research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6,6′-di­methyl-2H,2′H-3,4′-bichromene-2,2′-dione

aDepartment of Chemistry, Karnatak University, Dharwad 580 010, India, and bDepartment of Physics, M S Ramaiah Institute of Technology, MSRIT Post, Bangalore 560 054, India
*Correspondence e-mail: anilgn@msrit.edu

Edited by H. Ishida, Okayama University, Japan (Received 12 September 2014; accepted 3 October 2014; online 11 October 2014)

In the title compound, C20H14O4, the dihedral angle between the two coumarin ring systems is 52.37 (19)°, showing a gauche arrangement across the C—C bond which links the two units. The carbonyl groups of the two coumarin units adopt an s-trans arrangement. In the crystal, pairs of C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.631 (2) Å] connect the mol­ecules into inversion dimers.

1. Chemical context

Bicoumarins, in which two coumarin ring systems are directly linked through a C—C bond, are a group of regio-isomers which are of synthetic inter­est (Ilyas & Parveen, 1996[Ilyas, M. & Parveen, M. (1996). Tetrahedron, 52, 3991-3996.]; Dubovik et al., 2004[Dubovik, I. P., Garazd, M. M. & Khilya, V. P. (2004). Chem. Nat. Compd, 40, 434-443.]; Frasinyuk et al., 2012[Frasinyuk, M. S., Bondarenko, S. P. & Khilya, V. P. (2012). Chem. Heterocycl. Compd, 48, 422-426.]). Their natural occurrence and structural diversity originate from various positions of the linkage which can lead to pyran–pyran-linked bicoumarins, viz., 3-3′, 3-4′, 4-4′, or pyran–benzene-linked bicoumarins wherein the points of linkage are C3/C4 with the C5–C8 positions in the second coumarin moiety (Hussain et al., 2012[Hussain, H., Hussain, J., Al-Harrasi, A. & Krohn, K. (2012). Tetrahedron, 68, 2553-2578.]). 3-3′ Bicoumarins isolated from Chinese medicinal plants and Mediterranean sponges (Panichayupakaranant et al., 1998[Panichayupakaranant, P., Noguchi, H. & De-Eknamkul, W. (1998). Planta Med. 64, 774-775.]) have been shown to exhibit insecticidal and anti-proliferative properties. 8-8′ Bicoumarins have shown anti­leukemic, nematocidal and cardiotoxic activity as well as anti­schistosomial, sedative and hypotensive effects (Ulubelen et al., 1986[Ulubelen, A., Terem, B. & Tuzlaci, E. (1986). J. Nat. Prod. 49, 692-694.]). 6-8′ Bicoumarins have been evaluated for urease inhibitory activity (Ayaz et al., 2006[Ayaz, M., Riaz, M. A. M., Haq, A. U., Malik, A. & Choudhary, M. I. (2006). J. Enzyme Inhib. Med. Chem. 49, 527-529.]). Atropisomerism has been observed for naturally occurring 3-6′ bicoumarins (Zhan et al., 2003[Zhan, Q. F., Xia, Z. H., Wang, J. I. & Lao, A. N. (2003). J. Asian Nat. Prod. Res. 5, 303-306.]). 5-5′ Bicoumarins competitively inhibit epoxide reductase of vitamin K, preventing the reduction of vitamin K into hydro­quinone, leading to their anti­coagulant activity (Zhou et al., 2009[Zhou, H. Y., Hong, J. L., Shu, P., Ni, Y. J. & Qin, M. J. (2009). Fitoterapia, 80, 283-285.]). 3-8′ Bicoumarins exhibit cytotoxicity towards human solid tumour cell lines, affording ED50 values of 7.5, 55, 5.8 µg/ml against non-small-cell-lung carcinoma A-549, breast adenocarcinoma MCF-7, and colon adeno-carcinoma HT-29 cells respectively (Tepaske & Gloer, 1992[Tepaske, M. R. & Gloer, J. B. (1992). J. Nat. Prod. 55, 1080-1086.]).

[Scheme 1]

In view of the above cited activities of directly linked coumarin dimers, the present work reports the synthesis under metal-free conditions of a new 4-3′ bicoumarin and its structure.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The packing viewed along the b axis (Fig. 2[link]) shows the existence of inter­molecular C—H⋯O hydrogen bonds between the carbonyl O4 of one coumarin moiety and the aromatic H8 of the second unit (Table 1[link]), which has also been observed in a 3-5′ bicoumarin (Fun et al., 2009[Fun, H.-K., Jebas, S. R., Parveen, M., Khanam, Z. & Ghalib, R. M. (2009). Acta Cryst. E65, o1322-o1323.]). The two coumarin rings exhibit an s-trans arrangement across the C4—C11 bond for the two double bonds viz. C3=C4 and C11=C12. The non-planar nature of the bi-heterocyclic system is revealed through the torsion angles C3—C4—C11—C12 [−52.37 (19)°] and C10—C4—C11—C19 [−59.32 (17)°], which almost corresponds to a gauche conformation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O4i 0.93 2.53 3.330 (2) 145
Symmetry code: (i) -x+1, -y, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the b axis. Dashed lines indicate C—H⋯O hydrogen bonds and ππ inter­actions. H atoms not involved in hydrogen bonding have been omitted for clarity.

3. Supra­molecular features

In the crystal, pairs of C—H⋯O hydrogen bonds and ππ inter­actions [Cg1⋯Cg1i = 3.631 (2); slippage = 1.491 Å; Cg1 is the centroid of the C5–C10 ring; symmetry code: (i) 1 − x, −y, −z] connect mol­ecules into inversion dimers (Fig. 2[link]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, updates Feb 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662-671.]) revealed two related structures, viz. 7,7′,8,8′-tetra­meth­oxy-4,4′-dimethyl-3,5′-bichromene-2,2′-dione (Fun et al., 2009[Fun, H.-K., Jebas, S. R., Parveen, M., Khanam, Z. & Ghalib, R. M. (2009). Acta Cryst. E65, o1322-o1323.]) and 7,7′-dihy­droxy-4,4′-dimethyl-3,4-di­hydro-2H,2′H-4,6′-bichromene-2,2′-dione (Pereira Silva et al., 2011[Pereira Silva, P. S., Parveen, M., Ali, A., Malla, A. M. & Ramos Silva, M. (2011). Acta Cryst. E67, o201.]). In these two compounds, the dihedral angles between the coumarin ring systems are 79.93 (3) and 88.07 (2)°, respectively. The corresponding angle in the title compound is 52.37 (19)°.

5. Synthesis and Crystallization

6-Methyl­coumarin 4-acetic acid (0.01 mol) and 5-methyl­salicyl­aldehyde (0.01 mol) were taken in a round-bottomed flask containing (1.5 eq) NaH and 3 ml of acetic anhydride. The flask, fitted with a guard tube, was stirred for 1.5 h. The progress of the reaction was monitored by TLC, the solid that separated was filtered off and washed with diethyl ether and again with 5% NaHCO3 to remove unreacted 6-methyl­coumarin 4-acetic acid. Then the solid was dried and recrystallized from ethanol. Crystals suitable for diffraction studies were obtained through slow evaporation from a DMF solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C20H14O4
Mr 318.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.834 (1), 8.0455 (9), 12.7952 (15)
α, β, γ (°) 79.492 (5), 77.096 (4), 86.637 (5)
V3) 772.78 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.35 × 0.31 × 0.25
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.954, 0.964
No. of measured, independent and observed [I > 2σ(I)] reflections 12862, 3499, 2509
Rint 0.027
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.05
No. of reflections 3499
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]), PARST (Nardelli, 1996[Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Bicoumarins, in which two coumarin ring systems are directly linked through a C—C bond, are a group of regio-isomers which are of synthetic inter­est (Ilyas & Parveen, 1996; Dubovik et al., 2004; Frasinyuk et al., 2012). Their natural occurrence and structural diversity originate from various positions of the linkage which can lead to pyran–pyran-linked bicoumarins, viz., 3-3', 3-4', 4-4', or pyran–benzene-linked bicoumarins wherein the points of linkage are C3/C4 with the C5–C8 positions in the second coumarin moiety (Hussain et al., 2012). 3-3' Bicoumarins isolated from Chinese medicinal plants and Mediterranean sponges (Panichayupakaranant et al., 1998) have been shown to exhibit insecticidal and anti-proliferative properties. 8-8' Bicoumarins have shown anti­leukemic, nematocidal and cardiotoxic activity as well as anti­schistosomial, sedative and hypotensive effects (Ulubelen et al., 1986). 6-8' Bicoumarins have been evaluated for urease inhibitory activity (Ayaz et al., 2006). Atropisomerism has been observed for naturally occurring 3-6' bicoumarins (Zhan et al., 2003). 5-5' Bicoumarins competitively inhibit epoxide redu­ctase of vitamin K, preventing the reduction of vitamin K into hydri­quinone, leading to their anti­coagulant activity (Zhou et al., 2009 ). 3-8' Bicoumarins exhibit cytotoxicity towards human solid tumour cell lines, affording ED50 values of 7.5, 55, 5.8 µg/ml against non-small-cell-lung carcinoma A-549, breast adenocarcinoma MCF-7, and colon adeno-carcinoma HT-29 cells respectively (Tepaske & Gloer, 1992). In view of the above cited activities of directly linked coumarin dimers, the present work reports the synthesis under metal-free conditions of a new 4-3' bicoumarin and its structure.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The packing viewed along the b axis (Fig. 2) shows the existence of inter­molecular C—H···O hydrogen bonds between the carbonyl O4 of one coumarin moiety and the aromatic H8 of the second unit (Table 1), which has also been observed in a 3-5' bicoumarin (Fun et al., 2009). The two coumarin rings exhibit an s-cis [s-trans in Abstract?] arrangement across the C4—C11 bond for the two double bonds viz. C3C4 and C11C12. The non-planar nature of the bi-heterocyclic system is revealed through the torsion angles C3—C4—C11—C12 [-52.37 (19)°] and C10—C4—C11—C19 [-59.32 (17)°], which almost corresponds to a gauche conformation

Supra­molecular features top

In the crystal, pairs of C—H···O hydrogen bonds and ππ inter­actions [Cg1···Cg1i = 3.631 (2); slippage = 1.491 Å; Cg1 is the centroid of the C5–C10 ring; symmetry code: (i) 1 - x, -y, -z] connect molecules into inversion dimers (Fig. 2).

Database survey top

\ A search of the Cambridge Structural Database (Version 5.35, updates Feb 2014; Groom & Allen, 2014) gave two related structures, i.e. 7,7',8,8'-tetra­meth­oxy-4,4'-di­methyl-3,5'-bichromene-2,2'-dione (Fun et al., 2009) and 7,7'-di­hydroxy-4,4'-di­methyl-3,4-di­hydro-2H,2'H-4,6'-\ bichromene-2,2'-dione (Pereira Silva et al., 2011). In these two compounds, the dihedral angles between the coumarin ring systems are 79.93 (3) and 88.07 (2)°, respectively. The corresponding angle in the title compound is 52.37 (19)°.

Synthesis and Crystallization top

6-Methyl­coumarin 4-acetic acid (0.01 mol) and 5-methyl­salicyl­aldehyde (0.01 mol) were taken in a round-bottomed flask containing (1.5 eq) NaH and 3 ml of acetic anhydride. The flask, fitted with a guard tube, was stirred for 1.5 hours. The progress of the reaction was monitored by TLC, the solid that separated was filtered off and washed with di­ethyl ether and again with 5% NaHCO3 to remove unreacted 6-methyl­coumarin 4-acetic acid. Then the solid was dried and recrystallized from ethanol. Crystals suitable for diffraction studies were obtained through slow evaporation from a DMF solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Related literature top

For the synthesis of bicoumarins, see: Ilyas et al. (1996); Dubovik et al. (2004); Frasinyuk et al. (2012). For natural occurrence of bicoumarins, see: Hussain et al. (2012). For insecticidal and anti-proliferative properties of 3–3' bicoumarins, see: Panichayupkaranant et al. (1998). For urease inhibition by 6–6' bicoumarins, see: Ayaz et al. (2006). For atropisomerism of 3–6' bicoumarins, see: Zhan et al. (2003). For cytotoxic activities by 3–8' bicoumarins, see: Tepaske et al. (1992).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: PARST (Nardelli, 1996) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A packing diagram of the title compound, viewed along the b axis. Dashed lines indicate C—H···O hydrogen bonds and ππ interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.
6,6'-Dimethyl-2H,2'H-3,4'-bichromene-2,2'-dione top
Crystal data top
C20H14O4Z = 2
Mr = 318.31F(000) = 332
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.834 (1) ÅCell parameters from 560 reflections
b = 8.0455 (9) Åθ = 1.7°
c = 12.7952 (15) ŵ = 0.10 mm1
α = 79.492 (5)°T = 296 K
β = 77.096 (4)°Block, white
γ = 86.637 (5)°0.35 × 0.31 × 0.25 mm
V = 772.78 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3499 independent reflections
Radiation source: fine-focus sealed tube2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.954, Tmax = 0.964k = 109
12862 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1433P]
where P = (Fo2 + 2Fc2)/3
3499 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H14O4γ = 86.637 (5)°
Mr = 318.31V = 772.78 (16) Å3
Triclinic, P1Z = 2
a = 7.834 (1) ÅMo Kα radiation
b = 8.0455 (9) ŵ = 0.10 mm1
c = 12.7952 (15) ÅT = 296 K
α = 79.492 (5)°0.35 × 0.31 × 0.25 mm
β = 77.096 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3499 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2509 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.964Rint = 0.027
12862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3499 reflectionsΔρmin = 0.20 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81516 (14)0.16314 (15)0.10679 (8)0.0577 (3)
O20.9332 (2)0.4150 (2)0.14906 (10)0.0853 (4)
O30.61479 (14)0.15867 (15)0.41223 (8)0.0569 (3)
O40.48324 (15)0.13864 (15)0.27995 (9)0.0603 (3)
C20.8773 (2)0.2996 (2)0.07754 (13)0.0583 (4)
C30.8662 (2)0.2942 (2)0.03783 (11)0.0508 (4)
H30.90520.38630.060.061*
C40.80175 (18)0.16160 (17)0.11386 (11)0.0405 (3)
C50.6808 (2)0.13246 (17)0.15031 (12)0.0478 (4)
H50.67830.14180.22420.057*
C60.6220 (2)0.26560 (18)0.11392 (14)0.0547 (4)
C70.6262 (2)0.2483 (2)0.00295 (15)0.0595 (5)
H70.58520.33560.02290.071*
C80.6891 (2)0.1057 (2)0.06922 (13)0.0560 (4)
H80.69050.09670.14290.067*
C90.75025 (18)0.0239 (2)0.03095 (12)0.0460 (4)
C100.74384 (18)0.01530 (17)0.08010 (11)0.0414 (3)
C110.79180 (18)0.16893 (16)0.23068 (10)0.0386 (3)
C120.93182 (19)0.20659 (19)0.26592 (11)0.0450 (3)
H121.03860.22450.21650.054*
C130.92131 (19)0.21999 (17)0.37755 (11)0.0433 (3)
C141.0631 (2)0.2583 (2)0.41766 (13)0.0540 (4)
H141.17190.2770.37050.065*
C151.0449 (2)0.2688 (2)0.52638 (13)0.0572 (4)
C160.8808 (3)0.2377 (2)0.59489 (13)0.0679 (5)
H160.86690.24320.66830.081*
C170.7393 (3)0.1995 (2)0.55805 (13)0.0680 (5)
H170.63120.17880.60560.082*
C180.7602 (2)0.19221 (18)0.44840 (11)0.0472 (4)
C190.6205 (2)0.15326 (17)0.30488 (11)0.0440 (3)
C201.1984 (3)0.3134 (3)0.56865 (17)0.0830 (6)
H20A1.27980.21950.57080.124*
H20B1.15750.33860.64070.124*
H20C1.25540.41030.52140.124*
C210.5504 (3)0.4212 (2)0.19269 (18)0.0784 (6)
H21A0.62070.45050.24620.118*
H21B0.55290.51310.15390.118*
H21C0.43190.39910.22820.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0565 (7)0.0856 (8)0.0318 (5)0.0030 (6)0.0070 (5)0.0147 (5)
O20.1050 (11)0.1025 (10)0.0394 (6)0.0284 (8)0.0057 (7)0.0071 (7)
O30.0581 (7)0.0744 (7)0.0360 (5)0.0229 (5)0.0050 (5)0.0154 (5)
O40.0469 (7)0.0795 (8)0.0575 (7)0.0158 (6)0.0036 (5)0.0243 (6)
C20.0556 (10)0.0799 (11)0.0365 (8)0.0071 (8)0.0048 (7)0.0074 (8)
C30.0521 (9)0.0634 (9)0.0358 (7)0.0107 (7)0.0039 (7)0.0101 (7)
C40.0378 (7)0.0510 (8)0.0335 (7)0.0029 (6)0.0065 (6)0.0118 (6)
C50.0586 (9)0.0446 (7)0.0461 (8)0.0105 (6)0.0207 (7)0.0154 (6)
C60.0581 (10)0.0444 (8)0.0694 (10)0.0120 (7)0.0236 (8)0.0224 (7)
C70.0564 (10)0.0631 (10)0.0734 (11)0.0133 (8)0.0241 (9)0.0415 (9)
C80.0469 (9)0.0817 (11)0.0496 (9)0.0154 (8)0.0155 (7)0.0367 (8)
C90.0380 (8)0.0641 (9)0.0394 (7)0.0111 (6)0.0098 (6)0.0204 (7)
C100.0409 (8)0.0496 (8)0.0377 (7)0.0100 (6)0.0129 (6)0.0162 (6)
C110.0453 (8)0.0393 (6)0.0306 (6)0.0017 (5)0.0050 (6)0.0079 (5)
C120.0421 (8)0.0590 (8)0.0336 (7)0.0011 (6)0.0030 (6)0.0146 (6)
C130.0521 (9)0.0452 (7)0.0338 (7)0.0034 (6)0.0103 (6)0.0105 (6)
C140.0546 (10)0.0674 (10)0.0456 (8)0.0091 (7)0.0174 (7)0.0195 (7)
C150.0792 (12)0.0534 (9)0.0477 (9)0.0131 (8)0.0316 (9)0.0139 (7)
C160.1023 (15)0.0711 (11)0.0322 (8)0.0038 (10)0.0178 (9)0.0092 (7)
C170.0863 (13)0.0816 (12)0.0322 (8)0.0220 (10)0.0009 (8)0.0106 (8)
C180.0623 (10)0.0451 (7)0.0328 (7)0.0093 (7)0.0048 (7)0.0074 (6)
C190.0517 (9)0.0426 (7)0.0367 (7)0.0106 (6)0.0025 (6)0.0101 (6)
C200.0974 (15)0.1004 (15)0.0710 (12)0.0216 (12)0.0535 (12)0.0306 (11)
C210.1041 (16)0.0426 (8)0.0973 (15)0.0001 (9)0.0352 (12)0.0189 (9)
Geometric parameters (Å, º) top
O1—C21.370 (2)C11—C121.345 (2)
O1—C91.3805 (19)C11—C191.458 (2)
O2—C21.204 (2)C12—C131.4358 (18)
O3—C191.3728 (17)C12—H120.93
O3—C181.3793 (18)C13—C181.383 (2)
O4—C191.2055 (18)C13—C141.394 (2)
C2—C31.452 (2)C14—C151.384 (2)
C3—C41.344 (2)C14—H140.93
C3—H30.93C15—C161.392 (3)
C4—C101.4538 (18)C15—C201.509 (2)
C4—C111.4911 (17)C16—C171.368 (3)
C5—C61.383 (2)C16—H160.93
C5—C101.395 (2)C17—C181.387 (2)
C5—H50.93C17—H170.93
C6—C71.394 (2)C20—H20A0.96
C6—C211.506 (2)C20—H20B0.96
C7—C81.374 (2)C20—H20C0.96
C7—H70.93C21—H21A0.96
C8—C91.381 (2)C21—H21B0.96
C8—H80.93C21—H21C0.96
C9—C101.3997 (18)
C2—O1—C9121.88 (12)C13—C12—H12119
C19—O3—C18122.41 (11)C18—C13—C14118.92 (13)
O2—C2—O1117.52 (15)C18—C13—C12117.22 (13)
O2—C2—C3125.51 (17)C14—C13—C12123.86 (14)
O1—C2—C3116.95 (14)C15—C14—C13121.18 (16)
C4—C3—C2122.65 (14)C15—C14—H14119.4
C4—C3—H3118.7C13—C14—H14119.4
C2—C3—H3118.7C14—C15—C16117.86 (15)
C3—C4—C10119.22 (12)C14—C15—C20120.80 (17)
C3—C4—C11118.88 (12)C16—C15—C20121.34 (16)
C10—C4—C11121.90 (12)C17—C16—C15122.34 (15)
C6—C5—C10122.28 (14)C17—C16—H16118.8
C6—C5—H5118.9C15—C16—H16118.8
C10—C5—H5118.9C16—C17—C18118.71 (16)
C5—C6—C7117.80 (15)C16—C17—H17120.6
C5—C6—C21120.70 (15)C18—C17—H17120.6
C7—C6—C21121.46 (15)O3—C18—C13121.18 (12)
C8—C7—C6121.81 (14)O3—C18—C17117.84 (14)
C8—C7—H7119.1C13—C18—C17120.98 (15)
C6—C7—H7119.1O4—C19—O3117.19 (13)
C7—C8—C9119.16 (14)O4—C19—C11125.75 (13)
C7—C8—H8120.4O3—C19—C11117.05 (13)
C9—C8—H8120.4C15—C20—H20A109.5
C8—C9—O1117.05 (13)C15—C20—H20B109.5
C8—C9—C10121.36 (15)H20A—C20—H20B109.5
O1—C9—C10121.58 (13)C15—C20—H20C109.5
C5—C10—C9117.54 (13)H20A—C20—H20C109.5
C5—C10—C4124.84 (12)H20B—C20—H20C109.5
C9—C10—C4117.62 (13)C6—C21—H21A109.5
C12—C11—C19119.82 (12)C6—C21—H21B109.5
C12—C11—C4121.73 (12)H21A—C21—H21B109.5
C19—C11—C4118.09 (12)C6—C21—H21C109.5
C11—C12—C13121.94 (13)H21A—C21—H21C109.5
C11—C12—H12119H21B—C21—H21C109.5
C9—O1—C2—O2179.27 (14)C3—C4—C11—C19120.68 (15)
C9—O1—C2—C32.2 (2)C10—C4—C11—C1959.32 (17)
O2—C2—C3—C4179.75 (17)C19—C11—C12—C134.7 (2)
O1—C2—C3—C41.3 (2)C4—C11—C12—C13177.64 (12)
C2—C3—C4—C101.3 (2)C11—C12—C13—C180.1 (2)
C2—C3—C4—C11178.68 (14)C11—C12—C13—C14179.81 (13)
C10—C5—C6—C70.4 (2)C18—C13—C14—C150.1 (2)
C10—C5—C6—C21178.33 (15)C12—C13—C14—C15179.77 (14)
C5—C6—C7—C81.2 (2)C13—C14—C15—C160.9 (2)
C21—C6—C7—C8179.09 (15)C13—C14—C15—C20178.91 (15)
C6—C7—C8—C90.1 (2)C14—C15—C16—C170.7 (3)
C7—C8—C9—O1178.84 (13)C20—C15—C16—C17179.08 (17)
C7—C8—C9—C102.2 (2)C15—C16—C17—C180.3 (3)
C2—O1—C9—C8179.28 (14)C19—O3—C18—C130.9 (2)
C2—O1—C9—C100.3 (2)C19—O3—C18—C17178.21 (14)
C6—C5—C10—C91.6 (2)C14—C13—C18—O3178.15 (13)
C6—C5—C10—C4177.80 (13)C12—C13—C18—O32.1 (2)
C8—C9—C10—C52.9 (2)C14—C13—C18—C171.0 (2)
O1—C9—C10—C5178.19 (12)C12—C13—C18—C17178.77 (14)
C8—C9—C10—C4176.54 (13)C16—C17—C18—O3178.01 (15)
O1—C9—C10—C42.4 (2)C16—C17—C18—C131.1 (3)
C3—C4—C10—C5177.47 (13)C18—O3—C19—O4173.26 (13)
C11—C4—C10—C52.5 (2)C18—O3—C19—C115.6 (2)
C3—C4—C10—C93.1 (2)C12—C11—C19—O4171.31 (14)
C11—C4—C10—C9176.86 (12)C4—C11—C19—O41.9 (2)
C3—C4—C11—C1252.37 (19)C12—C11—C19—O37.45 (19)
C10—C4—C11—C12127.63 (15)C4—C11—C19—O3179.36 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.932.533.330 (2)145
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.932.533.330 (2)145
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H14O4
Mr318.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.834 (1), 8.0455 (9), 12.7952 (15)
α, β, γ (°)79.492 (5), 77.096 (4), 86.637 (5)
V3)772.78 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.31 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
12862, 3499, 2509
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.05
No. of reflections3499
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996), PARST (Nardelli, 1996) and PLATON (Spek, 2009).

 

Acknowledgements

KP gratefully acknowledges a Fellowship from the SC–ST cell, Karnatak University, Dharwad.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAyaz, M., Riaz, M. A. M., Haq, A. U., Malik, A. & Choudhary, M. I. (2006). J. Enzyme Inhib. Med. Chem. 49, 527–529.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubovik, I. P., Garazd, M. M. & Khilya, V. P. (2004). Chem. Nat. Compd, 40, 434–443.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrasinyuk, M. S., Bondarenko, S. P. & Khilya, V. P. (2012). Chem. Heterocycl. Compd, 48, 422–426.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Jebas, S. R., Parveen, M., Khanam, Z. & Ghalib, R. M. (2009). Acta Cryst. E65, o1322–o1323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHussain, H., Hussain, J., Al-Harrasi, A. & Krohn, K. (2012). Tetrahedron, 68, 2553–2578.  Web of Science CrossRef CAS Google Scholar
First citationIlyas, M. & Parveen, M. (1996). Tetrahedron, 52, 3991–3996.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1996). J. Appl. Cryst. 29, 296–300.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPanichayupakaranant, P., Noguchi, H. & De-Eknamkul, W. (1998). Planta Med. 64, 774–775.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPereira Silva, P. S., Parveen, M., Ali, A., Malla, A. M. & Ramos Silva, M. (2011). Acta Cryst. E67, o201.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTepaske, M. R. & Gloer, J. B. (1992). J. Nat. Prod. 55, 1080–1086.  CrossRef CAS Web of Science Google Scholar
First citationUlubelen, A., Terem, B. & Tuzlaci, E. (1986). J. Nat. Prod. 49, 692–694.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZhan, Q. F., Xia, Z. H., Wang, J. I. & Lao, A. N. (2003). J. Asian Nat. Prod. Res. 5, 303–306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, H. Y., Hong, J. L., Shu, P., Ni, Y. J. & Qin, M. J. (2009). Fitoterapia, 80, 283–285.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds