metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m387-m388

Crystal structure of catena-poly[[di­aqua(4,5-di­aza­fluoren-9-one-κ2N,N′)cadmium]-μ-2-hy­droxy-5-sulfonato­benzoato-κ3O1,O1′:O5]

aSchool of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: jxlzfeng@163.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 10 October 2014; accepted 25 October 2014; online 31 October 2014)

In the polymeric title compound, [Cd(C7H4O6S)(C11H6N2O)(H2O)2]n, the Cd2+ atom is seven-coordinated by two water O atoms, by three O atoms from two 2-hy­droxy-5-sulfonato­benzoate (Hssal2−) ligands and by two N atoms from a 4,5-di­aza­fluoren-9-one (Dafo) ligand in a distorted penta­gonal–bipyramidal geometry. The Cd2+ atoms are monodentately coordinated by the sulfonate group of one Hssal2− ligand and bidentately coordinated by the carboxyl­ate group of another Hssal2− ligand, generating zigzag chains running parallel to [010]. The chains are linked by O—H⋯O hydrogen bonds into a three-dimensional architecture.

1. Related literature

For information on compounds with metal–organic framework structures, see: Song et al. (2007[Song, J.-F., Chen, Y., Li, Z.-G., Zhou, R.-H., Xu, X.-Y., Xu, J.-Q. & Wang, T. G. (2007). Polyhedron, 26, 4397-4410.]); Yan et al. (2009[Yan, C.-F., Jiang, F.-L., Chen, L., Feng, R., Yang, M. & Hong, M.-C. (2009). J. Solid State Chem. 182, 3162-3170.]). For related Cd2+ compounds, see: Sun et al. (2010[Sun, L. X., Qi, Y., Wang, Y. M., Che, Y. X. & Zheng, J. M. (2010). CrystEngComm, 12, 1540-1547.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cd(C7H4O6S)(C11H6N2O)(H2O)2]

  • Mr = 546.77

  • Monoclinic, P 21

  • a = 7.6233 (6) Å

  • b = 12.8461 (10) Å

  • c = 9.4625 (7) Å

  • β = 98.155 (1)°

  • V = 917.29 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 0.823

  • 5158 measured reflections

  • 3545 independent reflections

  • 3469 reflections with I > 2σ(I)

  • Rint = 0.010

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.037

  • S = 1.02

  • 3545 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1559 Friedel pairs

  • Absolute structure parameter: 0.040 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O6i 0.85 1.96 2.801 (3) 171
O8—H8B⋯O4ii 0.85 1.93 2.758 (3) 164
O9—H9A⋯O5iii 0.85 1.98 2.771 (3) 154
O9—H9B⋯O1iv 0.85 2.00 2.820 (3) 161
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1; (iii) x+1, y, z; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In order to understand the coordination chemistry of H3ssal and to prepare new supramolecular materials with intriguing structures and potential physical properties, 5-sulfosalicylic acid and chelating bipyridyl-like ligands were widely used to construct coordination complexes (Yan et al., 2009). Nevertheless, the Dafo ligand was seldom referred as one of these bipyridyl-like ligands. We chose 2-hydroxy-5-sulfobenzoic acid as an organic carboxylate anion and 4,5-diazafluoren-9-one as a neutral ligand with a N2-donor set to generate the coordination compound, [Cd(C11H6N2O)(C7H4O6S)(H2O)2]n, which is reported here, under hydrothermal conditions.

As shown in Fig. 1, the asymmetric unit of the title compound consists of one Cd2+ cation, one Hssal2- anion, one Dafo ligand and two aqua ligands. Each Cd(II) center adopts a distorted pentagonal bipyramidal geometry and is seven-coordinated by one sulfonato oxygen atom and two carboxylate oxygen atoms from two different Hssal2- ligands, two N atoms from one Dafo molecule and two water O atoms. The oxygen atoms from the Hssal2- ligands and the nitrogen atoms form the basal plane while the axial positions are occupied by two water oxygen atoms. The Cd—O distances are in the range of 2.285 (2) - 2.629 (2) Å, with an average bond length of 2.3736 (2) Å, which are all within the normal range generally found in the literature (Sun et al., 2010). Hssal2- functions as a tridentate ligand, in which two carboxylate oxygen atoms chelate one Cd atom and one sulfonato oxygen atom binds to another Cd atom. Thus the Cd(II) centers are bridged by the Hssal2- ligands to generate one-dimensional zigzag chains along [010]. Moreover, an extensive hydrogen bond network is observed in the crystal structure of the title compound in which the aqua ligands (O8 and O9) act as the hydrogen donors towards sulfonato oxygen atoms O5 and O6, the hydroxyl oxygen atom O4 and the ketone oxygen atom O1, respectively.

Related literature top

For information on compounds with metal–organic framework structures, see: Song et al. (2007); Yan et al. (2009). For related Cd2+ compounds, see: Sun et al. (2010).

Experimental top

A mixture of Cd(NO3)2 × 4 H2O (1.00 mmol, 0.3085 g), 5-sulfosalicylic acid (H3ssal) dihydrate (1 mmol, 0.2542 g), 4,5-diazafluoren-9-one (Dafo) (1 mmol, 0.1822 g), NaOH (1.00 mmol, 0.04 g) and H2O (10.0 ml) was heated in a 23 ml Teflon-lined stainless steel reactor at 443 K for 72 h. The yellow plate-like crystals were filtered and washed with water and acetone. Yield: 8% based on Cd.

Refinement top

H atoms attached to C atoms were included at calculated positions and treated as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C)]. Water H atoms were found in a difference map, relocated in idealized positions (O—H = 0.85 Å) and refined as riding atoms with Uiso(H) = 1.5 Ueq(O). The highest density peak is located 0.85 Å from atom Cd and the deepest hole is located 0.69 Å from atom S.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The asymmetric unit of the title compounds showing displacement ellipsoids at the 30% probability level and H atoms as small spheres of arbitrary radii. Symmetry code: (i) 1 - x, 0.5 + y, 2 - z.

Fig. 2. The one-dimensional zigzag-like chain structure of the title compound. H atoms are omitted for clarity.
catena-Poly[[diaqua(4,5-diazafluoren-9-one-κ2N,N')cadmium]-µ-2-hydroxy-5-sulfonatobenzoato-κ3O1,O1':O5] top
Crystal data top
[Cd(C7H4O6S)(C11H6N2O)(H2O)2]F(000) = 544
Mr = 546.77Dx = 1.980 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 387 reflections
a = 7.6233 (6) Åθ = 2.1–27.5°
b = 12.8461 (10) ŵ = 1.37 mm1
c = 9.4625 (7) ÅT = 296 K
β = 98.155 (1)°Plate, yellow
V = 917.29 (12) Å30.35 × 0.32 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3545 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 26.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 98
Tmin = 0.677, Tmax = 0.823k = 1616
5158 measured reflectionsl = 911
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0198P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.010
S = 1.02Δρmax = 0.32 e Å3
3545 reflectionsΔρmin = 0.23 e Å3
281 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0055 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1559 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.040 (13)
Crystal data top
[Cd(C7H4O6S)(C11H6N2O)(H2O)2]V = 917.29 (12) Å3
Mr = 546.77Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.6233 (6) ŵ = 1.37 mm1
b = 12.8461 (10) ÅT = 296 K
c = 9.4625 (7) Å0.35 × 0.32 × 0.20 mm
β = 98.155 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3469 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.823Rint = 0.010
5158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.037Δρmax = 0.32 e Å3
S = 1.02Δρmin = 0.23 e Å3
3545 reflectionsAbsolute structure: Flack (1983), 1559 Friedel pairs
281 parametersAbsolute structure parameter: 0.040 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7119 (3)0.11149 (18)0.4387 (2)0.0325 (5)
H10.66590.08420.51670.039*
C20.7228 (3)0.04706 (19)0.3233 (3)0.0369 (5)
H20.68510.02170.32540.044*
C30.7902 (3)0.08485 (19)0.2036 (3)0.0377 (5)
H30.79930.04270.12510.045*
C40.8423 (3)0.18736 (18)0.2071 (2)0.0305 (5)
C50.9171 (3)0.2583 (2)0.1039 (3)0.0349 (5)
C60.9390 (2)0.3622 (3)0.17581 (19)0.0327 (4)
C71.0001 (3)0.4579 (2)0.1391 (3)0.0412 (6)
H71.03650.46930.05060.049*
C81.0049 (3)0.5374 (2)0.2407 (3)0.0434 (6)
H81.04890.60260.22150.052*
C90.9445 (3)0.51923 (17)0.3698 (3)0.0355 (5)
H90.94280.57460.43290.043*
C100.8864 (2)0.3516 (2)0.3100 (2)0.0280 (4)
C110.8275 (3)0.24562 (16)0.3282 (2)0.0282 (4)
C120.4313 (3)0.19306 (15)0.9233 (2)0.0248 (4)
C130.3771 (3)0.11221 (16)1.0031 (2)0.0261 (4)
H130.36780.04540.96500.031*
C140.3361 (3)0.12964 (15)1.1403 (2)0.0241 (4)
C150.3489 (3)0.23148 (16)1.1954 (2)0.0262 (4)
C160.4067 (3)0.31269 (17)1.1150 (2)0.0308 (5)
H160.41690.37971.15250.037*
C170.4488 (3)0.29364 (16)0.9797 (2)0.0291 (5)
H170.48850.34750.92670.035*
C180.2836 (3)0.04158 (16)1.2294 (2)0.0277 (4)
Cd10.760273 (16)0.360333 (13)0.613628 (12)0.02682 (5)
N10.7645 (2)0.21201 (14)0.44437 (19)0.0281 (4)
N20.8881 (2)0.42577 (14)0.4086 (2)0.0301 (4)
O10.9547 (2)0.23396 (15)0.01156 (18)0.0460 (4)
O20.2854 (2)0.04920 (12)1.18426 (18)0.0392 (4)
O30.2427 (2)0.06334 (13)1.35128 (17)0.0377 (4)
O40.3065 (2)0.25331 (12)1.32612 (16)0.0344 (4)
H40.28130.19721.36640.052*
O50.3267 (2)0.22249 (15)0.65477 (18)0.0418 (4)
O60.4806 (2)0.06102 (12)0.72661 (17)0.0394 (4)
O70.6409 (2)0.22356 (13)0.73467 (17)0.0359 (4)
O80.4984 (2)0.40770 (12)0.48081 (17)0.0338 (3)
O91.0370 (2)0.32540 (13)0.73495 (18)0.0411 (4)
S10.47242 (7)0.17302 (4)0.74579 (5)0.02593 (11)
H8B0.42290.36870.43150.039*
H8A0.51590.45640.42330.039*
H9B1.02680.30910.82050.039*
H9A1.12830.31170.69590.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0372 (12)0.0294 (11)0.0329 (12)0.0010 (9)0.0118 (9)0.0016 (9)
C20.0391 (13)0.0270 (11)0.0451 (15)0.0021 (9)0.0082 (10)0.0056 (11)
C30.0377 (12)0.0425 (13)0.0347 (13)0.0024 (10)0.0114 (10)0.0125 (10)
C40.0337 (11)0.0356 (12)0.0240 (11)0.0049 (9)0.0107 (9)0.0025 (9)
C50.0299 (13)0.0481 (14)0.0279 (13)0.0057 (10)0.0082 (10)0.0006 (10)
C60.0330 (9)0.0392 (10)0.0272 (9)0.0066 (15)0.0087 (7)0.0022 (14)
C70.0398 (14)0.0481 (15)0.0389 (15)0.0024 (12)0.0163 (11)0.0146 (11)
C80.0424 (13)0.0349 (13)0.0545 (16)0.0024 (10)0.0125 (11)0.0125 (11)
C90.0366 (12)0.0270 (11)0.0434 (14)0.0001 (9)0.0071 (10)0.0021 (10)
C100.0302 (9)0.0285 (11)0.0262 (9)0.0045 (11)0.0072 (7)0.0026 (11)
C110.0319 (11)0.0293 (11)0.0241 (11)0.0025 (8)0.0067 (9)0.0001 (9)
C120.0305 (10)0.0242 (10)0.0207 (10)0.0005 (8)0.0074 (8)0.0005 (8)
C130.0307 (10)0.0236 (9)0.0240 (10)0.0010 (8)0.0036 (8)0.0008 (8)
C140.0245 (10)0.0249 (10)0.0228 (10)0.0005 (7)0.0031 (8)0.0026 (8)
C150.0296 (10)0.0283 (10)0.0207 (10)0.0004 (8)0.0029 (8)0.0002 (8)
C160.0447 (12)0.0220 (9)0.0269 (11)0.0046 (9)0.0090 (9)0.0044 (9)
C170.0397 (12)0.0227 (10)0.0256 (11)0.0037 (8)0.0071 (9)0.0032 (8)
C180.0285 (11)0.0284 (11)0.0266 (11)0.0005 (9)0.0053 (8)0.0068 (9)
Cd10.03529 (8)0.02431 (7)0.02215 (7)0.00261 (8)0.00855 (5)0.00201 (7)
N10.0358 (10)0.0268 (9)0.0236 (9)0.0001 (7)0.0108 (7)0.0002 (7)
N20.0338 (10)0.0278 (9)0.0300 (10)0.0024 (7)0.0088 (8)0.0016 (7)
O10.0552 (11)0.0605 (11)0.0258 (9)0.0062 (9)0.0179 (8)0.0043 (8)
O20.0571 (11)0.0267 (8)0.0356 (10)0.0041 (7)0.0131 (8)0.0045 (7)
O30.0517 (10)0.0372 (9)0.0275 (8)0.0024 (7)0.0170 (7)0.0068 (7)
O40.0516 (10)0.0311 (8)0.0230 (8)0.0039 (7)0.0136 (7)0.0024 (6)
O50.0477 (10)0.0529 (11)0.0247 (9)0.0116 (9)0.0054 (7)0.0019 (8)
O60.0644 (11)0.0250 (8)0.0316 (9)0.0041 (7)0.0169 (8)0.0068 (6)
O70.0396 (9)0.0381 (9)0.0330 (9)0.0065 (7)0.0155 (7)0.0005 (7)
O80.0406 (8)0.0270 (7)0.0325 (9)0.0018 (7)0.0012 (7)0.0018 (7)
O90.0377 (9)0.0494 (11)0.0376 (9)0.0065 (7)0.0103 (7)0.0094 (7)
S10.0351 (3)0.0234 (2)0.0208 (2)0.0010 (2)0.0093 (2)0.00040 (19)
Geometric parameters (Å, º) top
C1—N11.351 (3)C14—C151.407 (3)
C1—C21.382 (3)C14—C181.499 (3)
C1—H10.9300C15—O41.351 (3)
C2—C31.395 (4)C15—C161.399 (3)
C2—H20.9300C16—C171.385 (3)
C3—C41.375 (3)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C111.386 (3)C18—O21.243 (3)
C4—C51.506 (3)C18—O31.268 (3)
C5—O11.209 (3)Cd1—O82.2857 (16)
C5—C61.497 (4)Cd1—O92.2984 (16)
C6—C71.376 (4)Cd1—O2i2.3061 (16)
C6—C101.391 (3)Cd1—O72.3501 (16)
C7—C81.399 (4)Cd1—N22.4404 (19)
C7—H70.9300Cd1—N12.4922 (18)
C8—C91.385 (4)Cd1—O3i2.6294 (17)
C8—H80.9300O2—Cd1ii2.3061 (16)
C9—N21.344 (3)O3—Cd1ii2.6294 (17)
C9—H90.9300O4—H40.8504
C10—N21.333 (3)O5—S11.4518 (18)
C10—C111.452 (3)O6—S11.4527 (16)
C11—N11.333 (3)O7—S11.4561 (17)
C12—C131.381 (3)O8—H8B0.8500
C12—C171.397 (3)O8—H8A0.8519
C12—S11.771 (2)O9—H9B0.8507
C13—C141.395 (3)O9—H9A0.8510
C13—H130.9300
N1—C1—C2123.6 (2)C16—C17—H17120.2
N1—C1—H1118.2C12—C17—H17120.2
C2—C1—H1118.2O2—C18—O3122.4 (2)
C1—C2—C3120.2 (2)O2—C18—C14119.85 (19)
C1—C2—H2119.9O3—C18—C14117.73 (19)
C3—C2—H2119.9O8—Cd1—O9174.22 (6)
C4—C3—C2116.9 (2)O8—Cd1—O2i95.69 (6)
C4—C3—H3121.6O9—Cd1—O2i85.41 (6)
C2—C3—H3121.6O8—Cd1—O795.66 (6)
C3—C4—C11118.7 (2)O9—Cd1—O790.12 (6)
C3—C4—C5134.4 (2)O2i—Cd1—O781.84 (6)
C11—C4—C5107.0 (2)O8—Cd1—N283.53 (6)
O1—C5—C6128.0 (2)O9—Cd1—N291.30 (6)
O1—C5—C4126.1 (2)O2i—Cd1—N2127.58 (6)
C6—C5—C4105.86 (19)O7—Cd1—N2150.56 (6)
C7—C6—C10118.0 (3)O8—Cd1—N186.57 (6)
C7—C6—C5134.6 (2)O9—Cd1—N194.42 (6)
C10—C6—C5107.4 (2)O2i—Cd1—N1159.30 (6)
C6—C7—C8117.1 (2)O7—Cd1—N177.46 (6)
C6—C7—H7121.5N2—Cd1—N173.11 (6)
C8—C7—H7121.5O8—Cd1—O3i77.46 (5)
C9—C8—C7120.2 (2)O9—Cd1—O3i98.87 (6)
C9—C8—H8119.9O2i—Cd1—O3i52.44 (5)
C7—C8—H8119.9O7—Cd1—O3i132.00 (5)
N2—C9—C8123.4 (2)N2—Cd1—O3i76.72 (5)
N2—C9—H9118.3N1—Cd1—O3i147.20 (5)
C8—C9—H9118.3C11—N1—C1114.62 (19)
N2—C10—C6126.4 (3)C11—N1—Cd1108.76 (13)
N2—C10—C11124.04 (19)C1—N1—Cd1136.50 (16)
C6—C10—C11109.5 (2)C10—N2—C9114.8 (2)
N1—C11—C4126.0 (2)C10—N2—Cd1110.21 (14)
N1—C11—C10123.74 (19)C9—N2—Cd1134.77 (16)
C4—C11—C10110.22 (19)C18—O2—Cd1ii100.22 (14)
C13—C12—C17120.43 (19)C18—O3—Cd1ii84.48 (13)
C13—C12—S1121.07 (15)C15—O4—H4109.5
C17—C12—S1118.46 (16)S1—O7—Cd1140.81 (11)
C12—C13—C14120.76 (19)Cd1—O8—H8B128.0
C12—C13—H13119.6Cd1—O8—H8A110.0
C14—C13—H13119.6H8B—O8—H8A103.7
C13—C14—C15118.78 (18)Cd1—O9—H9B108.8
C13—C14—C18121.01 (18)Cd1—O9—H9A124.9
C15—C14—C18120.19 (18)H9B—O9—H9A123.6
O4—C15—C16118.54 (19)O5—S1—O6113.71 (11)
O4—C15—C14121.31 (19)O5—S1—O7111.74 (11)
C16—C15—C14120.15 (19)O6—S1—O7112.26 (10)
C17—C16—C15120.2 (2)O5—S1—C12106.01 (10)
C17—C16—H16119.9O6—S1—C12106.20 (9)
C15—C16—H16119.9O7—S1—C12106.27 (10)
C16—C17—C12119.62 (19)
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O6iii0.851.962.801 (3)171
O8—H8B···O4iv0.851.932.758 (3)164
O9—H9A···O5v0.851.982.771 (3)154
O9—H9B···O1vi0.852.002.820 (3)161
Symmetry codes: (iii) x+1, y+1/2, z+1; (iv) x, y, z1; (v) x+1, y, z; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O6i0.851.962.801 (3)171
O8—H8B···O4ii0.851.932.758 (3)164
O9—H9A···O5iii0.851.982.771 (3)154
O9—H9B···O1iv0.852.002.820 (3)161
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+1, y, z; (iv) x, y, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province (grant No. 2010GQC0064), the Science and Technology Support Fundation of Jiangxi Province (grant Nos. 2012BBE500038 and 20141BBE50019) and Jiangxi University of Science and Technology Foundation (grant No. 3304000027).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J.-F., Chen, Y., Li, Z.-G., Zhou, R.-H., Xu, X.-Y., Xu, J.-Q. & Wang, T. G. (2007). Polyhedron, 26, 4397–4410.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, L. X., Qi, Y., Wang, Y. M., Che, Y. X. & Zheng, J. M. (2010). CrystEngComm, 12, 1540–1547.  Web of Science CrossRef CAS Google Scholar
First citationYan, C.-F., Jiang, F.-L., Chen, L., Feng, R., Yang, M. & Hong, M.-C. (2009). J. Solid State Chem. 182, 3162–3170.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m387-m388
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds