. of parameters241276
No. of restraints0161
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.290.31, 0.28

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 2006), DENZO-SMN (Otwinowski & Minor, 2006), SHELXS97 (Sheldrick, 2008b), XP in SHELXTL (Sheldrick, 2008b), SHELXL2013 (Sheldrick, 2008b) and CIFFIX (Parkin, 2013), SHELXL2014 (Sheldrick, 2008b) and CIFFIX (Parkin, 2013).

 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant R01 CA140409.

References

First citationMadadi, N. R., Penthala, N. R., Bommagani, S., Parkin, S. & Crooks, P. A. (2014). Acta Cryst. E70, o1128–o1129.  CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). Collect Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226–235. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationParkin, S. (2000). Acta Cryst. A56, 157–162.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffix  Google Scholar
First citationPenthala, N. R., Madadi, N. R., Janganati, V. & Crooks, P. A. (2014). Tetrahedron Lett. 55, 5562–5565.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPenthala, N. R., Sonar, V. N., Horn, J., Leggas, M., Yadlapalli, K. B. J. S. & Crooks, P. A. (2013). Med. Chem. Commun. 4, 1073–1078.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. C63, o743–o745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds