research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­fluorido­tetra­kis(pyridine-κN)chromium(III) tri­chlorido­(pyridine-κN)zincate monohydrate from synchrotron data

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by A. J. Lough, University of Toronto, Canada (Received 24 August 2014; accepted 27 September 2014; online 4 October 2014)

In the asymmetric unit of the title compound, [CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2O, there are two independent complex cations, one tri­chlorido­(pyridine-κN)zincate anion and one solvent water mol­ecule. The cations lie on inversion centers. The CrIII ions are coordinated by four pyridine (py) N atoms in the equatorial plane and two F atoms in a trans axial arrangement, displaying a slightly distorted octa­hedral geometry. The Cr—N(py) bond lengths are in the range 2.0873 (14) to 2.0926 (17) Å while the Cr—F bond lengths are 1.8609 (10) and 1.8645 (10) Å. The [ZnCl3(C5H5N)] anion has a distorted tetra­hedral geometry. The Cl atoms of the anion were refined as disordered over two sets of sites in a 0.631 (9):0.369 (9) ratio. In the crystal, two anions and two water mol­ecules are linked via O—H⋯Cl hydrogen bonds, forming centrosymmetric aggregates. In addition, weak C—H⋯Cl, C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 3.712 (2) and 3.780 (2)Å] link the components of the structure into a three-dimensional network.

1. Chemical context

Anionic species play very important roles in chemistry, medicine, catalysis, mol­ecular assembly, biology and environmental processes, yet their binding characteristics have not received much recognition (Martínez-Máñez & Sancenón, 2003[Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419-4476.]; Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]). The study of the effect of anions and geometric isomers in octa­hedral metal complexes may be expected to yield a great variety of new structures and properties of both chemical and biological significance. Octa­hedral CrIII complexes and their 3d–4f clusters containing lanthanides revealing paramagnetic features are of great importance for the development of new mol­ecule-based magnets and solid-state laser materials (Powell, 1998[Powell, R. C. (1998). Physics of Solid-State Laser Materials. New York: Springer-Verlag.]; Dreiser et al., 2012[Dreiser, J., Pedersen, K. S., Piamonteze, C., Rusponi, S., Salman, Z., Ali, Md. E., Schau-Magnussen, M., Thuesen, C. A., Piligkos, S., Weihe, H., Mutka, H., Waldmann, O., Oppeneer, P., Bendix, J., Nolting, F. & Brune, H. (2012). Chem. Sci. 3, 1024-1032.]; Singh et al., 2013[Singh, S. K., Pedersen, K. S., Sigrist, M., Thuesen, C. A., Schau-Magnussen, M., Mutka, H., Piligkos, S., Weihe, H., Rajaraman, G. & Bendix, J. (2013). Chem. Commun. 49, 5583-5585.]). We are therefore inter­ested in the preparation, crystal structures and spectroscopic properties of chromium(III) complexes containing mixed various ligands (Choi, 2000a[Choi, J. H. (2000a). Chem. Phys. 256, 29-35.],b[Choi, J. H. (2000b). Spectrochim. Acta Part A, 58, 1599-1606.]; Choi et al., 2004[Choi, J. H., Oh, I. G., Linder, R. & Schönherr, T. (2004). Chem. Phys. 297, 7-12.], 2006[Choi, J. H., Oh, I. G., Ryoo, K. S., Lim, W. T., Park, Y. C. & Habibi, M. H. (2006). Spectrochim. Acta Part A, 65, 1138-1143.]; Choi & Moon, 2014[Choi, J. H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]).

[Scheme 1]

Here we report the structure of [CrF2(py)4][ZnCl3(py)]·H2O, where py is the pyridine (C5H5N), in order to establish the exact arrangement of four py mol­ecules, two F atoms, counter-anion and water mol­ecule. This is another example of a trans-[CrF2(py)4]+ structure but with a different counter-anion system (Fochi et al., 1991[Fochi, G., Straehle, J. & Gingl, F. (1991). Inorg. Chem. 30, 4669-4671.]; Moon & Choi, 2013[Moon, D. & Choi, J.-H. (2013). Acta Cryst. E69, m514.]; Moon et al., 2014[Moon, D., Ryoo, K. S. & Choi, J.-H. (2014). Acta Cryst. E70, m280.]; Singh et al., 2013[Singh, S. K., Pedersen, K. S., Sigrist, M., Thuesen, C. A., Schau-Magnussen, M., Mutka, H., Piligkos, S., Weihe, H., Rajaraman, G. & Bendix, J. (2013). Chem. Commun. 49, 5583-5585.]).

2. Structural commentary

In the mol­ecular structure, there are two independent CrIII complex cations in which the four nitro­gen atoms of four py ligands occupy the equatorial sites and the two F atoms coordinate to the Cr atom in a trans configuration. An ellipsoid plot of one independent complex cation, the unique ZnCl3(py) anion and one water mol­ecule in the title compound is shown in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% probability displacement ellipsoids. Only one of the independent cations is shown. The minor disorder component of the anion is not shown. The primed atoms are related by the symmetry code (−x, −y + 1, −z).

The Cr—N(py) bond lengths range from 2.0873 (14) to 2.0926 (17) Å and the Cr—F bond lengths are 1.8609 (10) and 1.8645 (10) Å (Table 1[link]). These Cr—N(py) and Cr—F bond lengths are in good agreement with those observed in trans-[CrF2(py)4]PF6, trans-[CrF2(py)4]ClO4, trans-[CrF2(py)4]2NaClO4 and trans-[CrF2(py)4][Cr(py)4F(μ-F)Li(H2O)3][Cr(py)4F(μ-F)Li(H2O)4]Cl5·6H2O (Fochi et al., 1991[Fochi, G., Straehle, J. & Gingl, F. (1991). Inorg. Chem. 30, 4669-4671.]; Moon & Choi, 2013[Moon, D. & Choi, J.-H. (2013). Acta Cryst. E69, m514.]; Moon et al., 2014[Moon, D., Ryoo, K. S. & Choi, J.-H. (2014). Acta Cryst. E70, m280.]; Birk et al., 2010[Birk, T., Magnussen, M. J., Piligkos, S., Weihe, H., Holten, A. & Bendix, J. (2010). J. Fluorine Chem. 13, 898-906.]). The Cr—F bond lengths are also similar to the values found in trans-[Cr(15aneN4)F2]ClO4 (15aneN4 = 1,4,8,12-tetraaza­cyclo­penta­decane) and trans-[Cr(2,2,3-tet)F2]ClO4 (2,2,3-tet = 1,4,7,11-tetraazaundecane) (Choi et al., 2006[Choi, J. H., Oh, I. G., Ryoo, K. S., Lim, W. T., Park, Y. C. & Habibi, M. H. (2006). Spectrochim. Acta Part A, 65, 1138-1143.]; Choi & Moon, 2014[Choi, J. H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]). However, the Cr—F bond lengths are somewhat shorter than those found for bridging fluorides [1.9045 (14)–1.9145 (14) Å; Dreiser et al., 2012[Dreiser, J., Pedersen, K. S., Piamonteze, C., Rusponi, S., Salman, Z., Ali, Md. E., Schau-Magnussen, M., Thuesen, C. A., Piligkos, S., Weihe, H., Mutka, H., Waldmann, O., Oppeneer, P., Bendix, J., Nolting, F. & Brune, H. (2012). Chem. Sci. 3, 1024-1032.]).

Table 1
Selected bond lengths (Å)

Cr1A—F1A 1.8645 (10) Cr2B—N1B 2.0916 (15)
Cr1A—N2A 2.0873 (14) Zn1C—N1C 2.0752 (16)
Cr1A—N1A 2.0926 (17) Zn1C—Cl2C 2.188 (2)
Cr2B—F1B 1.8609 (10) Zn1C—Cl3C 2.302 (2)
Cr2B—N2B 2.0886 (17) Zn1C—Cl1C 2.303 (8)

The [ZnCl3(py)] anion and uncoordinating water mol­ecule remain outside the coordination sphere. In the counter-anion, the ZnII ion is in a distorted tetra­hedral environment, coordinated by one N atom of the py ligand and by three Cl atoms. The Cl atoms of the anion were refined as disordered over two sets of sites in a 0.631 (9):0.369 (9) ratio (Fig. 2[link]). The Zn—Cl distances, ranging from 2.126 (14) to 2.360 (2) Å, and the Zn—N(py) distance of 2.075 (2) Å are in agreement with those found in the anion of [Cr(acacen)(py)2][ZnCl3(py)] [acacen = N,N′-ethylenebis(acetylacetoneiminato)] (Toscano et al., 1994[Toscano, P. J., DiMauro, P. T., Geremia, S., Randaccio, L. & Zangrando, E. (1994). Inorg. Chim. Acta, 217, 195-199.]). The mean Cl—Zn—Cl angle of 115.22° is larger than the corresponding tetra­hedral angle and the mean Cl—Zn—N angle of 105.45 (10)°. The charge of the tri­chlorido­(pyridine)­zincate anion is counter-balanced by two half trans-[CrF2(py)4]+ cations. The complex cations lie on inversion centers and therefore the cations have exact mol­ecular Ci symmetry.

[Figure 2]
Figure 2
The mol­ecular structure of the anion. The minor disorder component is shown with dashed lines.

3. Supra­molecular features

In the crystal, two anions and two water mol­ecules are linked via O—H⋯Cl hydrogen bonds, forming centrosymmetric aggregates with R44(12) rings (Fig. 3[link]). In addition, weak C—H⋯Cl (Table 2[link]), C—H⋯π (Table 3[link]) and ππ stacking inter­actions link the components of the structure into a three-dimensional network. The centroid–centroid distances of the ππ stacking inter­actions are Cg1⋯Cg2(−1 + x, y, z) = 3.712 (2) and Cg3⋯Cg4 3.780 (2) Å, Where Cg1, Cg2, Cg3 and Cg4 are the centroids defined by ring atoms N1A/C1A–C5A, N1C/C1C–C5C, N2B/C6B–C10B and N2A/C6A–C10A, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1O1⋯Cl2Ci 0.86 (1) 2.41 (2) 3.263 (6) 173 (8)
O1W—H2O1⋯Cl3Cii 0.86 (1) 2.48 (4) 3.281 (5) 157 (8)
O1W—H2O1⋯Cl4Cii 0.86 (1) 2.22 (2) 3.053 (6) 165 (8)
C2B—H2B⋯Cl3C 0.95 2.81 3.749 (4) 170
C3B—H3B⋯Cl3Cii 0.95 2.82 3.511 (3) 130
C3C—H3C⋯Cl2Ciii 0.95 2.71 3.627 (4) 162
C4A—H4A⋯Cl1Civ 0.95 2.82 3.717 (8) 158
C10A—H10A⋯Cl3Cv 0.95 2.86 3.617 (4) 137
C10B—H10B⋯Cl1Cvi 0.95 2.73 3.534 (9) 142
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z+1.

Table 3
C—H⋯π inter­action geometry (Å,°)

Cg1–Cg4 are the centroids defined by the ring atoms N2A/C6A–C10A, N1B/C1B–C5B, N1A/C1A–C5A and N1C/C1C–C5C, respectively.

D—H⋯Cg D—H H⋯Cg D⋯Cg D—H⋯Cg
C4C—H4CCg1i 0.95 2.82 3.630 (3) 144
C6A—H6ACg2 0.95 2.81 3.579 (2) 139
C6B—H6BCg3 0.95 2.90 3.660 (2) 138
C8A—H8ACg4ii 0.95 2.73 3.558 (3) 147
Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) x − 1, y − 1, z.
[Figure 3]
Figure 3
Part of the crystal structure with hydrogen bonds shown as dashed lines.

4. Synthesis and crystallization

All chemicals were reagent grade materials and used without further purification. The starting material, trans-[CrF2(py)4]ClO4 was prepared according to the literature (Glerup et al., 1970[Glerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247-254.]). The crude trans-[CrF2(py)4]ClO4 (0.2 g) was dissolved in 10 mL water. The 10 mL solution of 1M HCl and 0.5 g of ZnCl2 were added to this solution. The mixture was refluxed at 328 K for 30 min and then cooled to room temperature. The crystalline product which formed was filtered, washed with cold 2-propanol and diethyl ether. Recrystallization from a hot aqueous solution of the title compound yielded purple crystals suitable for X-ray structure analysis.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. C–bound H–atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation with Uiso(H) set to 1.2Ueq(C). The hydrogen atoms of the solvent water mol­ecule were refined with Uiso(H) set to 1.5 Ueq(O) and geometrically restrained to O—H = 0.86 (1) and H⋯H 1.34 (2) Å. The Cl atoms of the anion were refined as disordered over two sets of sites with refined occupancies of 0.631 (9) and 0.369 (9), respectively.

Table 4
Experimental details

Crystal data
Chemical formula [CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2O
Mr 675.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.1350 (18), 12.852 (3), 13.607 (3)
α, β, γ (°) 103.69 (3), 105.07 (3), 101.25 (3)
V3) 1441.6 (6)
Z 2
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 1.09
Crystal size (mm) 0.10 × 0.02 × 0.02
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.899, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 15474, 7929, 7758
Rint 0.023
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.03
No. of reflections 7929
No. of parameters 380
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.85
Computer programs: PAL ADSC Quantum-210 ADX Software (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS2014 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]). PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Anionic species play very important roles in chemistry, medicine, catalysis, molecular assembly, biology and environmental processes, yet their binding characteristics have not received much recognition (Martínez-Máñez & Sancenón, 2003; Fabbrizzi & Poggi, 2013). The study of the effect of anions and geometric isomers in o­cta­hedral metal complexes may be expected to yield a great variety of new structures and properties of both chemical and biological significance. Octa­hedral CrIII complexes and their 3d–4f clusters containing lanthanides revealing paramagnetic features are of great importance for the development of new molecule-based magnets and solid-state laser materials (Powell, 1998; Dreiser et al., 2012; Singh et al., 2013). We are therefore inter­ested in the preparation, crystal structures and spectroscopic properties of chromium(III) complexes containing mixed various ligands (Choi, 2000a,b; Choi et al., 2004, 2006; Choi & Moon, 2014). Here we report the structure of [CrF2(py)4][ZnCl3(py)]·H2O, where py is the pyridine (C5H5N), in order to establish the exact arrangement of four py molecules, two F atoms, counter-anion and water molecule. This is another example of a trans-[CrF2(py)4]+ structure but with a different counter-anion system (Fochi et al., 1991; Moon & Choi, 2013; Moon et al., 2014; Singh et al., 2013).

Structural commentary top

In the molecular structure, there are two independent CrIII complex cations in which the four nitro­gen atoms of four py ligands occupy the equatorial sites and the two F atoms coordinate to the Cr atom in a trans configuration. An ellipsoid plot of one independent complex cation, the unique ZnCl3(py)- anion and one water molecule in the title compound is shown in Fig. 1.

The Cr—N(py) bond lengths range from 2.0873 (14) to 2.0926 (17) Å and the Cr—F bond lengths are 1.8609 (10) and 1.8645 (10) Å (Table 1). These Cr—N(py) and Cr—F bond lengths are in good agreement with those observed in trans-[CrF2(py)4]PF6, trans-[CrF2(py)4]ClO4, trans-[CrF2(py)4]2ZnCl4·NaClO4 and trans-[CrF2(py)4][Cr(py)4F(µ-F)Li(H2O)3][Cr(py)4F(µ-F)Li(H2O)4]Cl5·6H2O (Fochi et al., 1991; Moon & Choi, 2013; Moon et al., 2014; Birk et al., 2010). The Cr—F bond lengths are also similar to the values found in trans-[Cr(15aneN4)F2]ClO4 and trans-[Cr(2,2,3-tet)F2]ClO4 (Choi et al., 2006; Choi & Moon, 2014). However, the Cr—F bond lengths are somewhat shorter than those found for bridging fluorides [1.9045 (14)–1.9145 (14) Å; Dreiser et al., 2012).

The [ZnCl3(py)]- anion and uncoordinating water molecule remain outside the coordination sphere. In the counter-anion, the ZnII ion is in a distorted tetra­hedral environment, coordinated by one N atom of the py ligand and by three Cl atoms. The Cl atoms of the anion were refined as disordered over two sets of sites in a 0.631 (9):0.369 (9) ratio (Fig. 2). The Zn—Cl distances, ranging from 2.126 (14) to 2.360 (2) Å, and the Zn—N(py) distance of 2.075 (2) Å are in agreement with those found in the anion of [Cr(acacen)(py)2][ZnCl3(py)] (Toscano et al., 1994). The mean Cl—Zn—Cl angle of 115.22° is larger than the corresponding tetra­hedral angle and the mean Cl—Zn—N angle of 105.45 (10)°. The charge of the trichlorido(pyridine)­zincate(II) anion is counter-balanced by two half trans-[CrF2(py)4]+ cations. The complex cations lie on inversion centers and therefore the cations have exact molecular Ci symmetry.

Supra­molecular features top

In the crystal, two anions and two water molecules are linked via O—H···O hydrogen bonds, forming centrosymmetric aggregates with R44(12) rings (Fig. 3). In addition, weak C—H···Cl, C—H···π and ππ stacking inter­actions link the components of the structure into a three-dimensional network. The centroid–centroid distances of the ππ stacking inter­actions are Cg1···Cg2(-1+x, y, z) = 3.712 (2) and Cg3···Cg4 3.780 (2) Å, Where Cg1, Cg2, Cg3 and Cg4 are the centroids defined by ring atoms N1A/C1A–C5A, N1C/C1C–C5C, N2B/C6B–C10B and N2A/C6A–C10A, respectively.

Synthesis and crystallization top

All chemicals were reagent grade materials and used without further purification. The starting material, trans-[CrF2(py)4]ClO4 was prepared according to the literature (Glerup et al., 1970). The crude trans-[CrF2(py)4]ClO4 (0.2g) was dissolved in 10 mL water. The 10 mL solution of 1M HCl and 0.5 g of ZnCl2 were added to this solution. The mixture was refluxed at 55°C for 30 min and then cooled to room temperature. The crystalline product which formed was filtered, washed with cold 2-propanol and di­ethyl ether. Recrystallization from a hot aqueous solution of the title compound yielded purple crystals suitable for X-ray structure analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 4. Non-hydrogen atoms were refined anisotropically; C–bound H–atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation with Uiso(H) set to 1.2Ueq(C). The hydrogen atoms of the solvent water molecule were refined with Uiso(H) set to 1.5 Ueq(O) and geometrically restrained to O—H = 0.86 (1) and H···H 1.34 (2) Å. The Cl atoms of the anion were refined as disordered over two sets of sites with refined occupancies 0.631 (9) and 0.369 (9), respectively.

Related literature top

For related literature, see: Birk et al. (2010); Choi (2000a, 2000b); Choi & Moon (2014); Choi et al. (2004, 2006); Dreiser et al. (2012); Fabbrizzi & Poggi (2013); Fochi et al. (1991); Glerup et al. (1970); Martínez-Máñez & Sancenón (2003); Moon & Choi (2013); Moon et al. (2014).

Computing details top

Data collection: PAL ADSC Quantum-210 ADX Software (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
The molecular structure of the title compound showing 50% probability displacement ellipsoids. Only one of the independent cations is shown. The minor disorder component of the anion is not shown. The primed atoms are related by the symmetry code (-x, -y+1, -z).

The molecular structure of the anion. The minor disorder component is shown with dashed lines.

Part of the crystal structure with hydrogen bonds shown as dashed lines.
trans-Difluoridotetrakis-(pyridine-κN)chromium(III) trichlorido(pyridine-κN)zincate monohydrate top
Crystal data top
[CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2OZ = 2
Mr = 675.23F(000) = 686
Triclinic, P1Dx = 1.556 Mg m3
a = 9.1350 (18) ÅSynchrotron radiation, λ = 0.62998 Å
b = 12.852 (3) ÅCell parameters from 70974 reflections
c = 13.607 (3) Åθ = 0.4–33.6°
α = 103.69 (3)°µ = 1.09 mm1
β = 105.07 (3)°T = 100 K
γ = 101.25 (3)°Rod, purple
V = 1441.6 (6) Å30.10 × 0.02 × 0.02 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
7758 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.023
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.899, Tmax = 0.978k = 1717
15474 measured reflectionsl = 1818
7929 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0457P)2 + 1.3104P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7929 reflectionsΔρmax = 0.74 e Å3
380 parametersΔρmin = 0.85 e Å3
Crystal data top
[CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2Oγ = 101.25 (3)°
Mr = 675.23V = 1441.6 (6) Å3
Triclinic, P1Z = 2
a = 9.1350 (18) ÅSynchrotron radiation, λ = 0.62998 Å
b = 12.852 (3) ŵ = 1.09 mm1
c = 13.607 (3) ÅT = 100 K
α = 103.69 (3)°0.10 × 0.02 × 0.02 mm
β = 105.07 (3)°
Data collection top
ADSC Q210 CCD area-detector
diffractometer
7929 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
7758 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.978Rint = 0.023
15474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.74 e Å3
7929 reflectionsΔρmin = 0.85 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr1A0.00000.50000.00000.01952 (8)
F1A0.20948 (11)0.50546 (9)0.01167 (8)0.02511 (19)
N1A0.07291 (16)0.61748 (11)0.15115 (11)0.0222 (2)
N2A0.01489 (17)0.36975 (11)0.06719 (11)0.0225 (3)
C1A0.2264 (2)0.67086 (14)0.20341 (14)0.0270 (3)
H1A0.30200.65550.16960.032*
C2A0.2784 (2)0.74746 (16)0.30481 (15)0.0319 (4)
H2A0.38750.78350.33950.038*
C3A0.1682 (2)0.77060 (15)0.35485 (15)0.0317 (4)
H3A0.20090.82160.42460.038*
C4A0.0096 (2)0.71743 (15)0.30051 (15)0.0308 (4)
H4A0.06830.73250.33220.037*
C5A0.0336 (2)0.64231 (15)0.19958 (15)0.0267 (3)
H5A0.14230.60670.16270.032*
C6A0.1138 (2)0.34067 (16)0.11190 (17)0.0340 (4)
H6A0.21370.38110.11350.041*
C7A0.1058 (3)0.25331 (17)0.15599 (19)0.0419 (5)
H7A0.19890.23430.18670.050*
C8A0.0382 (3)0.19486 (16)0.15455 (16)0.0369 (4)
H8A0.04580.13550.18500.044*
C9A0.1710 (3)0.22358 (17)0.10840 (19)0.0382 (4)
H9A0.27190.18410.10600.046*
C10A0.1550 (2)0.31122 (15)0.06538 (17)0.0308 (4)
H10A0.24710.33060.03330.037*
Cr2B0.50000.50000.50000.02188 (8)
F1B0.47526 (13)0.63979 (8)0.49752 (9)0.0287 (2)
N1B0.51583 (17)0.46810 (12)0.34563 (11)0.0250 (3)
N2B0.25547 (17)0.43358 (11)0.44125 (11)0.0233 (3)
C1B0.5327 (2)0.55046 (16)0.30013 (15)0.0305 (3)
H1B0.53440.62290.33890.037*
C2B0.5478 (2)0.5336 (2)0.19893 (16)0.0366 (4)
H2B0.56100.59360.16960.044*
C3B0.5431 (3)0.4285 (2)0.14199 (17)0.0436 (5)
H3B0.55160.41470.07220.052*
C4B0.5259 (3)0.3428 (2)0.18750 (17)0.0409 (5)
H4B0.52230.26970.14930.049*
C5B0.5140 (2)0.36571 (16)0.29025 (15)0.0296 (3)
H5B0.50440.30740.32200.035*
C6B0.1601 (2)0.49004 (14)0.39770 (14)0.0268 (3)
H6B0.20600.55830.38800.032*
C7B0.0021 (2)0.45198 (16)0.36673 (15)0.0311 (4)
H7B0.06640.49300.33530.037*
C8B0.0704 (2)0.35292 (16)0.38210 (15)0.0314 (3)
H8B0.18160.32590.36250.038*
C9B0.0272 (2)0.29453 (15)0.42650 (14)0.0286 (3)
H9B0.01630.22660.43770.034*
C10B0.1885 (2)0.33643 (14)0.45424 (13)0.0261 (3)
H10B0.25490.29540.48350.031*
Zn1C0.70830 (2)0.92169 (2)0.25840 (2)0.02919 (7)0.631 (9)
Cl1C0.7295 (8)0.8517 (6)0.4009 (5)0.0297 (5)0.631 (9)
Cl2C0.6522 (2)1.0811 (2)0.2693 (4)0.0462 (7)0.631 (9)
Cl3C0.5638 (4)0.7835 (3)0.10101 (11)0.0511 (8)0.631 (9)
Zn2C0.70830 (2)0.92169 (2)0.25840 (2)0.02919 (7)0.369 (9)
Cl4C0.5292 (3)0.8210 (4)0.10518 (17)0.0433 (6)0.369 (9)
Cl5C0.6694 (3)1.09905 (17)0.3178 (5)0.0361 (6)0.369 (9)
Cl6C0.7250 (16)0.8618 (11)0.3926 (10)0.0352 (17)0.369 (9)
N1C0.93153 (18)0.94763 (12)0.24287 (12)0.0262 (3)
C1C1.0575 (2)1.00830 (14)0.32876 (14)0.0276 (3)
H1C1.04211.03360.39580.033*
C2C1.2089 (2)1.03503 (17)0.32268 (18)0.0360 (4)
H2C1.29541.07880.38430.043*
C3C1.2318 (3)0.9969 (2)0.2255 (2)0.0457 (5)
H3C1.33431.01400.21930.055*
C4C1.1034 (3)0.9336 (2)0.1378 (2)0.0464 (5)
H4C1.11650.90610.07030.056*
C5C0.9552 (3)0.91061 (17)0.14915 (16)0.0361 (4)
H5C0.86730.86710.08840.043*
O1W0.3884 (7)0.0474 (5)0.0419 (4)0.162 (2)
H1O10.462 (7)0.063 (8)0.102 (4)0.243*
H2O10.429 (10)0.090 (7)0.010 (6)0.243*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.01680 (15)0.02073 (16)0.02493 (17)0.00694 (12)0.00807 (12)0.01100 (13)
F1A0.0185 (4)0.0295 (5)0.0311 (5)0.0090 (4)0.0093 (4)0.0126 (4)
N1A0.0219 (6)0.0222 (6)0.0271 (6)0.0082 (5)0.0095 (5)0.0120 (5)
N2A0.0243 (6)0.0208 (6)0.0243 (6)0.0069 (5)0.0080 (5)0.0097 (5)
C1A0.0248 (7)0.0265 (7)0.0303 (8)0.0063 (6)0.0093 (6)0.0097 (6)
C2A0.0319 (9)0.0298 (8)0.0311 (8)0.0055 (7)0.0078 (7)0.0092 (7)
C3A0.0411 (10)0.0266 (8)0.0298 (8)0.0119 (7)0.0122 (7)0.0097 (6)
C4A0.0378 (9)0.0295 (8)0.0341 (9)0.0154 (7)0.0181 (7)0.0133 (7)
C5A0.0266 (8)0.0279 (8)0.0322 (8)0.0109 (6)0.0136 (6)0.0134 (6)
C6A0.0260 (8)0.0279 (8)0.0444 (10)0.0051 (6)0.0001 (7)0.0185 (8)
C7A0.0402 (11)0.0300 (9)0.0489 (12)0.0064 (8)0.0034 (9)0.0221 (9)
C8A0.0562 (12)0.0236 (8)0.0344 (9)0.0103 (8)0.0147 (9)0.0154 (7)
C9A0.0481 (11)0.0292 (9)0.0552 (12)0.0151 (8)0.0344 (10)0.0218 (9)
C10A0.0311 (9)0.0274 (8)0.0450 (10)0.0122 (7)0.0214 (8)0.0178 (7)
Cr2B0.02634 (18)0.01837 (16)0.02080 (16)0.00761 (13)0.00498 (13)0.00737 (12)
F1B0.0342 (5)0.0205 (4)0.0322 (5)0.0106 (4)0.0076 (4)0.0103 (4)
N1B0.0231 (6)0.0271 (7)0.0233 (6)0.0069 (5)0.0048 (5)0.0078 (5)
N2B0.0278 (7)0.0215 (6)0.0202 (6)0.0080 (5)0.0055 (5)0.0069 (5)
C1B0.0281 (8)0.0344 (9)0.0282 (8)0.0065 (7)0.0053 (6)0.0139 (7)
C2B0.0253 (8)0.0593 (13)0.0329 (9)0.0142 (8)0.0112 (7)0.0242 (9)
C3B0.0354 (10)0.0760 (16)0.0312 (9)0.0296 (11)0.0167 (8)0.0193 (10)
C4B0.0379 (10)0.0554 (13)0.0323 (9)0.0260 (10)0.0134 (8)0.0056 (9)
C5B0.0251 (8)0.0331 (8)0.0292 (8)0.0125 (7)0.0068 (6)0.0054 (7)
C6B0.0323 (8)0.0248 (7)0.0255 (7)0.0105 (6)0.0080 (6)0.0107 (6)
C7B0.0324 (9)0.0301 (8)0.0333 (9)0.0142 (7)0.0078 (7)0.0127 (7)
C8B0.0285 (8)0.0322 (9)0.0331 (9)0.0098 (7)0.0082 (7)0.0100 (7)
C9B0.0320 (8)0.0257 (7)0.0274 (8)0.0068 (6)0.0076 (6)0.0098 (6)
C10B0.0311 (8)0.0230 (7)0.0231 (7)0.0077 (6)0.0053 (6)0.0085 (6)
Zn1C0.02382 (11)0.02802 (11)0.02942 (11)0.00267 (8)0.00014 (8)0.01480 (8)
Cl1C0.0301 (9)0.0387 (8)0.0288 (11)0.0119 (8)0.0107 (8)0.0223 (11)
Cl2C0.0305 (5)0.0382 (8)0.0857 (19)0.0136 (5)0.0246 (8)0.0373 (11)
Cl3C0.0450 (9)0.0514 (12)0.0299 (4)0.0202 (8)0.0006 (5)0.0047 (5)
Zn2C0.02382 (11)0.02802 (11)0.02942 (11)0.00267 (8)0.00014 (8)0.01480 (8)
Cl4C0.0341 (8)0.0450 (13)0.0311 (7)0.0061 (9)0.0027 (6)0.0056 (7)
Cl5C0.0309 (7)0.0232 (6)0.0530 (17)0.0075 (5)0.0144 (9)0.0085 (8)
Cl6C0.0364 (14)0.052 (3)0.0316 (16)0.0196 (15)0.0127 (10)0.0318 (12)
N1C0.0300 (7)0.0211 (6)0.0262 (7)0.0052 (5)0.0065 (5)0.0089 (5)
C1C0.0289 (8)0.0231 (7)0.0294 (8)0.0080 (6)0.0065 (6)0.0079 (6)
C2C0.0280 (9)0.0355 (9)0.0433 (10)0.0103 (7)0.0076 (8)0.0130 (8)
C3C0.0380 (11)0.0567 (14)0.0553 (13)0.0235 (10)0.0237 (10)0.0222 (11)
C4C0.0554 (14)0.0520 (13)0.0419 (11)0.0256 (11)0.0259 (10)0.0124 (10)
C5C0.0448 (11)0.0312 (9)0.0296 (9)0.0108 (8)0.0101 (8)0.0061 (7)
O1W0.193 (5)0.152 (4)0.114 (3)0.015 (3)0.014 (3)0.079 (3)
Geometric parameters (Å, º) top
Cr1A—F1Ai1.8645 (10)C1B—H1B0.9500
Cr1A—F1A1.8645 (10)C2B—C3B1.375 (4)
Cr1A—N2Ai2.0873 (14)C2B—H2B0.9500
Cr1A—N2A2.0873 (14)C3B—C4B1.388 (4)
Cr1A—N1Ai2.0926 (17)C3B—H3B0.9500
Cr1A—N1A2.0926 (17)C4B—C5B1.396 (3)
N1A—C1A1.348 (2)C4B—H4B0.9500
N1A—C5A1.355 (2)C5B—H5B0.9500
N2A—C6A1.341 (2)C6B—C7B1.381 (3)
N2A—C10A1.343 (2)C6B—H6B0.9500
C1A—C2A1.390 (3)C7B—C8B1.392 (3)
C1A—H1A0.9500C7B—H7B0.9500
C2A—C3A1.394 (3)C8B—C9B1.385 (3)
C2A—H2A0.9500C8B—H8B0.9500
C3A—C4A1.390 (3)C9B—C10B1.382 (3)
C3A—H3A0.9500C9B—H9B0.9500
C4A—C5A1.384 (3)C10B—H10B0.9500
C4A—H4A0.9500Zn1C—N1C2.0752 (16)
C5A—H5A0.9500Zn1C—Cl2C2.188 (2)
C6A—C7A1.391 (3)Zn1C—Cl3C2.302 (2)
C6A—H6A0.9500Zn1C—Cl1C2.303 (8)
C7A—C8A1.374 (3)Zn2C—N1C2.0752 (16)
C7A—H7A0.9500Zn2C—Cl6C2.126 (14)
C8A—C9A1.375 (3)Zn2C—Cl4C2.196 (2)
C8A—H8A0.9500Zn2C—Cl5C2.360 (2)
C9A—C10A1.387 (3)N1C—C5C1.340 (2)
C9A—H9A0.9500N1C—C1C1.348 (2)
C10A—H10A0.9500C1C—C2C1.387 (3)
Cr2B—F1B1.8609 (10)C1C—H1C0.9500
Cr2B—F1Bii1.8609 (10)C2C—C3C1.381 (3)
Cr2B—N2Bii2.0885 (17)C2C—H2C0.9500
Cr2B—N2B2.0886 (17)C3C—C4C1.379 (4)
Cr2B—N1B2.0916 (15)C3C—H3C0.9500
Cr2B—N1Bii2.0916 (15)C4C—C5C1.385 (3)
N1B—C5B1.347 (2)C4C—H4C0.9500
N1B—C1B1.350 (2)C5C—H5C0.9500
N2B—C6B1.349 (2)O1W—H1O10.862 (10)
N2B—C10B1.352 (2)O1W—H2O10.855 (10)
C1B—C2B1.389 (3)
F1Ai—Cr1A—F1A180.0C1B—N1B—Cr2B120.77 (13)
F1Ai—Cr1A—N2Ai90.11 (6)C6B—N2B—C10B118.27 (16)
F1A—Cr1A—N2Ai89.89 (6)C6B—N2B—Cr2B121.31 (12)
F1Ai—Cr1A—N2A89.89 (6)C10B—N2B—Cr2B120.20 (12)
F1A—Cr1A—N2A90.11 (6)N1B—C1B—C2B122.68 (19)
N2Ai—Cr1A—N2A180.0N1B—C1B—H1B118.7
F1Ai—Cr1A—N1Ai90.10 (6)C2B—C1B—H1B118.7
F1A—Cr1A—N1Ai89.90 (6)C3B—C2B—C1B118.8 (2)
N2Ai—Cr1A—N1Ai91.02 (6)C3B—C2B—H2B120.6
N2A—Cr1A—N1Ai88.98 (6)C1B—C2B—H2B120.6
F1Ai—Cr1A—N1A89.90 (6)C2B—C3B—C4B119.32 (19)
F1A—Cr1A—N1A90.10 (6)C2B—C3B—H3B120.3
N2Ai—Cr1A—N1A88.98 (6)C4B—C3B—H3B120.3
N2A—Cr1A—N1A91.02 (6)C3B—C4B—C5B119.0 (2)
N1Ai—Cr1A—N1A180.0C3B—C4B—H4B120.5
C1A—N1A—C5A117.88 (15)C5B—C4B—H4B120.5
C1A—N1A—Cr1A121.38 (12)N1B—C5B—C4B121.85 (19)
C5A—N1A—Cr1A120.73 (12)N1B—C5B—H5B119.1
C6A—N2A—C10A117.91 (15)C4B—C5B—H5B119.1
C6A—N2A—Cr1A121.44 (12)N2B—C6B—C7B122.20 (16)
C10A—N2A—Cr1A120.64 (12)N2B—C6B—H6B118.9
N1A—C1A—C2A122.59 (17)C7B—C6B—H6B118.9
N1A—C1A—H1A118.7C6B—C7B—C8B119.28 (17)
C2A—C1A—H1A118.7C6B—C7B—H7B120.4
C1A—C2A—C3A119.05 (18)C8B—C7B—H7B120.4
C1A—C2A—H2A120.5C9B—C8B—C7B118.69 (18)
C3A—C2A—H2A120.5C9B—C8B—H8B120.7
C4A—C3A—C2A118.61 (18)C7B—C8B—H8B120.7
C4A—C3A—H3A120.7C10B—C9B—C8B119.09 (17)
C2A—C3A—H3A120.7C10B—C9B—H9B120.5
C5A—C4A—C3A119.13 (17)C8B—C9B—H9B120.5
C5A—C4A—H4A120.4N2B—C10B—C9B122.45 (16)
C3A—C4A—H4A120.4N2B—C10B—H10B118.8
N1A—C5A—C4A122.72 (17)C9B—C10B—H10B118.8
N1A—C5A—H5A118.6N1C—Zn1C—Cl2C105.20 (6)
C4A—C5A—H5A118.6N1C—Zn1C—Cl3C100.81 (11)
N2A—C6A—C7A122.21 (19)Cl2C—Zn1C—Cl3C114.17 (7)
N2A—C6A—H6A118.9N1C—Zn1C—Cl1C104.3 (2)
C7A—C6A—H6A118.9Cl2C—Zn1C—Cl1C119.5 (2)
C8A—C7A—C6A119.26 (19)Cl3C—Zn1C—Cl1C110.34 (17)
C8A—C7A—H7A120.4N1C—Zn2C—Cl6C105.5 (4)
C6A—C7A—H7A120.4N1C—Zn2C—Cl4C110.44 (9)
C7A—C8A—C9A119.03 (17)Cl6C—Zn2C—Cl4C118.5 (3)
C7A—C8A—H8A120.5N1C—Zn2C—Cl5C106.82 (8)
C9A—C8A—H8A120.5Cl6C—Zn2C—Cl5C103.3 (4)
C8A—C9A—C10A118.84 (19)Cl4C—Zn2C—Cl5C111.42 (9)
C8A—C9A—H9A120.6C5C—N1C—C1C118.27 (17)
C10A—C9A—H9A120.6C5C—N1C—Zn1C122.44 (14)
N2A—C10A—C9A122.74 (18)C1C—N1C—Zn1C119.22 (13)
N2A—C10A—H10A118.6C5C—N1C—Zn2C122.44 (14)
C9A—C10A—H10A118.6C1C—N1C—Zn2C119.22 (13)
F1B—Cr2B—F1Bii180.0N1C—C1C—C2C122.33 (18)
F1B—Cr2B—N2Bii90.15 (6)N1C—C1C—H1C118.8
F1Bii—Cr2B—N2Bii89.85 (6)C2C—C1C—H1C118.8
F1B—Cr2B—N2B89.85 (6)C3C—C2C—C1C118.9 (2)
F1Bii—Cr2B—N2B90.15 (6)C3C—C2C—H2C120.6
N2Bii—Cr2B—N2B180.00 (4)C1C—C2C—H2C120.6
F1B—Cr2B—N1B90.00 (6)C4C—C3C—C2C118.9 (2)
F1Bii—Cr2B—N1B90.01 (6)C4C—C3C—H3C120.5
N2Bii—Cr2B—N1B88.16 (6)C2C—C3C—H3C120.5
N2B—Cr2B—N1B91.84 (6)C3C—C4C—C5C119.3 (2)
F1B—Cr2B—N1Bii90.00 (6)C3C—C4C—H4C120.4
F1Bii—Cr2B—N1Bii90.00 (6)C5C—C4C—H4C120.4
N2Bii—Cr2B—N1Bii91.84 (6)N1C—C5C—C4C122.3 (2)
N2B—Cr2B—N1Bii88.16 (7)N1C—C5C—H5C118.9
N1B—Cr2B—N1Bii180.0C4C—C5C—H5C118.9
C5B—N1B—C1B118.29 (16)H1O1—O1W—H2O1104 (2)
C5B—N1B—Cr2B120.92 (13)
C5A—N1A—C1A—C2A1.5 (2)C1B—N1B—C5B—C4B1.3 (3)
Cr1A—N1A—C1A—C2A178.56 (13)Cr2B—N1B—C5B—C4B179.40 (15)
N1A—C1A—C2A—C3A0.1 (3)C3B—C4B—C5B—N1B1.3 (3)
C1A—C2A—C3A—C4A1.1 (3)C10B—N2B—C6B—C7B0.2 (3)
C2A—C3A—C4A—C5A1.0 (3)Cr2B—N2B—C6B—C7B174.36 (13)
C1A—N1A—C5A—C4A1.6 (2)N2B—C6B—C7B—C8B0.9 (3)
Cr1A—N1A—C5A—C4A178.42 (13)C6B—C7B—C8B—C9B1.1 (3)
C3A—C4A—C5A—N1A0.4 (3)C7B—C8B—C9B—C10B0.1 (3)
C10A—N2A—C6A—C7A0.3 (3)C6B—N2B—C10B—C9B1.3 (2)
Cr1A—N2A—C6A—C7A179.28 (17)Cr2B—N2B—C10B—C9B173.40 (13)
N2A—C6A—C7A—C8A0.4 (4)C8B—C9B—C10B—N2B1.1 (3)
C6A—C7A—C8A—C9A0.7 (3)C5C—N1C—C1C—C2C1.2 (3)
C7A—C8A—C9A—C10A0.4 (3)Zn1C—N1C—C1C—C2C175.74 (14)
C6A—N2A—C10A—C9A0.6 (3)Zn2C—N1C—C1C—C2C175.74 (14)
Cr1A—N2A—C10A—C9A179.61 (16)N1C—C1C—C2C—C3C0.9 (3)
C8A—C9A—C10A—N2A0.2 (3)C1C—C2C—C3C—C4C0.0 (3)
C5B—N1B—C1B—C2B0.2 (3)C2C—C3C—C4C—C5C0.4 (4)
Cr2B—N1B—C1B—C2B178.31 (14)C1C—N1C—C5C—C4C0.7 (3)
N1B—C1B—C2B—C3B0.9 (3)Zn1C—N1C—C5C—C4C176.14 (17)
C1B—C2B—C3B—C4B0.9 (3)Zn2C—N1C—C5C—C4C176.14 (17)
C2B—C3B—C4B—C5B0.1 (3)C3C—C4C—C5C—N1C0.1 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1O1···Cl2Ciii0.86 (1)2.41 (2)3.263 (6)173 (8)
O1W—H2O1···Cl3Civ0.86 (1)2.48 (4)3.281 (5)157 (8)
O1W—H2O1···Cl4Civ0.86 (1)2.22 (2)3.053 (6)165 (8)
C2B—H2B···Cl3C0.952.813.749 (4)170
C3B—H3B···Cl3Civ0.952.823.511 (3)130
C3C—H3C···Cl2Cv0.952.713.627 (4)162
C4A—H4A···Cl1Cvi0.952.823.717 (8)158
C10A—H10A···Cl3Ci0.952.863.617 (4)137
C10B—H10B···Cl1Cii0.952.733.534 (9)142
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x1, y, z.
Selected bond lengths (Å) top
Cr1A—F1A1.8645 (10)Cr2B—N1B2.0916 (15)
Cr1A—N2A2.0873 (14)Zn1C—N1C2.0752 (16)
Cr1A—N1A2.0926 (17)Zn1C—Cl2C2.188 (2)
Cr2B—F1B1.8609 (10)Zn1C—Cl3C2.302 (2)
Cr2B—N2B2.0886 (17)Zn1C—Cl1C2.303 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1O1···Cl2Ci0.86 (1)2.41 (2)3.263 (6)173 (8)
O1W—H2O1···Cl3Cii0.86 (1)2.48 (4)3.281 (5)157 (8)
O1W—H2O1···Cl4Cii0.86 (1)2.22 (2)3.053 (6)165 (8)
C2B—H2B···Cl3C0.952.813.749 (4)170
C3B—H3B···Cl3Cii0.952.823.511 (3)130
C3C—H3C···Cl2Ciii0.952.713.627 (4)162
C4A—H4A···Cl1Civ0.952.823.717 (8)158
C10A—H10A···Cl3Cv0.952.863.617 (4)137
C10B—H10B···Cl1Cvi0.952.733.534 (9)142
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.
C—H···π interaction geometry (Å,°) top
Cg1–Cg4 are the centroids defined by the ring atoms N2A/C6A–C10A, N1B/C1B–C5B, N1A/C1A–C5A and N1C/C1C–C5C, respectively.
D—H···CgD—HH···CgD···CgD—H···Cg
C4C—H4C···Cg1i0.952.823.630 (3)144
C6A—H6A···Cg20.952.813.579 (2)139
C6B—H6B···Cg30.952.903.660 (2)138
C8A—H8A···Cg4ii0.952.733.558 (3)147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y-1, z .

Experimental details

Crystal data
Chemical formula[CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2O
Mr675.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1350 (18), 12.852 (3), 13.607 (3)
α, β, γ (°)103.69 (3), 105.07 (3), 101.25 (3)
V3)1441.6 (6)
Z2
Radiation typeSynchrotron, λ = 0.62998 Å
µ (mm1)1.09
Crystal size (mm)0.10 × 0.02 × 0.02
Data collection
DiffractometerADSC Q210 CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.899, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15474, 7929, 7758
Rint0.023
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.03
No. of reflections7929
No. of parameters380
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.85

Computer programs: PAL ADSC Quantum-210 ADX Software (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by a grant from the 2012 Academic Research Fund of Andong National University. The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBirk, T., Magnussen, M. J., Piligkos, S., Weihe, H., Holten, A. & Bendix, J. (2010). J. Fluorine Chem. 13, 898–906.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoi, J. H. (2000a). Chem. Phys. 256, 29–35.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J. H. (2000b). Spectrochim. Acta Part A, 58, 1599–1606.  Web of Science CrossRef Google Scholar
First citationChoi, J. H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J. H., Oh, I. G., Linder, R. & Schönherr, T. (2004). Chem. Phys. 297, 7–12.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J. H., Oh, I. G., Ryoo, K. S., Lim, W. T., Park, Y. C. & Habibi, M. H. (2006). Spectrochim. Acta Part A, 65, 1138–1143.  Web of Science CSD CrossRef Google Scholar
First citationDreiser, J., Pedersen, K. S., Piamonteze, C., Rusponi, S., Salman, Z., Ali, Md. E., Schau-Magnussen, M., Thuesen, C. A., Piligkos, S., Weihe, H., Mutka, H., Waldmann, O., Oppeneer, P., Bendix, J., Nolting, F. & Brune, H. (2012). Chem. Sci. 3, 1024–1032.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFochi, G., Straehle, J. & Gingl, F. (1991). Inorg. Chem. 30, 4669–4671.  CSD CrossRef CAS Web of Science Google Scholar
First citationGlerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2013). Acta Cryst. E69, m514.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Ryoo, K. S. & Choi, J.-H. (2014). Acta Cryst. E70, m280.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPowell, R. C. (1998). Physics of Solid-State Laser Materials. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. K., Pedersen, K. S., Sigrist, M., Thuesen, C. A., Schau-Magnussen, M., Mutka, H., Piligkos, S., Weihe, H., Rajaraman, G. & Bendix, J. (2013). Chem. Commun. 49, 5583–5585.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToscano, P. J., DiMauro, P. T., Geremia, S., Randaccio, L. & Zangrando, E. (1994). Inorg. Chim. Acta, 217, 195–199.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds