organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1187-o1188

Crystal structure of ethyl 5-(3-fluoro­phen­yl)-2-[(4-fluoro­phen­yl)methyl­­idene]-7-methyl-3-oxo-2H,3H,5H-[1,3]thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 26 May 2014; accepted 20 October 2014; online 24 October 2014)

In the title mol­ecule, C23H18F2N2O3S, the pyrimidine ring is in a half-chair conformation and the 3-fluoro­phenyl group is in the axial position. The thia­zole ring (r.m.s. deviation = 0.0252 Å) forms dihedral angles of 84.8 (7) and 9.6 (7)° with the 3-fluoro-substituted and 4-fluoro-substituted benzene rings, respectively. In the crystal, weak C—H⋯F and C—H⋯O hydrogen bonds connect mol­ecules, forming zigzag chains along the b axis. In addition ππ stacking inter­actions with a centroid–centroid distance of 3.7633 (9) Å connect these chains into ladders via inversion-related 4-fluoro­phenyl groups.

1. Related literature

For the pharmacological properties of pyrimidine derivatives, see: Alam et al. (2010[Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245-1258.]); Kulakov et al. (2009[Kulakov, I., Nurkenov, O., Turdybekov, D., Issabaeva, G., Mahmutova, A. & Turdybekov, K. (2009). Chem. Heterocycl. Compd, 45, 856-859.]); Ashok et al. (2007[Ashok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380-385.]). For examples of compounds with weak inter­molecular inter­actions, see: Prasanna & Guru Row (2001[Prasanna, M. D. & Guru Row, T. N. (2001). J. Mol. Struct. 562, 55-61.]); Yamazaki et al. (2009[Yamazaki, T., Taguchi, T. & Ojima, I. (2009). In Fluorine in Medicinal Chemistry and Chemical Biology. edited by I. Ojima, pp. 3-46. Chichester: Wiley-Blackwell.]). For related structures, see: Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224-o1225.]); Zhao et al. (2011[Zhao, C.-G., Hu, J., Zhang, Y.-L., Zhang, J. & Yang, S.-L. (2011). Acta Cryst. E67, o3009.]); Nagarajaiah & Begum (2011[Nagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H18F2N2O3S

  • Mr = 440.45

  • Monoclinic, P 21 /n

  • a = 9.4358 (5) Å

  • b = 10.7862 (6) Å

  • c = 20.2246 (11) Å

  • β = 92.159 (1)°

  • V = 2056.93 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.968

  • 15631 measured reflections

  • 4480 independent reflections

  • 3890 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.06

  • 4480 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯F1i 0.95 2.53 3.437 (2) 159
C13—H13⋯F1ii 0.95 2.56 3.513 (2) 178
C14—H14⋯O1ii 0.95 2.36 3.303 (2) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Pyrimidine derivatives are of interest because of their useful biological and therapeutic activities (Ashok et al., 2007). The presence of both pyrimidine and thiazole rings results in enhanced activity (Alam et al., 2010; Kulakov et al., 2009). Intermolecular interactions of the type C—H···F and C—F···π can supply both directional and actively favorable pathways to hold the molecules together in the crystalline lattice that offer additional stability (Prasanna & Guru Row, 2001; Yamazaki et al., 2009). Herein, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The 3-fluoro phenyl ring adopts a syn periplanar conformation with respect to C5—H5 bond of the pyrimidine ring. The pyrimidine ring is in a half-chair conformation with atoms N1 and C5 displaced by -0.110 (1) and 0.168 (1) Å from the mean plane of the other four atoms (N2/C6/C7/C9 with a maximun deviation of 0.042 (1)Å for both atoms N2 and C7). The 3-fluorophenyl group is in the axial position. The thiazole ring (r.m.s. deviation = 0.0252 Å) forms dihedral angles of 84.8 (7) and 9.6 (7)° with the 3-fluoro-substituted and 4-fluoro-substituted benzene rings respectively. The exocyclic ester group at C6 adopts cis orientation with respect to C6C7 double bond. The bond and angles in the title compound agree with the corresponding bond distances and angles reported in related compounds (Fischer et al., 2007; Zhao et al., 2011; Nagarajaiah & Begum, 2011). In the crystal, weak C—H···F and C—H···O hydrogen bonds connect molecules forming zigzag chains along the b axis (Fig. 2). In addition ππ stacking interactions with a centroid–centroid distance of 3.7633 (9)Å connect these chains into ladders via inversion-related 4-fluorophenyl groups.

Related literature top

For the pharmacological properties of pyrimidine derivatives, see: Alam et al. (2010); Kulakov et al. (2009); Ashok et al. (2007). For examples of compounds with weak intermolecular interactions, see: Prasanna & Guru Row (2001); Yamazaki et al. (2009). For related structures, see: Fischer et al. (2007); Zhao et al. (2011); Nagarajaiah & Begum (2011).

Experimental top

A mixture of 4-(3-fluoro-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro- pyrimidine-5-carboxylic acid ethyl ester (10 mmol), chloroacetic acid (10 mmol), 4-fluorobenzaldehyde (10 mmol) and sodium acetate (1.5 g) was taken in a mixture of glacial acetic acid and acetic anhydride (25 ml; 1:1) and refluxed for 8–10 h until the TLC assay indicated that the reaction was complete. The reaction mixture was concentrated and the solid thus obtained was filtered and recrystallized from ethyl acetate to get the title compound (76% yield, mp 460 K). The compound was recrystallized by slow evaporation from dimethylformamide (DMF) solvent, yielding pale yellow single crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Figure 1.The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2. Part of the crystal structure showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonds have been excluded.
Ethyl 5-(3-fluorophenyl)-2-[(4-fluorophenyl)methylidene]-7-methyl-3-oxo-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C23H18F2N2O3SF(000) = 912
Mr = 440.45Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4480 reflections
a = 9.4358 (5) Åθ = 2.1–27.0°
b = 10.7862 (6) ŵ = 0.20 mm1
c = 20.2246 (11) ÅT = 100 K
β = 92.159 (1)°Block, yellow
V = 2056.93 (19) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4480 independent reflections
Radiation source: fine-focus sealed tube3890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1112
Tmin = 0.964, Tmax = 0.968k = 1311
15631 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.9996P]
where P = (Fo2 + 2Fc2)/3
4480 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H18F2N2O3SV = 2056.93 (19) Å3
Mr = 440.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4358 (5) ŵ = 0.20 mm1
b = 10.7862 (6) ÅT = 100 K
c = 20.2246 (11) Å0.18 × 0.16 × 0.16 mm
β = 92.159 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4480 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3890 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.968Rint = 0.026
15631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.44 e Å3
4480 reflectionsΔρmin = 0.23 e Å3
282 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88687 (4)0.19204 (3)0.034764 (17)0.01589 (11)
F20.38224 (11)0.20262 (10)0.14390 (5)0.0344 (3)
N11.02387 (12)0.21900 (11)0.07291 (6)0.0130 (2)
O10.95802 (11)0.05123 (9)0.13566 (5)0.0168 (2)
O31.32012 (11)0.35754 (11)0.18945 (5)0.0234 (3)
N21.08494 (13)0.36112 (12)0.01251 (6)0.0178 (3)
F10.83639 (12)0.28603 (11)0.33642 (5)0.0364 (3)
C61.20222 (15)0.37625 (13)0.09169 (7)0.0168 (3)
C20.86191 (15)0.08022 (13)0.02757 (7)0.0136 (3)
C170.77697 (14)0.01947 (13)0.02952 (7)0.0145 (3)
H170.78130.06770.06870.017*
C91.01253 (15)0.27081 (13)0.01116 (7)0.0138 (3)
C110.99691 (15)0.34259 (14)0.17420 (7)0.0160 (3)
C51.10183 (15)0.28309 (13)0.12475 (7)0.0144 (3)
H51.15920.22050.14850.017*
C180.67908 (15)0.06573 (13)0.01880 (7)0.0157 (3)
C210.48097 (17)0.15811 (16)0.10318 (8)0.0240 (3)
C71.19145 (15)0.40940 (13)0.02781 (8)0.0175 (3)
C160.96568 (17)0.28569 (15)0.23478 (8)0.0202 (3)
H161.01100.21070.24660.024*
C30.94988 (14)0.11093 (13)0.08497 (7)0.0135 (3)
C200.48715 (17)0.20784 (15)0.04067 (9)0.0236 (3)
H200.42470.27260.02670.028*
C190.58648 (16)0.16121 (14)0.00123 (8)0.0195 (3)
H190.59210.19460.04450.023*
C230.67034 (16)0.01971 (15)0.08349 (8)0.0202 (3)
H230.73310.04420.09830.024*
C150.86709 (17)0.34154 (16)0.27702 (7)0.0243 (4)
C101.31041 (16)0.42857 (15)0.13541 (8)0.0235 (3)
O21.37971 (16)0.52124 (13)0.12605 (8)0.0448 (4)
C130.83007 (17)0.50531 (16)0.20222 (9)0.0266 (4)
H130.78360.58000.19080.032*
C120.92960 (16)0.45299 (15)0.15833 (8)0.0206 (3)
H120.95190.49260.11730.025*
C11.28965 (17)0.49369 (16)0.01043 (9)0.0253 (4)
H1A1.36650.51990.01770.038*
H1B1.32960.44980.04930.038*
H1C1.23730.56670.02480.038*
C220.57151 (17)0.06610 (15)0.12598 (8)0.0235 (3)
H220.56630.03520.16980.028*
C140.79808 (17)0.44933 (16)0.26257 (8)0.0265 (4)
H140.73030.48460.29300.032*
C81.41942 (18)0.39730 (18)0.23844 (9)0.0309 (4)
H8A1.51300.41600.21700.037*
H8B1.38400.47280.26150.037*
C41.4318 (2)0.29285 (19)0.28635 (9)0.0358 (4)
H4A1.47290.22050.26350.054*
H4B1.49310.31780.32210.054*
H4C1.33750.27170.30500.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01805 (19)0.01604 (19)0.01374 (18)0.00094 (13)0.00276 (13)0.00157 (13)
F20.0247 (5)0.0389 (6)0.0406 (6)0.0027 (4)0.0143 (4)0.0164 (5)
N10.0131 (6)0.0139 (6)0.0121 (5)0.0001 (4)0.0003 (4)0.0014 (4)
O10.0185 (5)0.0175 (5)0.0147 (5)0.0020 (4)0.0024 (4)0.0026 (4)
O30.0197 (6)0.0269 (6)0.0238 (6)0.0057 (5)0.0057 (4)0.0064 (5)
N20.0167 (6)0.0160 (6)0.0206 (6)0.0004 (5)0.0012 (5)0.0029 (5)
F10.0456 (7)0.0419 (6)0.0206 (5)0.0067 (5)0.0127 (5)0.0051 (4)
C60.0127 (7)0.0136 (7)0.0238 (7)0.0002 (5)0.0023 (6)0.0026 (6)
C20.0131 (6)0.0147 (7)0.0131 (6)0.0026 (5)0.0002 (5)0.0006 (5)
C170.0130 (7)0.0154 (7)0.0152 (7)0.0028 (5)0.0000 (5)0.0014 (5)
C90.0133 (6)0.0139 (6)0.0143 (6)0.0030 (5)0.0002 (5)0.0009 (5)
C110.0126 (7)0.0176 (7)0.0178 (7)0.0033 (5)0.0008 (5)0.0060 (6)
C50.0120 (6)0.0147 (7)0.0167 (7)0.0012 (5)0.0022 (5)0.0025 (5)
C180.0132 (7)0.0133 (7)0.0207 (7)0.0033 (5)0.0014 (5)0.0053 (6)
C210.0165 (7)0.0255 (8)0.0306 (8)0.0042 (6)0.0085 (6)0.0141 (7)
C70.0125 (7)0.0124 (7)0.0273 (8)0.0010 (5)0.0025 (6)0.0005 (6)
C160.0215 (8)0.0192 (7)0.0198 (7)0.0027 (6)0.0003 (6)0.0050 (6)
C30.0116 (6)0.0144 (7)0.0142 (6)0.0012 (5)0.0017 (5)0.0020 (5)
C200.0157 (7)0.0179 (8)0.0373 (9)0.0015 (6)0.0006 (6)0.0084 (7)
C190.0164 (7)0.0169 (7)0.0252 (8)0.0022 (6)0.0001 (6)0.0041 (6)
C230.0191 (7)0.0193 (7)0.0222 (7)0.0007 (6)0.0021 (6)0.0044 (6)
C150.0247 (8)0.0309 (9)0.0169 (7)0.0095 (7)0.0038 (6)0.0071 (7)
C100.0166 (7)0.0215 (8)0.0323 (9)0.0025 (6)0.0007 (6)0.0042 (7)
O20.0439 (8)0.0382 (8)0.0535 (9)0.0277 (7)0.0159 (7)0.0068 (7)
C130.0195 (8)0.0275 (9)0.0329 (9)0.0055 (6)0.0019 (7)0.0090 (7)
C120.0186 (7)0.0208 (8)0.0226 (7)0.0010 (6)0.0010 (6)0.0039 (6)
C10.0181 (8)0.0214 (8)0.0361 (9)0.0035 (6)0.0021 (7)0.0083 (7)
C220.0237 (8)0.0254 (8)0.0217 (8)0.0044 (6)0.0059 (6)0.0072 (6)
C140.0171 (7)0.0336 (9)0.0285 (8)0.0019 (6)0.0037 (6)0.0160 (7)
C80.0229 (8)0.0393 (10)0.0311 (9)0.0082 (7)0.0091 (7)0.0114 (8)
C40.0371 (10)0.0491 (12)0.0219 (8)0.0069 (9)0.0088 (7)0.0084 (8)
Geometric parameters (Å, º) top
S1—C91.7531 (14)C21—C221.378 (2)
S1—C21.7542 (14)C7—C11.493 (2)
F2—C211.3544 (17)C16—C151.378 (2)
N1—C31.3758 (18)C16—H160.9500
N1—C91.3761 (18)C20—C191.382 (2)
N1—C51.4753 (17)C20—H200.9500
O1—C31.2154 (17)C19—H190.9500
O3—C101.341 (2)C23—C221.385 (2)
O3—C81.4538 (18)C23—H230.9500
N2—C91.2728 (19)C15—C141.370 (3)
N2—C71.4171 (19)C10—O21.206 (2)
F1—C151.3636 (19)C13—C141.385 (2)
C6—C71.348 (2)C13—C121.388 (2)
C6—C101.487 (2)C13—H130.9500
C6—C51.519 (2)C12—H120.9500
C2—C171.341 (2)C1—H1A0.9800
C2—C31.4897 (18)C1—H1B0.9800
C17—C181.4578 (19)C1—H1C0.9800
C17—H170.9500C22—H220.9500
C11—C161.392 (2)C14—H140.9500
C11—C121.393 (2)C8—C41.493 (3)
C11—C51.5222 (19)C8—H8A0.9900
C5—H51.0000C8—H8B0.9900
C18—C191.401 (2)C4—H4A0.9800
C18—C231.405 (2)C4—H4B0.9800
C21—C201.376 (2)C4—H4C0.9800
C9—S1—C291.59 (7)C19—C20—H20120.8
C3—N1—C9116.66 (12)C20—C19—C18121.37 (15)
C3—N1—C5122.30 (11)C20—C19—H19119.3
C9—N1—C5120.84 (12)C18—C19—H19119.3
C10—O3—C8116.91 (13)C22—C23—C18120.98 (15)
C9—N2—C7116.55 (12)C22—C23—H23119.5
C7—C6—C10123.20 (14)C18—C23—H23119.5
C7—C6—C5121.96 (13)F1—C15—C14118.29 (15)
C10—C6—C5114.84 (13)F1—C15—C16118.06 (16)
C17—C2—C3120.36 (13)C14—C15—C16123.65 (15)
C17—C2—S1129.53 (11)O2—C10—O3123.27 (15)
C3—C2—S1110.09 (10)O2—C10—C6127.00 (16)
C2—C17—C18130.38 (13)O3—C10—C6109.72 (13)
C2—C17—H17114.8C14—C13—C12120.42 (16)
C18—C17—H17114.8C14—C13—H13119.8
N2—C9—N1126.38 (13)C12—C13—H13119.8
N2—C9—S1122.40 (11)C13—C12—C11120.25 (15)
N1—C9—S1111.18 (10)C13—C12—H12119.9
C16—C11—C12119.77 (14)C11—C12—H12119.9
C16—C11—C5120.22 (13)C7—C1—H1A109.5
C12—C11—C5120.00 (13)C7—C1—H1B109.5
N1—C5—C6108.45 (11)H1A—C1—H1B109.5
N1—C5—C11109.58 (11)C7—C1—H1C109.5
C6—C5—C11112.94 (12)H1A—C1—H1C109.5
N1—C5—H5108.6H1B—C1—H1C109.5
C6—C5—H5108.6C21—C22—C23118.42 (15)
C11—C5—H5108.6C21—C22—H22120.8
C19—C18—C23118.12 (13)C23—C22—H22120.8
C19—C18—C17117.51 (13)C15—C14—C13117.95 (15)
C23—C18—C17124.36 (14)C15—C14—H14121.0
F2—C21—C20118.31 (15)C13—C14—H14121.0
F2—C21—C22118.93 (15)O3—C8—C4106.72 (14)
C20—C21—C22122.76 (14)O3—C8—H8A110.4
C6—C7—N2122.33 (13)C4—C8—H8A110.4
C6—C7—C1126.18 (14)O3—C8—H8B110.4
N2—C7—C1111.43 (13)C4—C8—H8B110.4
C15—C16—C11117.95 (15)H8A—C8—H8B108.6
C15—C16—H16121.0C8—C4—H4A109.5
C11—C16—H16121.0C8—C4—H4B109.5
O1—C3—N1123.41 (12)H4A—C4—H4B109.5
O1—C3—C2126.46 (13)C8—C4—H4C109.5
N1—C3—C2110.13 (12)H4A—C4—H4C109.5
C21—C20—C19118.32 (15)H4B—C4—H4C109.5
C21—C20—H20120.8
C9—S1—C2—C17179.32 (14)C9—N1—C3—O1174.93 (13)
C9—S1—C2—C32.35 (10)C5—N1—C3—O110.2 (2)
C3—C2—C17—C18177.86 (13)C9—N1—C3—C24.85 (17)
S1—C2—C17—C180.3 (2)C5—N1—C3—C2169.99 (12)
C7—N2—C9—N12.8 (2)C17—C2—C3—O12.5 (2)
C7—N2—C9—S1174.64 (10)S1—C2—C3—O1178.97 (12)
C3—N1—C9—N2170.94 (14)C17—C2—C3—N1177.70 (13)
C5—N1—C9—N214.1 (2)S1—C2—C3—N10.80 (14)
C3—N1—C9—S16.71 (15)F2—C21—C20—C19179.07 (13)
C5—N1—C9—S1168.21 (10)C22—C21—C20—C191.5 (2)
C2—S1—C9—N2172.76 (13)C21—C20—C19—C180.0 (2)
C2—S1—C9—N15.00 (11)C23—C18—C19—C201.2 (2)
C3—N1—C5—C6164.71 (12)C17—C18—C19—C20177.90 (14)
C9—N1—C5—C620.67 (17)C19—C18—C23—C221.0 (2)
C3—N1—C5—C1171.60 (16)C17—C18—C23—C22178.08 (14)
C9—N1—C5—C11103.03 (14)C11—C16—C15—F1179.95 (13)
C7—C6—C5—N113.70 (19)C11—C16—C15—C140.2 (2)
C10—C6—C5—N1167.22 (12)C8—O3—C10—O20.4 (2)
C7—C6—C5—C11107.95 (16)C8—O3—C10—C6178.65 (13)
C10—C6—C5—C1171.13 (16)C7—C6—C10—O216.7 (3)
C16—C11—C5—N1101.02 (15)C5—C6—C10—O2162.33 (17)
C12—C11—C5—N177.65 (16)C7—C6—C10—O3164.23 (14)
C16—C11—C5—C6137.96 (14)C5—C6—C10—O316.70 (18)
C12—C11—C5—C643.37 (17)C14—C13—C12—C110.9 (2)
C2—C17—C18—C19169.68 (15)C16—C11—C12—C131.0 (2)
C2—C17—C18—C239.4 (2)C5—C11—C12—C13177.68 (14)
C10—C6—C7—N2178.12 (13)F2—C21—C22—C23178.84 (14)
C5—C6—C7—N20.9 (2)C20—C21—C22—C231.7 (2)
C10—C6—C7—C15.0 (2)C18—C23—C22—C210.4 (2)
C5—C6—C7—C1175.96 (14)F1—C15—C14—C13179.84 (14)
C9—N2—C7—C610.3 (2)C16—C15—C14—C130.4 (2)
C9—N2—C7—C1166.99 (13)C12—C13—C14—C150.2 (2)
C12—C11—C16—C150.4 (2)C10—O3—C8—C4169.32 (15)
C5—C11—C16—C15178.24 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···F1i0.952.533.437 (2)159
C13—H13···F1ii0.952.563.513 (2)178
C14—H14···O1ii0.952.363.303 (2)172
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···F1i0.952.5343.437 (2)159
C13—H13···F1ii0.952.5633.513 (2)178
C14—H14···O1ii0.952.3593.303 (2)172
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+3/2, y+1/2, z1/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance.

References

First citationAlam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245–1258.  Web of Science CrossRef CAS Google Scholar
First citationAshok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224–o1225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKulakov, I., Nurkenov, O., Turdybekov, D., Issabaeva, G., Mahmutova, A. & Turdybekov, K. (2009). Chem. Heterocycl. Compd, 45, 856–859.  CrossRef CAS Google Scholar
First citationNagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasanna, M. D. & Guru Row, T. N. (2001). J. Mol. Struct. 562, 55–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYamazaki, T., Taguchi, T. & Ojima, I. (2009). In Fluorine in Medicinal Chemistry and Chemical Biology. edited by I. Ojima, pp. 3–46. Chichester: Wiley-Blackwell.  Google Scholar
First citationZhao, C.-G., Hu, J., Zhang, Y.-L., Zhang, J. & Yang, S.-L. (2011). Acta Cryst. E67, o3009.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1187-o1188
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds