metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m359-m360

Crystal structure of a dinuclear CoII complex with bridging fluoride ligands: di-μ-fluorido-bis­­{tris­­[(6-methyl­pyridin-2-yl)meth­yl]amine}­dicobalt(II) bis­­(tetra­fluorido­borate)

aDepartment of Science, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
*Correspondence e-mail: suenagay@chem.kindai.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 7 July 2014; accepted 1 October 2014; online 4 October 2014)

Reaction of Co(BF4)2·6H2O with tris­[(6-methyl­pyridin-2-yl)meth­yl]amiine in methanol results in a fluoride abstraction from BF4, yielding the unexpected title compound, [Co2F2(C21H24N4)2](BF4)2. The complex cation consists of two inversion-related [Co(C21H24N4)]2+ moieties bridged by a pair of fluoride ligands. The CoII cation is six-coordinated in a distorted octa­hedral geometry and forms a +II high-spin state. In the crystal, the complex cation and the BF4 anion are connected by C—H⋯F hydrogen bonds, forming a three-dimensional network. An intra­molecular C—H⋯F hydrogen bond is also observed.

1. Related literature

For related fluoride-bridging structures, see: Dugan et al. (2012[Dugan, T. R., Goldberg, J. M., Brennessel, W. W., Bill, E. & Holland, P. L. (2012). Organometallics, 31, 1349-1360.]); Ding et al. (2009[Ding, K., Dugan, T. R., Brennessel, W. W., Bill, E. & Holland, P. L. (2009). Organometallics, 28, 6650-6656.]). For related metal complexes with tripodal ligands, see: Massoud et al. (2008[Massoud, S. S., Broussard, K. T., Mautner, F. A., Vicente, R., Saha, M. K. & Bernal, I. (2008). Inorg. Chim. Acta, 361, 123-131.]); Zhu et al. (2009[Zhu, Q., Nelson, K. J., Shum, W. W., DiPasquale, A., Rheingold, A. L. & Miller, J. S. (2009). Inorg. Chim. Acta, 362, 595-598.]); Beni et al. (2008[Beni, A., Dei, A., Laschi, S., Rizzitano, M. & Sorace, L. (2008). Chem. Eur. J. 14, 1804-1813.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co2F2(C21H24N4)2](BF4)2

  • Mr = 994.36

  • Triclinic, [P \overline 1]

  • a = 8.7884 (17) Å

  • b = 11.334 (4) Å

  • c = 11.897 (2) Å

  • α = 64.91 (5)°

  • β = 82.04 (6)°

  • γ = 87.98 (7)°

  • V = 1062.5 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 120 K

  • 0.20 × 0.20 × 0.10 mm

2.2. Data collection

  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.787, Tmax = 0.917

  • 8221 measured reflections

  • 4623 independent reflections

  • 3660 reflections with F2 > 2σ(F2)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.01

  • 4623 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Co1—F1 1.985 (2)
Co1—F1i 2.098 (2)
Co1—N1 2.249 (3)
Co1—N2 2.143 (3)
Co1—N3 2.124 (3)
Co1—N4 2.251 (3)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯F1 0.98 2.37 3.298 (5) 157
C3—H3⋯F3ii 0.95 2.43 3.296 (5) 152
C5—H5⋯F5iii 0.95 2.46 3.231 (6) 139
C10—H10⋯F2 0.95 2.52 3.372 (5) 149
C10—H10⋯F3 0.95 2.53 3.294 (5) 138
C12—H12⋯F2iv 0.95 2.51 3.327 (5) 143
C14—H14A⋯F1 0.98 2.26 3.220 (4) 167
C14—H14C⋯F2v 0.98 2.36 3.287 (4) 157
Symmetry codes: (ii) -x, -y+2, -z; (iii) -x+1, -y+2, -z; (iv) x-1, y, z; (v) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Related literature top

For related fluoride-bridging structures, see: Dugan et al. (2012); Ding et al. (2009). For related metal complexes with tripodal ligands, see: Massoud et al. (2008); Zhu et al. (2009); Beni et al. (2008).

Experimental top

A solution of Co(BF4)2·6H2O (204 mg, 0.60 mmol) in dry methanol (20 ml) was added to a methanol solution (20 ml) of tris[(6-methylpyridin-2-yl)methyl]amiine (199 mg, 0.60 mmol). The resulting solution was stirred for 1 hr. Diethylether was added to the filtrate slowly to obtain the complex. This solution stand at ambient temperature and over the period of 7 days a purple microcrystals of [Co2(Me3tpa)2F2](BF4)2 separated from the solution in 18% (107 mg) yield. IR (KBr, cm-1); 3448 s, 1605 s, 1578m, 1451 s, 1352m, 1084 s, 789m, 522m, ESI-MS; m/z=907.26(M—BF4), Anal. Calc. for C42H48N8F2Co2B2F8: C 50.73, H 4.87, N 11.27%. Found: C 50.96, H 4.63, N 11.07%.

Refinement top

H atoms were treated as riding, with C—H = 0.95 or 0.98 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Figures top
Perspective view of the complex showing 50% displacement ellipsoids. Hydrogen atoms are omitted for clarity.
Di-µ-fluorido-bis{tris[(6-methylpyridin-2-yl)methyl)amine}dicobalt(II) bis(tetrafluoridoborate) top
Crystal data top
[Co2F2(C21H24N4)2](BF4)2Z = 1
Mr = 994.36F(000) = 510.00
Triclinic, P1Dx = 1.554 Mg m3
a = 8.7884 (17) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.334 (4) ÅCell parameters from 1627 reflections
c = 11.897 (2) Åθ = 3.0–27.5°
α = 64.91 (5)°µ = 0.87 mm1
β = 82.04 (6)°T = 120 K
γ = 87.98 (7)°Platelet, purple
V = 1062.5 (7) Å30.20 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury70
diffractometer
3660 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.033
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 911
Tmin = 0.787, Tmax = 0.917k = 1414
8221 measured reflectionsl = 1215
4623 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4623 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.62 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Co2F2(C21H24N4)2](BF4)2γ = 87.98 (7)°
Mr = 994.36V = 1062.5 (7) Å3
Triclinic, P1Z = 1
a = 8.7884 (17) ÅMo Kα radiation
b = 11.334 (4) ŵ = 0.87 mm1
c = 11.897 (2) ÅT = 120 K
α = 64.91 (5)°0.20 × 0.20 × 0.10 mm
β = 82.04 (6)°
Data collection top
Rigaku Mercury70
diffractometer
4623 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
3660 reflections with F2 > 2σ(F2)
Tmin = 0.787, Tmax = 0.917Rint = 0.033
8221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.01Δρmax = 0.98 e Å3
4623 reflectionsΔρmin = 0.62 e Å3
289 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.03362 (4)0.54291 (4)0.10441 (3)0.01641 (16)
F10.14216 (19)0.48323 (17)0.05164 (15)0.0185 (4)
F20.4169 (3)0.7066 (3)0.4284 (2)0.0545 (7)
F30.3216 (3)0.8992 (3)0.3089 (3)0.0720 (10)
F40.5502 (3)0.8964 (3)0.3775 (2)0.0501 (6)
F50.5324 (3)0.8204 (3)0.2337 (2)0.0598 (8)
N10.1242 (3)0.3500 (3)0.2284 (2)0.0201 (6)
N20.0424 (3)0.5803 (2)0.2650 (2)0.0163 (5)
N30.2518 (3)0.5991 (3)0.1259 (2)0.0196 (5)
N40.0363 (3)0.7600 (3)0.0106 (2)0.0200 (5)
C10.2383 (4)0.7885 (4)0.0223 (3)0.0269 (7)
C20.0771 (4)0.8417 (3)0.0566 (3)0.0240 (7)
C30.0463 (5)0.9744 (3)0.1339 (3)0.0323 (8)
C40.1020 (5)1.0247 (4)0.1588 (3)0.0355 (9)
C50.2178 (5)0.9412 (4)0.1059 (3)0.0328 (8)
C60.1820 (4)0.8104 (3)0.0355 (3)0.0236 (7)
C70.3070 (4)0.7150 (3)0.0098 (3)0.0258 (7)
C80.2372 (3)0.6245 (3)0.2389 (3)0.0217 (7)
C90.0739 (3)0.6280 (3)0.2991 (3)0.0173 (6)
C100.0500 (4)0.6739 (3)0.3904 (3)0.0218 (7)
C110.0988 (4)0.6703 (3)0.4504 (3)0.0237 (7)
C120.2171 (4)0.6211 (3)0.4182 (3)0.0243 (7)
C130.1872 (4)0.5767 (3)0.3248 (3)0.0192 (6)
C140.3157 (4)0.5238 (3)0.2890 (3)0.0246 (7)
C150.3529 (3)0.4882 (3)0.1383 (3)0.0225 (7)
C160.2771 (4)0.3608 (3)0.2283 (3)0.0228 (7)
C170.3622 (4)0.2584 (4)0.3017 (3)0.0317 (8)
C180.2910 (5)0.1365 (4)0.3696 (4)0.0367 (9)
C190.1369 (5)0.1239 (4)0.3671 (3)0.0319 (8)
C200.0532 (4)0.2333 (3)0.2997 (3)0.0247 (7)
C210.1182 (4)0.2238 (4)0.3075 (3)0.0296 (8)
B10.4541 (5)0.8333 (4)0.3389 (4)0.0308 (9)
H1A0.297670.837870.090820.0323*
H1B0.285080.796050.053970.0323*
H1C0.237920.696580.007530.0323*
H30.127181.029680.16920.0388*
H40.124261.114430.210910.0426*
H50.319820.973580.117920.0394*
H7A0.3480.686660.056410.0309*
H7B0.392020.75860.025410.0309*
H8A0.289310.709150.216390.0261*
H8B0.29250.55630.302060.0261*
H100.133520.70730.412030.0261*
H110.117940.70190.513210.0284*
H120.318780.617240.459190.0292*
H14A0.277780.50550.216780.0295*
H14B0.396920.587990.267110.0295*
H14C0.357060.443220.359620.0295*
H15A0.380620.487180.055220.0270*
H15B0.448950.499940.167650.0270*
H170.467230.271560.305360.0381*
H180.347690.063510.416830.0440*
H190.086540.040830.4110.0383*
H21A0.145880.248630.223580.0355*
H21B0.166640.282450.342390.0355*
H21C0.153950.133980.361850.0355*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0172 (3)0.0196 (3)0.0131 (2)0.00145 (16)0.00164 (15)0.00753 (17)
F10.0178 (9)0.0233 (9)0.0151 (8)0.0020 (7)0.0006 (7)0.0092 (7)
F20.0382 (13)0.0528 (16)0.0428 (14)0.0055 (12)0.0063 (11)0.0091 (12)
F30.0525 (16)0.0447 (16)0.138 (3)0.0222 (13)0.0531 (18)0.0473 (19)
F40.0437 (14)0.0678 (18)0.0561 (16)0.0020 (13)0.0153 (12)0.0399 (14)
F50.0763 (19)0.0585 (17)0.0446 (15)0.0296 (14)0.0170 (13)0.0271 (13)
N10.0242 (14)0.0230 (14)0.0158 (12)0.0022 (11)0.0044 (10)0.0106 (11)
N20.0175 (13)0.0184 (13)0.0122 (11)0.0012 (10)0.0011 (9)0.0061 (10)
N30.0186 (13)0.0256 (14)0.0151 (12)0.0026 (11)0.0009 (10)0.0092 (11)
N40.0280 (14)0.0176 (13)0.0139 (12)0.0008 (11)0.0009 (10)0.0068 (10)
C10.0287 (18)0.0301 (19)0.0240 (16)0.0063 (14)0.0054 (14)0.0133 (14)
C20.0362 (19)0.0224 (16)0.0147 (14)0.0004 (14)0.0031 (13)0.0093 (13)
C30.052 (2)0.0202 (17)0.0215 (16)0.0070 (16)0.0100 (16)0.0050 (14)
C40.058 (3)0.0219 (18)0.0235 (17)0.0070 (17)0.0060 (17)0.0056 (14)
C50.044 (2)0.0263 (18)0.0262 (17)0.0134 (16)0.0015 (15)0.0098 (15)
C60.0300 (18)0.0227 (16)0.0174 (15)0.0062 (14)0.0015 (13)0.0079 (13)
C70.0214 (17)0.0293 (18)0.0220 (16)0.0110 (14)0.0033 (13)0.0074 (14)
C80.0177 (16)0.0324 (18)0.0216 (15)0.0040 (13)0.0036 (12)0.0171 (14)
C90.0209 (16)0.0169 (14)0.0128 (13)0.0016 (12)0.0039 (11)0.0046 (11)
C100.0265 (17)0.0226 (16)0.0177 (15)0.0002 (13)0.0062 (12)0.0090 (13)
C110.0320 (18)0.0241 (17)0.0186 (15)0.0064 (14)0.0064 (13)0.0121 (13)
C120.0243 (17)0.0288 (18)0.0160 (15)0.0042 (14)0.0017 (12)0.0064 (13)
C130.0214 (16)0.0177 (15)0.0156 (14)0.0052 (12)0.0025 (12)0.0048 (12)
C140.0203 (16)0.0320 (18)0.0214 (16)0.0021 (14)0.0014 (12)0.0122 (14)
C150.0153 (15)0.0328 (18)0.0263 (16)0.0043 (13)0.0063 (12)0.0184 (14)
C160.0266 (17)0.0280 (17)0.0189 (15)0.0066 (14)0.0072 (13)0.0142 (13)
C170.032 (2)0.040 (2)0.0297 (18)0.0147 (17)0.0132 (15)0.0198 (17)
C180.049 (2)0.036 (2)0.0314 (19)0.0254 (19)0.0175 (17)0.0188 (17)
C190.052 (2)0.0240 (18)0.0195 (16)0.0086 (17)0.0076 (16)0.0090 (14)
C200.0370 (19)0.0230 (17)0.0130 (14)0.0015 (14)0.0036 (13)0.0066 (13)
C210.039 (2)0.0282 (18)0.0187 (16)0.0073 (15)0.0009 (14)0.0081 (14)
B10.027 (2)0.034 (2)0.035 (2)0.0009 (17)0.0083 (17)0.0169 (18)
Geometric parameters (Å, º) top
Co1—F11.985 (2)C8—H8B0.990
Co1—F1i2.098 (2)C10—H100.950
Co1—N12.249 (3)C11—H110.950
Co1—N22.143 (3)C12—H120.950
Co1—N32.124 (3)C14—H14A0.980
Co1—N42.251 (3)C14—H14B0.980
C1—H1A0.980C14—H14C0.980
C1—H1B0.980C15—H15A0.990
C1—H1C0.980C15—H15B0.990
C3—H30.950C17—H170.950
C4—H40.950C18—H180.950
C5—H50.950C19—H190.950
C7—H7A0.990C21—H21A0.980
C7—H7B0.990C21—H21B0.980
C8—H8A0.990C21—H21C0.980
C2—C1—H1A109.475C11—C12—H12120.262
C2—C1—H1B109.475C13—C12—H12120.262
C2—C1—H1C109.470C13—C14—H14A109.477
H1A—C1—H1B109.471C13—C14—H14B109.471
H1A—C1—H1C109.471C13—C14—H14C109.474
H1B—C1—H1C109.464H14A—C14—H14B109.469
C2—C3—H3120.021H14A—C14—H14C109.471
C4—C3—H3120.022H14B—C14—H14C109.466
C3—C4—H4120.711N3—C15—H15A109.251
C5—C4—H4120.709N3—C15—H15B109.254
C4—C5—H5120.552C16—C15—H15A109.247
C6—C5—H5120.552C16—C15—H15B109.257
N3—C7—H7A109.158H15A—C15—H15B107.925
N3—C7—H7B109.159C16—C17—H17120.594
C6—C7—H7A109.163C18—C17—H17120.604
C6—C7—H7B109.167C17—C18—H18120.738
H7A—C7—H7B107.874C19—C18—H18120.746
N3—C8—H8A108.359C18—C19—H19119.864
N3—C8—H8B108.356C20—C19—H19119.859
C9—C8—H8A108.352C20—C21—H21A109.472
C9—C8—H8B108.358C20—C21—H21B109.469
H8A—C8—H8B107.440C20—C21—H21C109.469
C9—C10—H10120.591H21A—C21—H21B109.475
C11—C10—H10120.590H21A—C21—H21C109.474
C10—C11—H11120.224H21B—C21—H21C109.468
C12—C11—H11120.224
F1—Co1—F1i—Co1i0.00 (8)C16—N1—C20—C21175.4 (3)
F1i—Co1—F1—Co1i0.00 (9)C20—N1—C16—C15174.2 (3)
F1—Co1—N1—C16151.42 (17)C20—N1—C16—C172.5 (5)
F1—Co1—N1—C2029.6 (3)Co1—N2—C9—C810.8 (3)
N1—Co1—F1—Co1i86.50 (11)Co1—N2—C9—C10172.26 (16)
F1—Co1—N2—C9176.69 (11)Co1—N2—C13—C12171.21 (15)
F1—Co1—N2—C134.6 (2)Co1—N2—C13—C148.8 (3)
N2—Co1—F1—Co1i179.51 (7)C9—N2—C13—C120.4 (3)
F1—Co1—N4—C228.6 (3)C9—N2—C13—C14179.6 (2)
F1—Co1—N4—C6150.43 (17)C13—N2—C9—C8176.1 (2)
N4—Co1—F1—Co1i87.98 (12)C13—N2—C9—C100.8 (4)
F1i—Co1—N1—C1673.10 (19)Co1—N3—C7—C642.6 (3)
F1i—Co1—N1—C20107.9 (3)Co1—N3—C8—C99.8 (3)
N1—Co1—F1i—Co1i100.85 (12)Co1—N3—C15—C1646.2 (3)
F1i—Co1—N3—C760.13 (17)C7—N3—C8—C9109.5 (3)
F1i—Co1—N3—C8177.16 (14)C8—N3—C7—C678.0 (3)
F1i—Co1—N3—C1557.08 (13)C7—N3—C15—C16161.6 (3)
N3—Co1—F1i—Co1i179.26 (9)C15—N3—C7—C6157.0 (3)
F1i—Co1—N4—C2107.2 (3)C8—N3—C15—C1672.6 (3)
F1i—Co1—N4—C671.84 (18)C15—N3—C8—C9126.4 (2)
N4—Co1—F1i—Co1i102.42 (12)Co1—N4—C2—C15.2 (5)
N1—Co1—N2—C982.20 (16)Co1—N4—C2—C3175.7 (2)
N1—Co1—N2—C13105.7 (2)Co1—N4—C6—C5179.1 (2)
N2—Co1—N1—C1698.0 (2)Co1—N4—C6—C73.4 (4)
N2—Co1—N1—C2081.0 (3)C2—N4—C6—C50.1 (5)
N1—Co1—N3—C7149.19 (19)C2—N4—C6—C7175.8 (3)
N1—Co1—N3—C888.09 (16)C6—N4—C2—C1175.9 (3)
N1—Co1—N3—C1531.99 (13)C6—N4—C2—C33.3 (5)
N3—Co1—N1—C1614.90 (18)N4—C2—C3—C43.3 (6)
N3—Co1—N1—C20164.1 (3)C1—C2—C3—C4175.8 (3)
N1—Co1—N4—C2165.2 (2)C2—C3—C4—C50.1 (6)
N1—Co1—N4—C615.7 (4)C3—C4—C5—C63.0 (6)
N4—Co1—N1—C1614.8 (4)C4—C5—C6—N43.1 (6)
N4—Co1—N1—C20164.1 (2)C4—C5—C6—C7172.5 (3)
N2—Co1—N3—C7119.29 (18)N4—C6—C7—N331.1 (5)
N2—Co1—N3—C83.42 (14)C5—C6—C7—N3153.1 (3)
N2—Co1—N3—C15123.50 (14)N3—C8—C9—N214.5 (3)
N3—Co1—N2—C93.94 (14)N3—C8—C9—C10168.5 (2)
N3—Co1—N2—C13175.99 (19)N2—C9—C10—C110.4 (4)
N2—Co1—N4—C281.5 (3)C8—C9—C10—C11176.5 (2)
N2—Co1—N4—C699.44 (19)C9—C10—C11—C120.4 (4)
N4—Co1—N2—C974.66 (17)C10—C11—C12—C130.8 (4)
N4—Co1—N2—C1397.4 (2)C11—C12—C13—N20.4 (4)
N3—Co1—N4—C2165.2 (3)C11—C12—C13—C14179.6 (2)
N3—Co1—N4—C615.79 (17)N3—C15—C16—N136.2 (5)
N4—Co1—N3—C730.78 (17)N3—C15—C16—C17147.1 (3)
N4—Co1—N3—C891.93 (17)N1—C16—C17—C186.0 (6)
N4—Co1—N3—C15147.99 (15)C15—C16—C17—C18170.5 (3)
Co1—N1—C16—C156.7 (4)C16—C17—C18—C193.7 (6)
Co1—N1—C16—C17176.6 (3)C17—C18—C19—C201.7 (6)
Co1—N1—C20—C19177.9 (2)C18—C19—C20—N15.4 (6)
Co1—N1—C20—C213.5 (5)C18—C19—C20—C21173.2 (4)
C16—N1—C20—C193.2 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···F10.982.373.298 (5)157
C3—H3···F3ii0.952.433.296 (5)152
C5—H5···F5iii0.952.463.231 (6)139
C10—H10···F20.952.523.372 (5)149
C10—H10···F30.952.533.294 (5)138
C12—H12···F2iv0.952.513.327 (5)143
C14—H14A···F10.982.263.220 (4)167
C14—H14C···F2v0.982.363.287 (4)157
Symmetry codes: (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x1, y, z; (v) x, y+1, z+1.
Selected bond lengths (Å) top
Co1—F11.985 (2)Co1—N22.143 (3)
Co1—F1i2.098 (2)Co1—N32.124 (3)
Co1—N12.249 (3)Co1—N42.251 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···F10.982.373.298 (5)157
C3—H3···F3ii0.952.433.296 (5)152
C5—H5···F5iii0.952.4563.231 (6)139
C10—H10···F20.952.523.372 (5)149
C10—H10···F30.952.533.294 (5)138
C12—H12···F2iv0.952.513.327 (5)143
C14—H14A···F10.982.263.220 (4)167
C14—H14C···F2v0.982.363.287 (4)157
Symmetry codes: (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x1, y, z; (v) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the School of Science and Engin­eering of Kinki University for funding this work.

References

First citationBeni, A., Dei, A., Laschi, S., Rizzitano, M. & Sorace, L. (2008). Chem. Eur. J. 14, 1804–1813.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDing, K., Dugan, T. R., Brennessel, W. W., Bill, E. & Holland, P. L. (2009). Organometallics, 28, 6650–6656.  Web of Science CSD CrossRef CAS Google Scholar
First citationDugan, T. R., Goldberg, J. M., Brennessel, W. W., Bill, E. & Holland, P. L. (2012). Organometallics, 31, 1349–1360.  Web of Science CSD CrossRef CAS Google Scholar
First citationMassoud, S. S., Broussard, K. T., Mautner, F. A., Vicente, R., Saha, M. K. & Bernal, I. (2008). Inorg. Chim. Acta, 361, 123–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Q., Nelson, K. J., Shum, W. W., DiPasquale, A., Rheingold, A. L. & Miller, J. S. (2009). Inorg. Chim. Acta, 362, 595–598.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m359-m360
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds