research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tert-butyl-N-phenyl­carbonitrilium tetra­chlorido­aluminate

aDepartment of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and bInstitute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
*Correspondence e-mail: robert.wolf@ur.de, j.c.slootweg@vu.nl

Edited by H. Kooijman, Shell Global Solutions International BV, The Netherlands (Received 5 September 2014; accepted 6 October 2014; online 11 October 2014)

In the title compound, (C11H14N)[AlCl4], the nitrilium (systematic name: 2,2-dimethyl-N-phenyl­propane­nitrilium) ion adopts a slightly distorted linear configuration [C—N≡C = 178.87 (16) and N≡C—C = 179.13 (17)°]. In the crystal, while there are no inter­molecular hydrogen bonds, pairs of nitrilium ions are linked through ππ inter­actions [inter–centroid distance = 3.8091 (13) Å].

1. Chemical context

Nitrilium salts are highly electrophilic species that can be generated from imidoyl chlorides by abstracting its chloride using a Lewis acid, SbCl5 having been most widely applied (Meerwein, Laasch, Mersch & Nentwig, 1956[Meerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224-238.]; Klages & Grill, 1955[Klages, F. & Grill, W. (1955). Justus Liebigs Ann. Chem. 594, 21-32.]; Kanemasa, 2004[Kanemasa, S. (2004). In Science of Synthesis, Vol. 19, edited by S.-I. Murahashi, pp. 53-63. Stuttgart: Thieme Verlag.]). Recently, we have shown that tri­methyl­silyl triflate (TMSOTf) can also be used as a Lewis acid, generating nitrilium triflates, which are excellent imine synthons in the preparation of 1,3-imino­phosphane ligands (van Dijk et al., 2014[Dijk, T. van, Burck, S., Rong, M. K., Rosenthal, A. J., Nieger, M., Slootweg, J. C. & Lammertsma, K. (2014). Angew. Chem. Int. Ed. 53, 9068-9071.]). Inter­estingly, nitrilium tetra­chlorido­aluminates, which can be synthesised using the much cheaper AlCl3, have found little application (Meerwein, Laasch, Mersch & Spille, 1956[Meerwein, H., Laasch, P., Mersch, R. & Spille, J. (1956). Chem. Ber. 89, 209-224.]; Al-Talib et al. 1992[Al-Talib, M., Jochims, J. C., Hamed, A., Wang, Q. & Ismail, A. E.-H. (1992). Synthesis, pp. 697-701.]). Therefore, we also focused on these species of which the title compound is illustrative.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the crystal (Fig. 1[link]) contains one nitrilium cation and one tetra­chlorido­aluminate anion, which are ion-separated. The nitrilium cation adopts a slightly distorted linear configuration [C—N≡C = 178.87 (16) and N≡C–C = 179.13 (17)°] and features an N≡C bond length of 1.1353 (19) Å, which is in the range of previously reported nitrilium ions (see Database survey). The tetra­chlorido­aluminate anion has an approximately tetra­hedral geometry and is in the range of those reported previously (Bezombes et al., 2004[Bezombes, J.-P., Borisenko, K. B., Hitchcock, P. B., Lappert, M. F., Nycz, J. E., Rankin, D. W. H. & Robertson, H. E. (2004). Dalton Trans. pp. 1980-1988.]).

[Figure 1]
Figure 1
Mol­ecular structure of tert-butyl-N-phenyl­carbonitrilium tetra­chlorido­aluminate with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the unit cell, pairs of inversion-related nitrilium cations are linked through ππ inter­actions with an inter-centroid distance of 3.8091 (13) Å. There is a plane-to-plane shift of the phenyl rings of 1.563 (3) Å. The nitrilium cations and tetra­chloridoaluminate anions are arranged in alternating planes parallel to (011).

4. Database survey

A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) showed five structures of nitrilium salts (Gjøystdal & Rømming, 1977[Gjøystdal, A. K. & Rømming, C. (1977). Acta Chem. Scand. Ser. B, 31, 56-62.]; MacLaughlin et al., 1983[MacLaughlin, S. A., Johnson, J. P., Taylor, N. J., Carty, A. J. & Sappa, E. (1983). Organometallics, 2, 352-355.]; Casey et al., 1988[Casey, C. P., Crocker, M., Niccolai, G. P., Fagan, P. J. & Konings, M. S. (1988). J. Am. Chem. Soc. 110, 6070-6076.]; Bykhovskaya et al., 1993[Bykhovskaya, O. V., Aladzheva, I. M., Petrovskii, P. V., Antipin, M. Y., Struchkov, Y. T., Mastryukova, T. A. & Kabachnik, M. I. (1993). Mendeleev Commun. 3, 200-202.], Okazaki et al., 2013[Okazaki, M., Taniwaki, W., Miyagi, K., Takano, M., Kaneko, S. & Ozawa, F. (2013). Organometallics, 32, 1951-1957.]), and two structures of nitrilium ylides (Janulis et al., 1984[Janulis, E. P., Wilson, S. R. & Arduengo, A. J. (1984). Tetrahedron Lett. 25, 405-408.]; Doherty et al., 1999[Doherty, S., Hogarth, G., Waugh, M., Scanlan, T. H., Clegg, W. & Elsegood, M. R. J. (1999). Organometallics, 18, 3178-3186.])). The title compound is very closely related to N-(2,6-di­methyl­phen­yl)-acetonitrilium tetra­fluorido­borate (Gjøystdal & Rømming, 1977[Gjøystdal, A. K. & Rømming, C. (1977). Acta Chem. Scand. Ser. B, 31, 56-62.]), which has an N≡C bond length of 1.131 Å, and (N-phen­yl)(tert-but­yl)carbonitrilium tri­fluoro­methane­sulfonate [van Dijk et al., 2014[Dijk, T. van, Burck, S., Rong, M. K., Rosenthal, A. J., Nieger, M., Slootweg, J. C. & Lammertsma, K. (2014). Angew. Chem. Int. Ed. 53, 9068-9071.]; N≡C bond length of 1.125 (3) Å], both of which feature similar bond lengths and angles for the nitrilium group.

5. Synthesis and crystallization

This experiment was performed under an atmosphere of dry nitro­gen using standard Schlenk-line and glovebox techniques. NMR spectra were recorded at 300 K on a Bruker Advance 500 and referenced inter­nally to residual solvent resonance of CD2Cl2, 1H at δ 5.32, 13C{1H} at δ 53.84. The melting point was measured in a sealed capillary on a Stuart Scientific SMP3 melting point apparatus and is uncorrected. The IR spectrum was recorded on a Shimadzu FTIR–8400S spectrophotometer. Solvents were distilled from the appropriate drying agents CaH2 (DCM), NaK/benzo­phenone (diethyl ether), and P2O5 (CD2Cl2), and kept under an inert atmosphere of dry nitro­gen.

The title compound was obtained as follows: to a suspension of AlCl3 (3.00 g, 22.4 mmol) in DCM (10 ml) cooled to 195 K, an equimolar amount of N-phenyl­pivalimidoyl chloride (4.38 g, 22.4 mmol) in DCM (25 ml) was added dropwise, after which the reaction mixture was warmed to room temperature and stirred for 16 h. All volatiles were removed in vacuo, after which the product was redissolved in DCM (60 ml), layered with diethyl ether (90 ml) and cooled to 193 K for 48 h. The analytically pure product was isolated as a grey crystalline solid (6.23 g, 18.9 mmol, 85%). Recrystallization from DCM at 278 K yielded crystals suitable for X-ray crystallography. The crystals were coated with paratone oil and mounted on a glass fibre in the cooled nitro­gen stream of the diffractometer. M.p. 411 K. 1H NMR (500.2 MHz, CD2Cl2): δ 7.89 [d, 3J(H,H) = 7.6 Hz, 2H; o-PhH], 7.80 [t, 3J(H,H) = 7.6 Hz, 1H; p-PhH], 7.66 [t, 3J(H,H) = 7.6 Hz, 2H; m-PhH], 1.84 [s, 9H; C(CH3)3]. 13C{1H} NMR (125.8 MHz, CD2Cl2): δ 135.1 (s; p-PhC), 131.0 (s; m-PhC), 128.7 (s; o-PhC), 121.1 [t, 1J(C,N) = 42.7 Hz; N≡C], 120.7 [t, 1J(C,N) = 14.2 Hz; ipso-PhC], 31.7 [s; C(CH3)3], 27.3 [s; C(CH3)3]. IR: 3065 (w), 2990 (w), 1692 (w), 1611 (w), 1588 (w), 1483 (w), 1474 (m), 1456 (m), 1445 (w), 1373 (w), 1296 (w), 1238 (w), 1198 (w), 1186 (w), 1161 (w), 1028 (w), 1005 (w), 939 (w), 928 (w), 876 (w), 845 (w), 781 (w), 758 (s), 692 (w), 677 (m), 669 (w), 652 (w).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula (C11H14N)[AlCl4]
Mr 329.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 153
a, b, c (Å) 6.4531 (6), 13.6967 (13), 17.9352 (17)
β (°) 93.636 (1)
V3) 1582.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.16 × 0.05 × 0.03
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.885, 0.977
No. of measured, independent and observed [I > 2σ(I)] reflections 16388, 4063, 3294
Rint 0.035
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.03
No. of reflections 4063
No. of parameters 210
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.35, −0.26
Computer programs: APEX2 and SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Nitrilium salts are highly electrophilic species that can be generated from imidoyl chlorides by abstracting its chloride using a Lewis acid, SbCl5 having been most widely applied (Meerwein, Laasch, Mersch & Nentwig, 1956; Klages & Grill, 1955; Kanemasa, 2004). Recently, we have shown that tri­methyl­silyl triflate (TMSOTf) can also be used as a Lewis acid, generating nitrilium triflates, which are excellent imine synthons in the preparation of 1,3-imino­phosphane ligands (van Dijk et al., 2014). Inter­estingly, nitrilium tetra­chloro­aluminates, which can be synthesised using the much cheaper AlCl3, have found little application (Meerwein, Laasch, Mersch & Spille, 1956; Al-Talib et al. 1992). Therefore, we also focused on these species of which the title compound is illustrative.

Structural commentary top

The asymmetric unit of the crystal contains one nitrilium cation and one tetra­chloro­aluminate anion, which are ion separated. The nitrilium cation adopts a slightly distorted linear configuration [C—NC = 178.87 (16) and NC–C = 179.13 (17)°] and features an NC bond length of 1.1353 (19) Å, which is in the range of previously reported nitrilium ions (see Database survey). The tetra­chloro­aluminate anion has an approximately tetra­hedral geometry and is in the range of those reported previously (Bezombes et al., 2004).

Supra­molecular features top

In the unit cell, pairs of inversion-related nitrilium cations are linked through ππ inter­actions with an inter-centroid distance of 3.8091 (13) Å. There is a plane-to-plane shift of the phenyl rings of 1.563 (3) Å. The nitrilium cations and tetra­aluminate anions are arranged in alternating planes parallel to the (011) plane.

Database survey top

A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) showed five structures of nitrilium salts (Gjøystdal & Rømming, 1977; MacLaughlin et al., 1983; Casey et al., 1988; Bykhovskaya et al., 1993, Okazaki et al., 2013), and two structures of nitrilium ylides (Janulis et al., 1984; Doherty et al., 1999)). The title compound is very closely related to N-(2,6-di­methyl­phenyl)-acetonitrilium tetra­fluoro­borate (Gjøystdal & Rømming, 1977), which has an NC bond length of 1.131 Å, and (N-phenyl)(tert-butyl)­carbonitrilium tri­fluoro­methane­sulfonate [van Dijk et al., 2014; NC bond length of 1.125 (3) Å], both of which feature similar bond lengths and angles of the nitrilium group.

Synthesis and crystallization top

This experiment was performed under an atmosphere of dry nitro­gen using standard Schlenk-line and glovebox techniques. NMR spectra were recorded at 300 K on a Bruker Advance 500 and referenced inter­nally to residual solvent resonance of CD2Cl2, 1H at δ 5.32, 13C{1H} at δ 53.84. The melting point was measured in a sealed capillary on a Stuart Scientific SMP3 melting point apparatus and is uncorrected. The IR spectrum was recorded on a Shimadzu FTIR–8400S spectrophotometer. Solvents were distilled from the appropriate drying agents CaH2 (DCM), NaK/benzo­phenone (di­ethyl ether), and P2O5 (CD2Cl2), and kept under an inert atmosphere of dry nitro­gen.

The title compound was obtained as follows: to a suspension of AlCl3 (3.00 g, 22.4 mmol) in DCM (10 mL) cooled to 195 K, an equimolar amount of N-phenyl­pivalimidoyl chloride (4.38 g, 22.4 mmol) in DCM (25 mL) was added dropwise, after which the reaction mixture was warmed to room temperature and stirred for 16 h. All volatiles were removed in vacuo, after which the product was redissolved in DCM (60 mL), layered with di­ethyl ether (90 mL) and cooled to 193 K for 48h. The analytically pure product was isolated as a grey crystalline solid (6.23 g, 18.9 mmol, 85%). Recrystallization from DCM at 278 K yielded crystals suitable for X-ray crystallography. The crystals were coated with paratone oil and mounted on a glass fibre in the cooled nitro­gen stream of the diffractometer. M.p. 411 K. 1H NMR (500.2 MHz, CD2Cl2): δ 7.89 [d, 3J(H,H) = 7.6 Hz, 2H; o-PhH], 7.80 [t, 3J(H,H) = 7.6 Hz, 1H; p-PhH], 7.66 [t, 3J(H,H) = 7.6 Hz, 2H; m-PhH], 1.84 [s, 9H; C(CH3)3]. 13C{1H} NMR (125.8 MHz, CD2Cl2): δ 135.1 (s; p-PhC), 131.0 (s; m-PhC), 128.7 (s; o-PhC), 121.1 [t, 1J(C,N) = 42.7 Hz; NC], 120.7 [t, 1J(C,N) = 14.2 Hz; ipso-PhC], 31.7 [s; C(CH3)3], 27.3 [s; C(CH3)3]. IR: 3065 (w), 2990 (w), 1692 (w), 1611 (w), 1588 (w), 1483 (w), 1474 (m), 1456 (m), 1445 (w), 1373 (w), 1296 (w), 1238 (w), 1198 (w), 1186 (w), 1161 (w), 1028 (w), 1005 (w), 939 (w), 928 (w), 876 (w), 845 (w), 781 (w), 758 (s), 692 (w), 677 (m), 669 (w), 652 (w).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For related literature, see: Al-Talib, Jochims, Hamed, Wang & Ismail (1992); Allen (2002); Bezombes et al. (2004); Bykhovskaya et al. (1993); Casey et al. (1988); Dijk et al. (2014); Doherty et al. (1999); Dolomanov et al. (2009); Farrugia (1999); Gjøystdal & Rømming (1977); Janulis et al. (1984); Kanemasa (2004); Klages & Grill (1955); MacLaughlin et al. (1983); Meerwein, Laasch, Mersch & Nentwig (1956); Meerwein, Laasch, Mersch & Spille (1956); Okazaki et al. (2013); Sheldrick (2008).

Structure description top

Nitrilium salts are highly electrophilic species that can be generated from imidoyl chlorides by abstracting its chloride using a Lewis acid, SbCl5 having been most widely applied (Meerwein, Laasch, Mersch & Nentwig, 1956; Klages & Grill, 1955; Kanemasa, 2004). Recently, we have shown that tri­methyl­silyl triflate (TMSOTf) can also be used as a Lewis acid, generating nitrilium triflates, which are excellent imine synthons in the preparation of 1,3-imino­phosphane ligands (van Dijk et al., 2014). Inter­estingly, nitrilium tetra­chloro­aluminates, which can be synthesised using the much cheaper AlCl3, have found little application (Meerwein, Laasch, Mersch & Spille, 1956; Al-Talib et al. 1992). Therefore, we also focused on these species of which the title compound is illustrative.

The asymmetric unit of the crystal contains one nitrilium cation and one tetra­chloro­aluminate anion, which are ion separated. The nitrilium cation adopts a slightly distorted linear configuration [C—NC = 178.87 (16) and NC–C = 179.13 (17)°] and features an NC bond length of 1.1353 (19) Å, which is in the range of previously reported nitrilium ions (see Database survey). The tetra­chloro­aluminate anion has an approximately tetra­hedral geometry and is in the range of those reported previously (Bezombes et al., 2004).

In the unit cell, pairs of inversion-related nitrilium cations are linked through ππ inter­actions with an inter-centroid distance of 3.8091 (13) Å. There is a plane-to-plane shift of the phenyl rings of 1.563 (3) Å. The nitrilium cations and tetra­aluminate anions are arranged in alternating planes parallel to the (011) plane.

A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) showed five structures of nitrilium salts (Gjøystdal & Rømming, 1977; MacLaughlin et al., 1983; Casey et al., 1988; Bykhovskaya et al., 1993, Okazaki et al., 2013), and two structures of nitrilium ylides (Janulis et al., 1984; Doherty et al., 1999)). The title compound is very closely related to N-(2,6-di­methyl­phenyl)-acetonitrilium tetra­fluoro­borate (Gjøystdal & Rømming, 1977), which has an NC bond length of 1.131 Å, and (N-phenyl)(tert-butyl)­carbonitrilium tri­fluoro­methane­sulfonate [van Dijk et al., 2014; NC bond length of 1.125 (3) Å], both of which feature similar bond lengths and angles of the nitrilium group.

For related literature, see: Al-Talib, Jochims, Hamed, Wang & Ismail (1992); Allen (2002); Bezombes et al. (2004); Bykhovskaya et al. (1993); Casey et al. (1988); Dijk et al. (2014); Doherty et al. (1999); Dolomanov et al. (2009); Farrugia (1999); Gjøystdal & Rømming (1977); Janulis et al. (1984); Kanemasa (2004); Klages & Grill (1955); MacLaughlin et al. (1983); Meerwein, Laasch, Mersch & Nentwig (1956); Meerwein, Laasch, Mersch & Spille (1956); Okazaki et al. (2013); Sheldrick (2008).

Synthesis and crystallization top

This experiment was performed under an atmosphere of dry nitro­gen using standard Schlenk-line and glovebox techniques. NMR spectra were recorded at 300 K on a Bruker Advance 500 and referenced inter­nally to residual solvent resonance of CD2Cl2, 1H at δ 5.32, 13C{1H} at δ 53.84. The melting point was measured in a sealed capillary on a Stuart Scientific SMP3 melting point apparatus and is uncorrected. The IR spectrum was recorded on a Shimadzu FTIR–8400S spectrophotometer. Solvents were distilled from the appropriate drying agents CaH2 (DCM), NaK/benzo­phenone (di­ethyl ether), and P2O5 (CD2Cl2), and kept under an inert atmosphere of dry nitro­gen.

The title compound was obtained as follows: to a suspension of AlCl3 (3.00 g, 22.4 mmol) in DCM (10 mL) cooled to 195 K, an equimolar amount of N-phenyl­pivalimidoyl chloride (4.38 g, 22.4 mmol) in DCM (25 mL) was added dropwise, after which the reaction mixture was warmed to room temperature and stirred for 16 h. All volatiles were removed in vacuo, after which the product was redissolved in DCM (60 mL), layered with di­ethyl ether (90 mL) and cooled to 193 K for 48h. The analytically pure product was isolated as a grey crystalline solid (6.23 g, 18.9 mmol, 85%). Recrystallization from DCM at 278 K yielded crystals suitable for X-ray crystallography. The crystals were coated with paratone oil and mounted on a glass fibre in the cooled nitro­gen stream of the diffractometer. M.p. 411 K. 1H NMR (500.2 MHz, CD2Cl2): δ 7.89 [d, 3J(H,H) = 7.6 Hz, 2H; o-PhH], 7.80 [t, 3J(H,H) = 7.6 Hz, 1H; p-PhH], 7.66 [t, 3J(H,H) = 7.6 Hz, 2H; m-PhH], 1.84 [s, 9H; C(CH3)3]. 13C{1H} NMR (125.8 MHz, CD2Cl2): δ 135.1 (s; p-PhC), 131.0 (s; m-PhC), 128.7 (s; o-PhC), 121.1 [t, 1J(C,N) = 42.7 Hz; NC], 120.7 [t, 1J(C,N) = 14.2 Hz; ipso-PhC], 31.7 [s; C(CH3)3], 27.3 [s; C(CH3)3]. IR: 3065 (w), 2990 (w), 1692 (w), 1611 (w), 1588 (w), 1483 (w), 1474 (m), 1456 (m), 1445 (w), 1373 (w), 1296 (w), 1238 (w), 1198 (w), 1186 (w), 1161 (w), 1028 (w), 1005 (w), 939 (w), 928 (w), 876 (w), 845 (w), 781 (w), 758 (s), 692 (w), 677 (m), 669 (w), 652 (w).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of tert-Butyl-N-phenylcarbonitrilium tetrachloridoaluminate with displacement ellipsoids drawn at the 50% probability level.
2,2-Dimethyl-N-phenylpropanenitrilium tetrachloridoaluminate top
Crystal data top
(C11H14N)[AlCl4]F(000) = 672
Mr = 329.03Dx = 1.381 Mg m3
Monoclinic, P21/cMelting point: 411 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.4531 (6) ÅCell parameters from 5175 reflections
b = 13.6967 (13) Åθ = 2.3–28.5°
c = 17.9352 (17) ŵ = 0.78 mm1
β = 93.636 (1)°T = 153 K
V = 1582.0 (3) Å3Needle, colorless
Z = 40.16 × 0.05 × 0.03 mm
Data collection top
Bruker APEXII
diffractometer
4063 independent reflections
Radiation source: rotating anode3294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 80 pixels mm-1θmax = 28.7°, θmin = 1.9°
ω and Phi scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1818
Tmin = 0.885, Tmax = 0.977l = 2424
16388 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.1953P]
where P = (Fo2 + 2Fc2)/3
4063 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
(C11H14N)[AlCl4]V = 1582.0 (3) Å3
Mr = 329.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4531 (6) ŵ = 0.78 mm1
b = 13.6967 (13) ÅT = 153 K
c = 17.9352 (17) Å0.16 × 0.05 × 0.03 mm
β = 93.636 (1)°
Data collection top
Bruker APEXII
diffractometer
4063 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3294 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.977Rint = 0.035
16388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081All H-atom parameters refined
S = 1.03Δρmax = 0.35 e Å3
4063 reflectionsΔρmin = 0.26 e Å3
210 parameters
Special details top

Experimental. Corrections were done with the SADABS program, utilizing the none merged raw data obtained from the integration process. Integration and final cell refinement were done with SAINT.

SADABS reports ratio of Tmin/Tmax = 0.797049

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.96022 (7)0.22733 (3)0.35138 (2)0.02252 (11)
C10.5146 (2)0.96503 (11)0.27377 (8)0.0280 (3)
C20.5280 (3)0.91716 (11)0.34748 (8)0.0301 (3)
C30.6685 (3)0.82750 (13)0.34364 (10)0.0333 (3)
C40.6215 (5)0.99100 (15)0.40414 (11)0.0544 (6)
C50.3056 (3)0.88817 (17)0.36455 (14)0.0492 (5)
C60.4893 (2)1.04868 (10)0.14690 (8)0.0246 (3)
C70.6619 (3)1.09623 (11)0.12260 (9)0.0287 (3)
C80.6442 (3)1.13970 (11)0.05267 (9)0.0321 (3)
C90.4587 (3)1.13540 (11)0.00948 (9)0.0329 (4)
C100.2892 (3)1.08788 (12)0.03538 (9)0.0337 (4)
C110.3023 (3)1.04317 (11)0.10465 (9)0.0290 (3)
Cl11.07491 (7)0.12249 (3)0.27615 (2)0.03826 (11)
Cl20.63285 (6)0.24128 (3)0.33003 (2)0.03784 (11)
Cl31.03104 (7)0.17986 (3)0.46328 (2)0.03810 (11)
Cl41.09572 (6)0.36715 (3)0.33438 (2)0.03407 (11)
N10.5044 (2)1.00304 (9)0.21740 (7)0.0270 (3)
H50.678 (3)0.7947 (13)0.3913 (11)0.032 (4)*
H60.803 (3)0.8453 (14)0.3297 (11)0.042 (5)*
H120.449 (3)1.1638 (13)0.0347 (10)0.031 (4)*
H140.781 (3)1.0977 (13)0.1524 (10)0.037 (5)*
H100.189 (3)1.0117 (13)0.1246 (10)0.033 (5)*
H40.615 (3)0.7821 (17)0.3065 (13)0.059 (6)*
H130.760 (3)1.1708 (14)0.0343 (10)0.037 (5)*
H30.311 (3)0.8571 (16)0.4147 (13)0.059 (6)*
H80.635 (4)0.9609 (17)0.4530 (14)0.067 (7)*
H110.165 (3)1.0868 (15)0.0039 (12)0.054 (6)*
H70.539 (3)1.0444 (18)0.4074 (12)0.055 (6)*
H10.229 (4)0.9457 (17)0.3674 (13)0.061 (7)*
H20.243 (4)0.8431 (19)0.3264 (15)0.074 (8)*
H90.763 (4)1.0135 (19)0.3925 (15)0.080 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0237 (2)0.0221 (2)0.0215 (2)0.00139 (16)0.00057 (16)0.00156 (15)
C10.0313 (8)0.0270 (7)0.0263 (8)0.0037 (6)0.0048 (6)0.0011 (6)
C20.0392 (9)0.0296 (8)0.0220 (7)0.0008 (6)0.0055 (6)0.0068 (6)
C30.0368 (9)0.0350 (8)0.0279 (8)0.0042 (7)0.0003 (7)0.0072 (7)
C40.100 (2)0.0342 (10)0.0280 (10)0.0045 (11)0.0013 (10)0.0001 (8)
C50.0420 (11)0.0531 (12)0.0542 (13)0.0093 (9)0.0179 (9)0.0245 (10)
C60.0331 (8)0.0202 (6)0.0208 (7)0.0057 (5)0.0036 (6)0.0021 (5)
C70.0307 (8)0.0265 (7)0.0291 (8)0.0033 (6)0.0034 (6)0.0006 (6)
C80.0401 (9)0.0251 (7)0.0323 (8)0.0022 (6)0.0132 (7)0.0041 (6)
C90.0524 (10)0.0266 (8)0.0201 (7)0.0119 (7)0.0052 (7)0.0043 (6)
C100.0408 (9)0.0320 (8)0.0273 (8)0.0093 (7)0.0054 (7)0.0009 (6)
C110.0319 (8)0.0253 (7)0.0300 (8)0.0026 (6)0.0040 (6)0.0008 (6)
Cl10.0421 (2)0.0355 (2)0.0370 (2)0.00888 (16)0.00073 (17)0.01397 (16)
Cl20.02347 (19)0.0465 (2)0.0431 (2)0.00328 (15)0.00125 (16)0.00606 (17)
Cl30.0468 (2)0.0410 (2)0.02528 (19)0.00252 (17)0.00698 (16)0.00525 (16)
Cl40.0377 (2)0.02523 (18)0.0400 (2)0.00444 (15)0.00856 (17)0.00103 (15)
N10.0331 (7)0.0245 (6)0.0238 (6)0.0057 (5)0.0047 (5)0.0024 (5)
Geometric parameters (Å, º) top
Al1—Cl32.1315 (6)C2—C51.539 (3)
Al1—Cl22.1316 (6)C6—C71.384 (2)
Al1—Cl12.1347 (6)C6—C111.386 (2)
Al1—Cl42.1351 (6)C6—N11.4084 (18)
C1—N11.1353 (19)C7—C81.386 (2)
C1—C21.473 (2)C8—C91.385 (2)
C2—C41.530 (3)C9—C101.378 (3)
C2—C31.531 (2)C10—C111.383 (2)
Cl3—Al1—Cl2110.32 (2)C4—C2—C5111.84 (18)
Cl3—Al1—Cl1109.13 (3)C3—C2—C5111.39 (15)
Cl2—Al1—Cl1109.04 (2)C7—C6—C11122.93 (14)
Cl3—Al1—Cl4110.05 (2)C7—C6—N1118.70 (14)
Cl2—Al1—Cl4107.71 (2)C11—C6—N1118.36 (13)
Cl1—Al1—Cl4110.58 (3)C6—C7—C8117.71 (15)
N1—C1—C2179.13 (17)C9—C8—C7120.42 (16)
C1—C2—C4107.46 (14)C10—C9—C8120.51 (15)
C1—C2—C3108.54 (13)C9—C10—C11120.48 (16)
C4—C2—C3110.50 (17)C10—C11—C6117.95 (15)
C1—C2—C5106.91 (15)C1—N1—C6178.87 (16)

Experimental details

Crystal data
Chemical formula(C11H14N)[AlCl4]
Mr329.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)6.4531 (6), 13.6967 (13), 17.9352 (17)
β (°) 93.636 (1)
V3)1582.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.16 × 0.05 × 0.03
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.885, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
16388, 4063, 3294
Rint0.035
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.03
No. of reflections4063
No. of parameters210
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We are grateful to the Institute of Inorganic and Analytical Chemistry of the University of Münster in Germany, the Deutsche Forschungsgemeinschaft (IRTG 1444) and the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (NWO/CW).

References

First citationAl-Talib, M., Jochims, J. C., Hamed, A., Wang, Q. & Ismail, A. E.-H. (1992). Synthesis, pp. 697–701.  Google Scholar
First citationBezombes, J.-P., Borisenko, K. B., Hitchcock, P. B., Lappert, M. F., Nycz, J. E., Rankin, D. W. H. & Robertson, H. E. (2004). Dalton Trans. pp. 1980–1988.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBykhovskaya, O. V., Aladzheva, I. M., Petrovskii, P. V., Antipin, M. Y., Struchkov, Y. T., Mastryukova, T. A. & Kabachnik, M. I. (1993). Mendeleev Commun. 3, 200–202.  CSD CrossRef Google Scholar
First citationCasey, C. P., Crocker, M., Niccolai, G. P., Fagan, P. J. & Konings, M. S. (1988). J. Am. Chem. Soc. 110, 6070–6076.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationDijk, T. van, Burck, S., Rong, M. K., Rosenthal, A. J., Nieger, M., Slootweg, J. C. & Lammertsma, K. (2014). Angew. Chem. Int. Ed. 53, 9068–9071.  Google Scholar
First citationDoherty, S., Hogarth, G., Waugh, M., Scanlan, T. H., Clegg, W. & Elsegood, M. R. J. (1999). Organometallics, 18, 3178–3186.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGjøystdal, A. K. & Rømming, C. (1977). Acta Chem. Scand. Ser. B, 31, 56–62.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanulis, E. P., Wilson, S. R. & Arduengo, A. J. (1984). Tetrahedron Lett. 25, 405–408.  CSD CrossRef CAS Web of Science Google Scholar
First citationKanemasa, S. (2004). In Science of Synthesis, Vol. 19, edited by S.-I. Murahashi, pp. 53–63. Stuttgart: Thieme Verlag.  Google Scholar
First citationKlages, F. & Grill, W. (1955). Justus Liebigs Ann. Chem. 594, 21–32.  CrossRef Google Scholar
First citationMacLaughlin, S. A., Johnson, J. P., Taylor, N. J., Carty, A. J. & Sappa, E. (1983). Organometallics, 2, 352–355.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeerwein, H., Laasch, P., Mersch, R. & Nentwig, J. (1956). Chem. Ber. 89, 224–238.  CrossRef CAS Web of Science Google Scholar
First citationMeerwein, H., Laasch, P., Mersch, R. & Spille, J. (1956). Chem. Ber. 89, 209–224.  CrossRef CAS Web of Science Google Scholar
First citationOkazaki, M., Taniwaki, W., Miyagi, K., Takano, M., Kaneko, S. & Ozawa, F. (2013). Organometallics, 32, 1951–1957.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds