organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of S,N-di­benzyl-D-penicillamine monohydrate

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and bCREST, Japan Science and Technology Agency, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 18 October 2014; accepted 24 October 2014; online 29 October 2014)

In the asymmetric unit of the title compound, C19H23NO2S·H2O, there are two independent organic mol­ecules and two water mol­ecules. Both organic mol­ecules exist as the zwitterionic form. The dihedral angles between the planes of the rings in the organic mol­ecules are 86.84 (10) and 88.77 (11)°. An intramolecular N—H⋯S hydrogen bond occurs. In the crystal, organic and water mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating a tape structure running along the b-axis direction.

1. Related literature

For the synthesis of the title compound, see: Crooks (1949[Crooks, H. M. (1949). The Chemistry of Penicillin, edited by H. T. J. Clarke, R. Johnson & R. Robinson, pp. 455-472. Princeton University Press.]). For the coordination behavior of D-penicillamine and its derivatives, see: Igashira-Kamiyama & Konno (2011[Igashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249-7263.]); Oji et al. (2014[Oji, K., Igashira-Kamiyama, A., Yoshinari, N. & Konno, T. (2014). Angew. Chem. Int. Ed. 53, 1992-1996.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H23NO2S·H2O

  • Mr = 347.46

  • Monoclinic, C 2

  • a = 19.930 (2) Å

  • b = 6.2500 (7) Å

  • c = 30.645 (4) Å

  • β = 98.715 (7)°

  • V = 3773.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 200 K

  • 0.15 × 0.10 × 0.03 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.778, Tmax = 0.994

  • 15147 measured reflections

  • 7694 independent reflections

  • 7006 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.093

  • S = 1.06

  • 7694 reflections

  • 461 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack x determined using 2566 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.03 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1 0.89 (3) 2.67 (3) 3.107 (2) 112 (2)
N1—H1⋯O2i 0.89 (3) 2.02 (3) 2.835 (3) 152 (2)
N1—H2⋯O5 0.94 (3) 1.89 (3) 2.761 (3) 154 (3)
N2—H24⋯O6i 0.88 (3) 1.96 (3) 2.774 (3) 155 (3)
N2—H25⋯S2 0.87 (3) 2.67 (3) 3.112 (2) 113 (2)
N2—H25⋯O4i 0.87 (3) 2.06 (3) 2.851 (3) 151 (3)
O5—H47⋯O3 0.81 (3) 1.97 (3) 2.781 (3) 172 (4)
O5—H48⋯O1i 0.80 (4) 2.03 (4) 2.824 (3) 173 (3)
O6—H49⋯O3 0.81 (4) 2.13 (4) 2.927 (3) 171 (3)
O6—H50⋯O1 0.81 (3) 2.03 (4) 2.825 (3) 169 (4)
Symmetry code: (i) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 2000[Rigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 2000[Rigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO (Rigaku, 2000[Rigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218-224.]); software used to prepare material for publication: Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218-224.]).

Supporting information


Comment top

As a part of our ongoing studies on the synthesis and structures of the transition metal complexes with D-penicillamine (Igashira-Kamiyama & Konno, 2011), we recently tried to prepare metal complexes with D-penicillamine derivatives (Oji et al., 2014). We report herein the structure of the title compound (I), which was accidentally obtained in the course of the preparation of S-benzyl-D-penicillamine from benzyl chloride and D-penicillamine. This compound (I) has been synthesized but has not been structurally characterized (Crooks, 1949).

Experimental top

A mixture containing D-penicillamine, sodium hydroxide, and benzyl chloride in a 1:3:3 molar ratio in water was stirred in an ice bath overnight. The resulting colorless solution was neutralized by adding 12 M hydro­chloric acid, which gave a white suspension. After the removal of the white powder of S-benzyl-D-penicillamine, the colorless filtrate was stood at room temperature for a month. A small amount of colorless platelet crystals of the title compound appeared on the wall of the glass vessel, one of which was used for single-crystal X-ray analysis.

Refinement top

H atoms bound to C atoms were placed at calculated positions [C—H = 1.00 (CH), 0.99 (CH2), and 0.98 (CH3)] and refined as riding models with Uiso(H) = 1.2Ueq(C) for CH2 and CH, and Uiso(H) = 1.5Ueq(C) for CH3. All H atoms bound to N and O atoms were found in a difference Fourier map and their positions were refined with Uiso(H) = 1.2Ueq(N or O). Reflections of (-6 0 32), (-13 1 23), (8 0 18) and (-17 1 21) were removed to improve the data quality.

Related literature top

For the synthesis of the title compound, see: Crooks (1949). For the coordination behavior of D-penicillamine and its derivatives, see: Igashira-Kamiyama & Konno (2011); Oji et al. (2014).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2000); cell refinement: PROCESS-AUTO (Rigaku, 2000); data reduction: PROCESS-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Yadokari-XG (Kabuto et al., 2009); software used to prepare material for publication: Yadokari-XG (Kabuto et al., 2009).

Figures top
The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

A view of the tape structure running along the b axis in (I). Blue dashed lines indicate hydrogen bonds. [Symmetry codes: (i) x, y + 1, z; (ii) x, y–1, z.]
S,N-Dibenzyl-D-penicillamine monohydrate top
Crystal data top
C19H23NO2S·H2OF(000) = 1488
Mr = 347.46Dx = 1.223 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71075 Å
a = 19.930 (2) ÅCell parameters from 786 reflections
b = 6.2500 (7) Åθ = 3.4–27.5°
c = 30.645 (4) ŵ = 0.19 mm1
β = 98.715 (7)°T = 200 K
V = 3773.2 (8) Å3Platelet, colorless
Z = 80.15 × 0.10 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7694 independent reflections
Radiation source: fine-focus sealed tube7006 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2525
Tmin = 0.778, Tmax = 0.994k = 88
15147 measured reflectionsl = 3939
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.222P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.44 e Å3
7694 reflectionsΔρmin = 0.25 e Å3
461 parametersAbsolute structure: Flack x determined using 2566 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.03 (2)
Crystal data top
C19H23NO2S·H2OV = 3773.2 (8) Å3
Mr = 347.46Z = 8
Monoclinic, C2Mo Kα radiation
a = 19.930 (2) ŵ = 0.19 mm1
b = 6.2500 (7) ÅT = 200 K
c = 30.645 (4) Å0.15 × 0.10 × 0.03 mm
β = 98.715 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7694 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7006 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.994Rint = 0.027
15147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.44 e Å3
S = 1.06Δρmin = 0.25 e Å3
7694 reflectionsAbsolute structure: Flack x determined using 2566 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
461 parametersAbsolute structure parameter: 0.03 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54021 (3)0.37960 (9)0.07484 (2)0.02754 (16)
O10.53088 (10)0.0974 (3)0.19789 (6)0.0392 (5)
O20.60252 (10)0.2717 (3)0.16081 (6)0.0349 (5)
N10.58790 (11)0.2829 (3)0.17415 (7)0.0240 (4)
H10.5905 (13)0.407 (5)0.1604 (9)0.029*
H20.5508 (14)0.309 (5)0.1889 (9)0.029*
C10.52331 (12)0.1335 (4)0.10419 (8)0.0244 (5)
C20.58099 (12)0.0945 (4)0.14360 (8)0.0234 (5)
H30.62450.07920.13140.028*
C30.57073 (12)0.1113 (4)0.16993 (8)0.0260 (5)
C40.51755 (14)0.0596 (4)0.07331 (9)0.0347 (6)
H40.50080.18310.08820.052*
H50.56230.09300.06550.052*
H60.48590.02680.04640.052*
C50.45430 (13)0.1776 (5)0.11894 (10)0.0356 (6)
H70.44350.06160.13820.053*
H80.41910.18580.09300.053*
H90.45630.31350.13500.053*
C60.6145 (2)0.3154 (6)0.04975 (14)0.0591 (10)
H100.64890.24350.07160.071*
H110.60190.21720.02450.071*
C70.64320 (14)0.5184 (5)0.03420 (10)0.0335 (6)
C80.62917 (15)0.5776 (6)0.00969 (10)0.0458 (8)
H120.60050.49130.03020.055*
C90.65753 (18)0.7659 (6)0.02381 (12)0.0578 (10)
H130.64770.80790.05390.069*
C100.69916 (16)0.8889 (6)0.00542 (15)0.0574 (10)
H140.71891.01480.00450.069*
C110.71268 (18)0.8333 (6)0.04855 (15)0.0601 (10)
H150.74140.92050.06880.072*
C120.68468 (17)0.6499 (6)0.06289 (11)0.0501 (8)
H160.69410.61270.09330.060*
C130.64745 (13)0.2701 (4)0.21067 (8)0.0318 (6)
H170.64870.40140.22890.038*
H180.64100.14680.22990.038*
C140.71428 (14)0.2462 (5)0.19426 (9)0.0308 (6)
C150.74302 (14)0.4186 (5)0.17595 (9)0.0387 (6)
H190.72000.55200.17300.046*
C160.80556 (15)0.3974 (6)0.16177 (12)0.0529 (9)
H200.82470.51540.14840.063*
C170.84014 (16)0.2054 (7)0.16701 (12)0.0557 (9)
H210.88350.19280.15800.067*
C180.81217 (16)0.0333 (6)0.18518 (12)0.0545 (9)
H220.83590.09900.18840.065*
C190.74940 (15)0.0521 (5)0.19883 (10)0.0425 (7)
H230.73000.06770.21140.051*
S20.46646 (3)0.93252 (9)0.42752 (2)0.03026 (17)
O30.50246 (10)0.4534 (3)0.30958 (6)0.0380 (5)
O40.42108 (11)0.2829 (3)0.33859 (7)0.0391 (5)
N20.43753 (12)0.8345 (3)0.32686 (7)0.0254 (5)
H240.4737 (15)0.852 (5)0.3142 (9)0.030*
H250.4328 (14)0.955 (5)0.3400 (9)0.030*
C200.49179 (13)0.6890 (4)0.40019 (8)0.0276 (6)
C210.44067 (13)0.6488 (4)0.35761 (8)0.0249 (5)
H260.39470.63250.36650.030*
C220.45587 (13)0.4405 (4)0.33312 (8)0.0275 (5)
C230.49265 (17)0.4945 (5)0.43061 (9)0.0402 (7)
H270.51270.37220.41730.060*
H280.44610.45940.43480.060*
H290.51970.52730.45930.060*
C240.56361 (14)0.7409 (5)0.39158 (10)0.0398 (7)
H300.59300.76680.41970.060*
H310.56250.86900.37300.060*
H320.58140.62010.37640.060*
C250.3886 (2)0.8563 (6)0.44760 (15)0.0630 (11)
H330.35960.76980.42510.076*
H340.39910.77030.47490.076*
C260.35257 (14)1.0599 (5)0.45678 (10)0.0365 (7)
C270.3042 (2)1.1515 (10)0.42613 (13)0.0805 (15)
H350.29311.08790.39780.097*
C280.2713 (3)1.3345 (13)0.4359 (3)0.124 (3)
H360.23701.39440.41450.149*
C290.2872 (3)1.4297 (8)0.4754 (3)0.110 (3)
H370.26461.55750.48170.133*
C300.3356 (2)1.3424 (7)0.50638 (17)0.0781 (15)
H380.34681.40920.53440.094*
C310.36859 (16)1.1567 (6)0.49720 (10)0.0447 (8)
H390.40231.09610.51890.054*
C320.38062 (14)0.8229 (5)0.28808 (9)0.0334 (6)
H400.38830.93330.26620.040*
H410.38190.68130.27370.040*
C330.31154 (14)0.8556 (5)0.30101 (9)0.0339 (6)
C340.28147 (16)1.0576 (6)0.29587 (10)0.0444 (8)
H420.30561.17410.28570.053*
C350.21634 (18)1.0884 (7)0.30561 (12)0.0605 (11)
H430.19581.22570.30210.073*
C360.18146 (16)0.9183 (8)0.32053 (11)0.0605 (11)
H440.13690.93940.32710.073*
C370.21099 (17)0.7187 (7)0.32586 (11)0.0544 (9)
H450.18690.60310.33630.065*
C380.27558 (15)0.6868 (6)0.31597 (10)0.0413 (7)
H460.29560.54870.31940.050*
O50.49439 (11)0.4819 (3)0.21838 (8)0.0391 (5)
H470.4939 (16)0.483 (6)0.2448 (11)0.047*
H480.5069 (17)0.601 (6)0.2145 (11)0.047*
O60.54027 (12)0.0182 (4)0.28774 (8)0.0425 (5)
H490.5289 (18)0.141 (6)0.2907 (11)0.051*
H500.5348 (17)0.001 (6)0.2613 (12)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0323 (3)0.0171 (3)0.0342 (3)0.0018 (2)0.0084 (3)0.0037 (3)
O10.0554 (12)0.0240 (10)0.0426 (11)0.0015 (9)0.0219 (10)0.0062 (9)
O20.0442 (11)0.0158 (9)0.0455 (11)0.0028 (8)0.0091 (9)0.0017 (8)
N10.0281 (11)0.0137 (10)0.0321 (12)0.0022 (8)0.0101 (10)0.0005 (8)
C10.0250 (12)0.0157 (12)0.0327 (13)0.0031 (9)0.0048 (11)0.0039 (10)
C20.0238 (12)0.0150 (11)0.0327 (13)0.0013 (9)0.0082 (11)0.0002 (10)
C30.0311 (12)0.0175 (12)0.0284 (12)0.0029 (10)0.0010 (11)0.0017 (10)
C40.0395 (14)0.0210 (13)0.0411 (15)0.0051 (12)0.0018 (12)0.0023 (12)
C50.0238 (13)0.0365 (16)0.0477 (16)0.0011 (11)0.0088 (12)0.0100 (13)
C60.071 (2)0.0302 (17)0.089 (3)0.0130 (16)0.053 (2)0.0130 (17)
C70.0304 (14)0.0277 (14)0.0463 (16)0.0041 (11)0.0179 (13)0.0057 (12)
C80.0330 (15)0.056 (2)0.0477 (18)0.0005 (14)0.0025 (14)0.0030 (16)
C90.050 (2)0.069 (3)0.057 (2)0.0199 (19)0.0183 (18)0.033 (2)
C100.0424 (17)0.0333 (18)0.106 (3)0.0004 (15)0.040 (2)0.008 (2)
C110.0464 (19)0.052 (2)0.086 (3)0.0097 (16)0.022 (2)0.025 (2)
C120.0473 (19)0.062 (2)0.0436 (17)0.0082 (17)0.0142 (15)0.0038 (16)
C130.0409 (15)0.0250 (14)0.0288 (13)0.0049 (12)0.0036 (12)0.0022 (11)
C140.0304 (14)0.0285 (15)0.0307 (13)0.0023 (11)0.0043 (11)0.0033 (11)
C150.0338 (13)0.0333 (16)0.0486 (16)0.0028 (13)0.0049 (12)0.0040 (14)
C160.0364 (15)0.057 (2)0.067 (2)0.0038 (16)0.0131 (15)0.0060 (19)
C170.0285 (15)0.069 (3)0.069 (2)0.0056 (16)0.0063 (16)0.006 (2)
C180.0399 (17)0.045 (2)0.075 (2)0.0126 (15)0.0035 (17)0.0053 (18)
C190.0408 (16)0.0302 (16)0.0532 (18)0.0008 (13)0.0035 (14)0.0016 (13)
S20.0398 (4)0.0192 (4)0.0337 (3)0.0036 (3)0.0115 (3)0.0060 (3)
O30.0476 (11)0.0289 (11)0.0412 (10)0.0018 (9)0.0189 (9)0.0071 (9)
O40.0501 (12)0.0178 (10)0.0506 (12)0.0071 (9)0.0119 (10)0.0058 (9)
N20.0319 (11)0.0157 (10)0.0300 (12)0.0018 (9)0.0093 (10)0.0017 (9)
C200.0355 (14)0.0175 (12)0.0303 (13)0.0024 (10)0.0061 (12)0.0050 (10)
C210.0302 (13)0.0159 (12)0.0305 (13)0.0019 (10)0.0108 (11)0.0024 (10)
C220.0346 (13)0.0183 (12)0.0291 (12)0.0014 (11)0.0031 (11)0.0005 (11)
C230.0590 (19)0.0256 (15)0.0337 (15)0.0034 (13)0.0004 (14)0.0007 (12)
C240.0330 (15)0.0426 (18)0.0437 (16)0.0013 (13)0.0052 (13)0.0122 (14)
C250.071 (2)0.039 (2)0.091 (3)0.0139 (17)0.054 (2)0.0174 (19)
C260.0333 (15)0.0376 (17)0.0424 (16)0.0056 (13)0.0177 (13)0.0084 (13)
C270.050 (2)0.143 (5)0.047 (2)0.001 (3)0.0041 (19)0.017 (3)
C280.061 (3)0.149 (7)0.169 (6)0.050 (4)0.038 (4)0.107 (5)
C290.070 (3)0.042 (3)0.243 (8)0.014 (2)0.096 (5)0.020 (4)
C300.072 (3)0.065 (3)0.111 (3)0.033 (2)0.057 (3)0.052 (3)
C310.0386 (16)0.052 (2)0.0454 (17)0.0048 (14)0.0122 (14)0.0092 (15)
C320.0427 (15)0.0287 (14)0.0281 (13)0.0011 (12)0.0029 (12)0.0006 (11)
C330.0357 (14)0.0324 (15)0.0311 (14)0.0018 (12)0.0032 (12)0.0081 (11)
C340.0443 (17)0.0398 (19)0.0446 (17)0.0038 (14)0.0076 (14)0.0110 (14)
C350.049 (2)0.060 (2)0.065 (2)0.0200 (18)0.0163 (18)0.026 (2)
C360.0316 (15)0.093 (3)0.055 (2)0.006 (2)0.0012 (15)0.033 (2)
C370.0389 (18)0.074 (3)0.0501 (19)0.0087 (18)0.0062 (16)0.0110 (19)
C380.0381 (16)0.0424 (17)0.0420 (16)0.0028 (13)0.0021 (14)0.0072 (14)
O50.0536 (13)0.0256 (11)0.0425 (11)0.0005 (9)0.0214 (10)0.0005 (9)
O60.0581 (14)0.0281 (11)0.0461 (12)0.0041 (10)0.0236 (11)0.0020 (10)
Geometric parameters (Å, º) top
S1—C61.814 (3)O3—C221.262 (3)
S1—C11.839 (2)O4—C221.230 (3)
O1—C31.256 (3)N2—C211.490 (3)
O2—C31.240 (3)N2—C321.515 (4)
N1—C21.497 (3)N2—H240.88 (3)
N1—C131.505 (3)N2—H250.87 (3)
N1—H10.89 (3)C20—C241.529 (4)
N1—H20.94 (3)C20—C231.531 (4)
C1—C41.527 (4)C20—C211.549 (4)
C1—C51.536 (3)C21—C221.556 (3)
C1—C21.555 (3)C21—H261.0000
C2—C31.549 (3)C23—H270.9800
C2—H31.0000C23—H280.9800
C4—H40.9800C23—H290.9800
C4—H50.9800C24—H300.9800
C4—H60.9800C24—H310.9800
C5—H70.9800C24—H320.9800
C5—H80.9800C25—C261.508 (5)
C5—H90.9800C25—H330.9900
C6—C71.498 (4)C25—H340.9900
C6—H100.9900C26—C271.366 (5)
C6—H110.9900C26—C311.372 (4)
C7—C81.382 (4)C27—C281.373 (9)
C7—C121.383 (5)C27—H350.9500
C8—C91.402 (5)C28—C291.343 (9)
C8—H120.9500C28—H360.9500
C9—C101.363 (5)C29—C301.362 (8)
C9—H130.9500C29—H370.9500
C10—C111.354 (6)C30—C311.384 (6)
C10—H140.9500C30—H380.9500
C11—C121.376 (5)C31—H390.9500
C11—H150.9500C32—C331.503 (4)
C12—H160.9500C32—H400.9900
C13—C141.501 (4)C32—H410.9900
C13—H170.9900C33—C381.392 (4)
C13—H180.9900C33—C341.396 (4)
C14—C151.379 (4)C34—C351.389 (5)
C14—C191.397 (4)C34—H420.9500
C15—C161.387 (4)C35—C361.385 (6)
C15—H190.9500C35—H430.9500
C16—C171.381 (5)C36—C371.378 (6)
C16—H200.9500C36—H440.9500
C17—C181.368 (5)C37—C381.381 (4)
C17—H210.9500C37—H450.9500
C18—C191.383 (4)C38—H460.9500
C18—H220.9500O5—H470.81 (3)
C19—H230.9500O5—H480.80 (4)
S2—C251.817 (3)O6—H490.81 (4)
S2—C201.844 (3)O6—H500.81 (3)
C6—S1—C1104.14 (14)C21—N2—C32114.4 (2)
C2—N1—C13114.3 (2)C21—N2—H24114.7 (19)
C2—N1—H1113.4 (18)C32—N2—H24103.1 (18)
C13—N1—H1107.6 (18)C21—N2—H25112.5 (19)
C2—N1—H2115.6 (18)C32—N2—H25106.5 (19)
C13—N1—H2104.0 (17)H24—N2—H25105 (3)
H1—N1—H2101 (2)C24—C20—C23110.4 (2)
C4—C1—C5109.7 (2)C24—C20—C21113.7 (2)
C4—C1—C2109.6 (2)C23—C20—C21109.2 (2)
C5—C1—C2112.9 (2)C24—C20—S2103.38 (18)
C4—C1—S1111.12 (17)C23—C20—S2110.94 (17)
C5—C1—S1103.44 (17)C21—C20—S2109.02 (17)
C2—C1—S1110.01 (16)N2—C21—C20111.4 (2)
N1—C2—C3109.52 (19)N2—C21—C22109.84 (18)
N1—C2—C1110.5 (2)C20—C21—C22113.0 (2)
C3—C2—C1113.22 (19)N2—C21—H26107.4
N1—C2—H3107.8C20—C21—H26107.4
C3—C2—H3107.8C22—C21—H26107.4
C1—C2—H3107.8O4—C22—O3127.4 (2)
O2—C3—O1127.4 (2)O4—C22—C21116.7 (2)
O2—C3—C2116.2 (2)O3—C22—C21115.9 (2)
O1—C3—C2116.4 (2)C20—C23—H27109.5
C1—C4—H4109.5C20—C23—H28109.5
C1—C4—H5109.5H27—C23—H28109.5
H4—C4—H5109.5C20—C23—H29109.5
C1—C4—H6109.5H27—C23—H29109.5
H4—C4—H6109.5H28—C23—H29109.5
H5—C4—H6109.5C20—C24—H30109.5
C1—C5—H7109.5C20—C24—H31109.5
C1—C5—H8109.5H30—C24—H31109.5
H7—C5—H8109.5C20—C24—H32109.5
C1—C5—H9109.5H30—C24—H32109.5
H7—C5—H9109.5H31—C24—H32109.5
H8—C5—H9109.5C26—C25—S2107.3 (2)
C7—C6—S1108.8 (2)C26—C25—H33110.3
C7—C6—H10109.9S2—C25—H33110.3
S1—C6—H10109.9C26—C25—H34110.3
C7—C6—H11109.9S2—C25—H34110.3
S1—C6—H11109.9H33—C25—H34108.5
H10—C6—H11108.3C27—C26—C31118.7 (4)
C8—C7—C12118.2 (3)C27—C26—C25122.1 (4)
C8—C7—C6120.4 (3)C31—C26—C25119.2 (3)
C12—C7—C6121.4 (3)C26—C27—C28120.6 (5)
C7—C8—C9119.6 (3)C26—C27—H35119.7
C7—C8—H12120.2C28—C27—H35119.7
C9—C8—H12120.2C29—C28—C27120.8 (5)
C10—C9—C8120.3 (3)C29—C28—H36119.6
C10—C9—H13119.9C27—C28—H36119.6
C8—C9—H13119.9C28—C29—C30119.7 (5)
C11—C10—C9120.5 (3)C28—C29—H37120.2
C11—C10—H14119.7C30—C29—H37120.2
C9—C10—H14119.7C29—C30—C31120.2 (4)
C10—C11—C12119.7 (4)C29—C30—H38119.9
C10—C11—H15120.1C31—C30—H38119.9
C12—C11—H15120.1C26—C31—C30120.1 (4)
C11—C12—C7121.6 (3)C26—C31—H39120.0
C11—C12—H16119.2C30—C31—H39120.0
C7—C12—H16119.2C33—C32—N2113.2 (2)
C14—C13—N1113.3 (2)C33—C32—H40108.9
C14—C13—H17108.9N2—C32—H40108.9
N1—C13—H17108.9C33—C32—H41108.9
C14—C13—H18108.9N2—C32—H41108.9
N1—C13—H18108.9H40—C32—H41107.8
H17—C13—H18107.7C38—C33—C34119.3 (3)
C15—C14—C19119.1 (3)C38—C33—C32121.4 (3)
C15—C14—C13120.2 (3)C34—C33—C32119.2 (3)
C19—C14—C13120.6 (3)C35—C34—C33120.0 (3)
C14—C15—C16120.1 (3)C35—C34—H42120.0
C14—C15—H19119.9C33—C34—H42120.0
C16—C15—H19119.9C36—C35—C34119.8 (3)
C17—C16—C15120.2 (3)C36—C35—H43120.1
C17—C16—H20119.9C34—C35—H43120.1
C15—C16—H20119.9C37—C36—C35120.5 (3)
C18—C17—C16120.3 (3)C37—C36—H44119.8
C18—C17—H21119.9C35—C36—H44119.8
C16—C17—H21119.9C36—C37—C38120.0 (4)
C17—C18—C19119.9 (3)C36—C37—H45120.0
C17—C18—H22120.0C38—C37—H45120.0
C19—C18—H22120.0C37—C38—C33120.4 (3)
C18—C19—C14120.4 (3)C37—C38—H46119.8
C18—C19—H23119.8C33—C38—H46119.8
C14—C19—H23119.8H47—O5—H48101 (4)
C25—S2—C20104.13 (14)H49—O6—H50104 (4)
C6—S1—C1—C453.7 (2)C25—S2—C20—C24169.3 (2)
C6—S1—C1—C5171.4 (2)C25—S2—C20—C2351.0 (3)
C6—S1—C1—C267.8 (2)C25—S2—C20—C2169.4 (2)
C13—N1—C2—C360.9 (3)C32—N2—C21—C20170.4 (2)
C13—N1—C2—C1173.69 (19)C32—N2—C21—C2263.5 (3)
C4—C1—C2—N1179.6 (2)C24—C20—C21—N256.5 (3)
C5—C1—C2—N157.9 (3)C23—C20—C21—N2179.7 (2)
S1—C1—C2—N157.1 (2)S2—C20—C21—N258.3 (2)
C4—C1—C2—C357.2 (3)C24—C20—C21—C2267.8 (3)
C5—C1—C2—C365.4 (3)C23—C20—C21—C2256.1 (3)
S1—C1—C2—C3179.64 (16)S2—C20—C21—C22177.47 (17)
N1—C2—C3—O2137.9 (2)N2—C21—C22—O4134.3 (2)
C1—C2—C3—O298.4 (3)C20—C21—C22—O4100.6 (3)
N1—C2—C3—O142.6 (3)N2—C21—C22—O345.3 (3)
C1—C2—C3—O181.2 (3)C20—C21—C22—O379.8 (3)
C1—S1—C6—C7166.4 (3)C20—S2—C25—C26161.7 (2)
S1—C6—C7—C899.3 (3)S2—C25—C26—C2793.5 (4)
S1—C6—C7—C1281.4 (4)S2—C25—C26—C3186.6 (3)
C12—C7—C8—C90.6 (4)C31—C26—C27—C281.2 (6)
C6—C7—C8—C9178.7 (3)C25—C26—C27—C28178.6 (4)
C7—C8—C9—C100.6 (5)C26—C27—C28—C291.5 (8)
C8—C9—C10—C111.2 (5)C27—C28—C29—C300.9 (9)
C9—C10—C11—C120.6 (5)C28—C29—C30—C310.2 (7)
C10—C11—C12—C70.6 (5)C27—C26—C31—C300.4 (5)
C8—C7—C12—C111.2 (5)C25—C26—C31—C30179.4 (3)
C6—C7—C12—C11178.1 (3)C29—C30—C31—C260.1 (5)
C2—N1—C13—C1457.6 (3)C21—N2—C32—C3371.1 (3)
N1—C13—C14—C1574.4 (3)N2—C32—C33—C3885.2 (3)
N1—C13—C14—C19108.1 (3)N2—C32—C33—C3497.9 (3)
C19—C14—C15—C160.9 (4)C38—C33—C34—C350.1 (4)
C13—C14—C15—C16178.5 (3)C32—C33—C34—C35176.9 (3)
C14—C15—C16—C171.7 (5)C33—C34—C35—C360.2 (5)
C15—C16—C17—C181.7 (5)C34—C35—C36—C370.1 (5)
C16—C17—C18—C190.7 (5)C35—C36—C37—C380.5 (5)
C17—C18—C19—C140.1 (5)C36—C37—C38—C330.6 (5)
C15—C14—C19—C180.0 (4)C34—C33—C38—C370.3 (4)
C13—C14—C19—C18177.5 (3)C32—C33—C38—C37177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.89 (3)2.67 (3)3.107 (2)112 (2)
N1—H1···O2i0.89 (3)2.02 (3)2.835 (3)152 (2)
N1—H2···O50.94 (3)1.89 (3)2.761 (3)154 (3)
N2—H24···O6i0.88 (3)1.96 (3)2.774 (3)155 (3)
N2—H25···S20.87 (3)2.67 (3)3.112 (2)113 (2)
N2—H25···O4i0.87 (3)2.06 (3)2.851 (3)151 (3)
O5—H47···O30.81 (3)1.97 (3)2.781 (3)172 (4)
O5—H48···O1i0.80 (4)2.03 (4)2.824 (3)173 (3)
O6—H49···O30.81 (4)2.13 (4)2.927 (3)171 (3)
O6—H50···O10.81 (3)2.03 (4)2.825 (3)169 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.89 (3)2.67 (3)3.107 (2)112 (2)
N1—H1···O2i0.89 (3)2.02 (3)2.835 (3)152 (2)
N1—H2···O50.94 (3)1.89 (3)2.761 (3)154 (3)
N2—H24···O6i0.88 (3)1.96 (3)2.774 (3)155 (3)
N2—H25···S20.87 (3)2.67 (3)3.112 (2)113 (2)
N2—H25···O4i0.87 (3)2.06 (3)2.851 (3)151 (3)
O5—H47···O30.81 (3)1.97 (3)2.781 (3)172 (4)
O5—H48···O1i0.80 (4)2.03 (4)2.824 (3)173 (3)
O6—H49···O30.81 (4)2.13 (4)2.927 (3)171 (3)
O6—H50···O10.81 (3)2.03 (4)2.825 (3)169 (4)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Science Research (grant No. 25870387) from the Ministry of Education, Culture, Sports, Science.

References

First citationCrooks, H. M. (1949). The Chemistry of Penicillin, edited by H. T. J. Clarke, R. Johnson & R. Robinson, pp. 455–472. Princeton University Press.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIgashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249–7263.  Web of Science CAS PubMed Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218–224.  CrossRef Google Scholar
First citationOji, K., Igashira-Kamiyama, A., Yoshinari, N. & Konno, T. (2014). Angew. Chem. Int. Ed. 53, 1992–1996.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds