research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­chlorido­bis­­(2-eth­­oxy-6-formyl­phenolato-κ2O1,O6)iron(III) aceto­nitrile hemisolvate

aCollege of Chemistry and Bioengineering, Guilin University of Technology, 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com

Edited by A. J. Lough, University of Toronto, Canada (Received 13 September 2014; accepted 23 September 2014; online 4 October 2014)

In the title compound, [Fe(L)2Cl(H2O)]·0.5CH3CN, (HL is 3-eth­oxy-2-hy­droxy-benzaldehyde, C9H10O3), there are two independent complex mol­ecules and one aceto­nitrile solvent mol­ecule in the asymmetric unit. In each complex mol­ecule, the FeIII ion has a distorted O5Cl octa­hedral coordination environment defined by two bidentate 2-eth­oxy-6-formyl­phenolato ligands, one Cl atom and one water mol­ecule. In the crystal, O—H⋯O hydrogen bonds link the two independent mol­ecules to form a dimer. The solvent mol­ecule is linked to the complex mol­ecule by a weak C—H⋯O hydrogen bond. Further weak C—H⋯O inter­actions along with weak C—H⋯Cl hydrogen bonds link the components into chains parallel to [001].

1. Chemical context

Metal complexes containing the 2-hy­droxy-benzaldehyde ramification are one of the most fundamental chelating systems in coordination chemistry. Their inter­esting chemical and physical properties and their wide-ranging applications in numerous scientific areas have been explored widely (Han 2008[Han, Z.-Q. (2008). Acta Cryst. E64, m592.]; Ghelenji et al., 2011[Ghelenji, S., Kargar, H., Sharafi, Z. & Kia, R. (2011). Acta Cryst. E67, m1393.]; Kia et al., 2010[Kia, R., Kargar, H., Zare, K. & Khan, I. U. (2010). Acta Cryst. E66, m366-m367.]; Zhang et al., 2013[Zhang, S.-H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119-125.], 2014a[Zhang, S.-H., Zhao, R.-X., Li, H.-P., Ge, C.-M., Li, G., Huang, Q.-P. & Zou, H.-H. (2014a). J. Solid State Chem. 216, 30-35.],b[Zhang, S.-H., Zhao, R.-X., Li, G., Zhang, H.-Y., Huang, Q.-P. & Liang, F.-P. (2014b). J. Solid State Chem. 220, 206-212.]; Zhao et al., 2014[Zhao, R.-X., Hai, H., Li, G., Zhang, H.-Y., Huang, Q.-P., Zhang, S.-H. & Li, H. P. (2014). J. Clust. Sci. doi: 10.1007/s10876-014-0750-0.]). During the last few years, we have investigated the chemistry of 3d metal complexes of 2-hy­droxy-benzaldehyde ramification ligands with the aim of preparing mono- and heterometallic polynuclear clusters or polymers (Zhang et al., 2011[Zhang, S.-H., Li, N., Ge, C. M., Feng, C. & Ma, L. F. (2011). Dalton Trans. 40, 3000-3007.], 2013[Zhang, S.-H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119-125.], 2014a[Zhang, S.-H., Zhao, R.-X., Li, H.-P., Ge, C.-M., Li, G., Huang, Q.-P. & Zou, H.-H. (2014a). J. Solid State Chem. 216, 30-35.],b[Zhang, S.-H., Zhao, R.-X., Li, G., Zhang, H.-Y., Huang, Q.-P. & Liang, F.-P. (2014b). J. Solid State Chem. 220, 206-212.]; Zhao et al., 2014[Zhao, R.-X., Hai, H., Li, G., Zhang, H.-Y., Huang, Q.-P., Zhang, S.-H. & Li, H. P. (2014). J. Clust. Sci. doi: 10.1007/s10876-014-0750-0.]).

Recently, we have investigated the coordination behavior of the tridentate 2-hy­droxy-benzaldehyde ramification ligand 3-eth­oxy-2-hy­droxy-benzaldehyde and reported two heterometallic polymers [ZnNa(ehbd)2(N3)]n and [Cu3Na2(ehbd)2(N3)6]n (ehbd is the 2-hydroxy-3-ethoxy-benzaldehyde anion) (Zhang et al., 2014b[Zhang, S.-H., Zhao, R.-X., Li, G., Zhang, H.-Y., Huang, Q.-P. & Liang, F.-P. (2014b). J. Solid State Chem. 220, 206-212.]) and a cubane cluster [Ni4(μ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] (heb is the 2-hydroxy-3-ethoxy-benzaldehyde anion) (Zhang et al., 2011[Zhang, S.-H., Li, N., Ge, C. M., Feng, C. & Ma, L. F. (2011). Dalton Trans. 40, 3000-3007.]). The polymers [ZnNa(ehbd)2(N3)]n and [Cu3Na2(ehbd)2(N3)6]n were prepared by room-temperature synthesis and the cubane cluster [Ni4(μ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] was prepared by solvothermal synthesis. Those complexes display dominant ferromagnetic inter­actions between metal ions.

The title compound, [Fe(L)2Cl(H2O)]·0.5CH3CN (HL = C9H10O3), was prepared similarly to the cubane cluster [Ni4(μ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] (Zhang et al., 2011[Zhang, S.-H., Li, N., Ge, C. M., Feng, C. & Ma, L. F. (2011). Dalton Trans. 40, 3000-3007.]) except that Ni(ClO4)·6H2O was replaced by FeCl3·6H2O in an attempt to prepare a cubane-type iron cluster. The crystals obtained, however, were those of the title mononuclear FeIII complex.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of two neutral [Fe(L)2Cl(H2O)] mol­ecules and a aceto­nitrile solvent mol­ecule. One of the independent mol­ecules is shown in Fig. 1[link]. Each FeIII ion is coordinated by four O atoms from two different L ligands, one Cl ion and one terminal water mol­ecule, forming a distorted octa­hedral geometry. The Fe—O bond lengths are in the range 1.909 (2)–2.157 (2) Å (Table 1[link]), while the Fe—Cl distances are 2.299 (1) and 2.301 (1) Å. The trans-angles at the FeIII atom lie in the range 169.4 (1)–171.4 (1)°, the cis-angles vary from 81.6 (1) to 99.9 (1)°. The L ligand displays a μ1:κ1:κ1 coordination mode, which is the same as that of [Ni4(μ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] (Zhang et al., 2011[Zhang, S.-H., Li, N., Ge, C. M., Feng, C. & Ma, L. F. (2011). Dalton Trans. 40, 3000-3007.]) but the coordination mode is different from the that in [Cu3Na2(ehbd)2(N3)6]n (Zhang et al., 2014b[Zhang, S.-H., Zhao, R.-X., Li, G., Zhang, H.-Y., Huang, Q.-P. & Liang, F.-P. (2014b). J. Solid State Chem. 220, 206-212.]) in which the ehbd ligand displays a penta­dentate μ3:κ2:κ2:κ1 coordination mode.

Table 1
Selected bond lengths (Å)

Fe1—O1 1.9088 (17) Fe2—O10 1.9181 (16)
Fe1—O3 1.9296 (16) Fe2—O8 1.9343 (17)
Fe1—O2 2.0447 (17) Fe2—O9 2.0551 (17)
Fe1—O4 2.0719 (18) Fe2—O11 2.0763 (18)
Fe1—O7 2.1573 (18) Fe2—O14 2.1379 (18)
[Figure 1]
Figure 1
The mol­ecular structure of one complex mol­ecule of the title compound showing displacement ellipsoids drawn at the 30% probability level for non-H atoms. H atoms bonded to C atoms and the solvent mol­ecule are not shown.

3. Supra­molecular features

In the crystal, O—H⋯O hydrogen bonds link the two independent mol­ecules to form a dimer (Table 2[link], Fig. 2[link]). All –OH group H atoms act as donors for two acceptor-O atoms, forming R12(5) and R22(6) graph-set motifs. A ππ inter­action within the dimer with a Cg1⋯Cg2 distance of 3.575 (1)Å is observed, where Cg1 and Cg2 are the centroids defined by ring atoms C1–C6 and C19–C24, respectively. The solvent mol­ecule is linked to the complex mol­ecule by a weak C—H⋯O hydrogen bond. Further weak C—H⋯O inter­action along with weak C—H⋯Cl hydrogen bonds link the components into chains parallel to [001] (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O10 0.85 2.22 2.887 (2) 136
O7—H7⋯O12 0.85 2.25 3.027 (3) 153
O14—H14A⋯O3 0.85 2.13 2.862 (2) 145
O14—H14A⋯O5 0.85 2.28 3.008 (3) 143
O7—H7B⋯O8 0.84 2.19 2.896 (2) 142
O7—H7B⋯O13 0.84 2.33 3.063 (2) 146
O14—H14B⋯O1 0.84 2.23 2.908 (2) 139
O14—H14B⋯O6 0.84 2.28 3.026 (2) 149
C7—H7A⋯Cl2i 0.93 2.80 3.724 (3) 171
C34—H34⋯O2ii 0.93 2.57 3.014 (3) 110
C37—H37C⋯O6iii 0.96 2.58 3.506 (5) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The dimer structure showing displacement ellipsoids drawn at the 30% probability level for non-H atoms. Hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms and the solvent mol­ecule are not shown.
[Figure 3]
Figure 3
Part of the crystal structure with hydrogen bonds drawn as dashed lines.

4. Synthesis and crystallization

A mixture of FeCl3·6H2O (0.135 g, 0.5 mmol), 3-eth­oxy-2-hy­droxy-benzaldehyde (0.168 g, 1 mmol), methanol (5 mL) and aceto­nitrile (5 mL), with a pH adjusted to 7.5 by addition of tri­ethyl­amine, was poured into a Teflon-lined autoclave (15 mL) and then heated at 413K for 3 days. Black crystals of the title compound were collected by filtration, washed with methanol and dried in air. Phase pure crystals were obtained by manual separation (yield: 124 mg, ca 54% based on Fe).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH2) or 0.97 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). H atoms bonded to O atoms were included with O—H = 0.84–0.85 Å and with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C9H9O3)2Cl(H2O)]·0.5C2H3N
Mr 460.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.8565 (4), 18.0786 (5), 20.5785 (6)
β (°) 105.981 (3)
V3) 4240.5 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.24 × 0.22 × 0.19
 
Data collection
Diffractometer SuperNova, Single source at offset, Eos
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.811, 0.848
No. of measured, independent and observed [I > 2σ(I)] reflections 17797, 7544, 6145
Rint 0.022
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.00
No. of reflections 7544
No. of parameters 517
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.24
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Metal complexes containing the 2-hy­droxy-benzaldehyde ramification are the most fundamental chelating systems in coordination chemistry. Their inter­esting chemical and physical properties and their wide-ranging applications in numerous scientific areas have been explored widely (Han 2008; Ghelenji et al., 2011; Kia et al., 2010; Zhang et al., 2013, 2014a or b?; Zhao et al., 2014). During the last few years, we have investigated the chemistry of 3d metal complexes of 2-hy­droxy-benzaldehyde ramification ligands with the aim of preparing mono- and heterometallic polynuclear clusters or polymers (Zhang et al., 2011, 2013, 2014a or b?; Zhao et al., 2014)

Recently, we have investigated the coordination behavior of the tridentate 2-hy­droxy-benzaldehyde ramification ligand 3-eth­oxy-2-hy­droxy-benzaldehyde and reported two heterometallic polymers [ZnNa(ehbd)2(N3)]n and [Cu3Na2(ehbd)2(N3)6]n (Zhang et al., 2014a or b?) and a cubane cluster [Ni4(µ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] (Zhang et al., 2011). The polymers [ZnNa(ehbd)2(N3)]n and [Cu3Na2(ehbd)2(N3)6]n were prepared by room-temperature synthesis and the cubane cluster [Ni4(µ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] was prepared by solvothermal synthesis. Those complexes display dominant ferromagnetic inter­actions between metal ions.

The title compound, [Fe(L)2Cl(H2O)]·0.5CH3CN, was prepared similarly to the cubane cluster [Ni4(µ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] (Zhang et al., 2011) except that Ni(ClO4)·6H2O was replaced by FeCl3·6H2O in an attempt to prepare a cubane iron cluster. The crystals obtained, however, were those of the title mononuclear FeIII complex.

Structural commentary top

The asymmetric unit of the title compound consists of two neutral [Fe(L)2Cl(H2O)] molecules and a aceto­nitrile solvent molecule. One of the independent molecules is shown in Fig. 1. Each FeIII ion is coordinated by four O atoms from two different L- ligands, one Cl- ion and one terminal water molecule, forming a distorted o­cta­hedral geometry. The Fe—O bond lengths are in the range 1.909 (2)–2.157 (2) Å (Table 1), while the Fe—Cl distances are 2.299 (1) and 2.301 (1)Å. The trans-angles at the FeIII atom lie in the range 169.4 (1)–171.4 (1)°, the cis-angles vary from 81.6 (1) to 99.9 (1)°. The L- ligand displays a µ1:η1:η1 coordination mode, which is the same as that of [Ni4(µ3-OMe)4(heb)4(MeOH)1.05(H2O)2.95] (Zhang et al., 2011) but the coordination mode is different from the that in [Cu3Na2(ehbd)2(N3)6]n (Zhang et al., 2014a or b?) in which the ehbd- the ligand displays a penta­dentate µ3:η2:η2:η1 coordination mode.

Supra­molecular features top

In the crystal, O—H···O hydrogen bonds link the two independent molecules to form a dimer (Fig. 2). All –OH group H atoms act as donors for two acceptor-O atoms, forming R21(5) and R22(6) graph-set motifs. A ππ inter­action within the dimer with a Cg1···Cg2 distance of 3.575 (1)Å is observed, where Cg1 and Cg2 are the centroids defined by ring atoms C1–C6 and C19–C24, respectively. The solvent molecule is linked to the complex molecule by a weak C—H···O hydrogen bond. Further weak C—H···O inter­action along with weak C—H···Cl hydrogen bonds link the components into chains along [001] (Fig. 3).

Synthesis and crystallization top

A mixture of FeCl3·6H2O (0.135 g, 0.5 mmol), 3-eth­oxy-2-hy­droxy-benzaldehyde (0.168 g,1 mmol), methanol (5 mL) and aceto­nitrile (5 mL), with a pH adjusted to 7.5 by addition of tri­ethyl­amine, was poured into a Teflon-lined autoclave (15 mL) and then heated at 413K for 3 days. Black crystals of the title compound were collected by filtration, washed with methanol and dried in air. Phase pure crystals were obtained by manual separation (yield: 124 mg, ca 53.9% based on Fe).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (CH2) or 0.97 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to O atoms were included with O—H = 0.84–0.85 Å and with Uiso(H) = 1.5Ueq(O).

Related literature top

For related literature, see: Ghelenji et al. (2011); Han (2008); Kia et al. (2010); Zhang et al. (2011, 2013); Zhang, Zhao, Li, Ge, Li, Huang & Zou (2014); Zhang, Zhao, Li, Zhang, Huang & Liang (2014); Zhao et al. (2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
Fig. 1. The molecular structure of one complex molecule of the title compound showing displacement ellipsoids drawn at the 30% probability level for non-H atoms. H atoms bonded to C atoms and the solvent molecule are not shown.

Fig. 2. The dimer structure showing displacement ellipsoids drawn at the 30% probability level for non-H atoms. H atoms bonded to C atoms and the solvent molecule are not shown.

Fig. 3. Part of the crystal structure with hydrogen bonds drawn as dashed lines.
Aquachloridobis(2-ethoxy-6-formylphenolato-κ2O1,O6)iron(III) acetonitrile hemisolvate top
Crystal data top
[Fe(C9H9O3)2Cl(H2O)]·0.5C2H3NF(000) = 1904
Mr = 460.17Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8565 (4) ÅCell parameters from 8118 reflections
b = 18.0786 (5) Åθ = 3.6–28.5°
c = 20.5785 (6) ŵ = 0.88 mm1
β = 105.981 (3)°T = 293 K
V = 4240.5 (2) Å3Block, black
Z = 80.24 × 0.22 × 0.19 mm
Data collection top
SuperNova, Single source at offset, Eos
diffractometer
7544 independent reflections
Radiation source: fine-focus sealed tube6145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 25.1°, θmin = 2.9°
ω scansh = 1114
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
k = 2115
Tmin = 0.811, Tmax = 0.848l = 2424
17797 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0404P)2 + 2.8341P]
where P = (Fo2 + 2Fc2)/3
7544 reflections(Δ/σ)max = 0.001
517 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C9H9O3)2Cl(H2O)]·0.5C2H3NV = 4240.5 (2) Å3
Mr = 460.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.8565 (4) ŵ = 0.88 mm1
b = 18.0786 (5) ÅT = 293 K
c = 20.5785 (6) Å0.24 × 0.22 × 0.19 mm
β = 105.981 (3)°
Data collection top
SuperNova, Single source at offset, Eos
diffractometer
7544 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
6145 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.848Rint = 0.022
17797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
7544 reflectionsΔρmin = 0.24 e Å3
517 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4723 (2)0.43070 (13)0.87478 (12)0.0313 (5)
C20.5036 (2)0.41391 (14)0.94458 (12)0.0361 (6)
C30.6098 (2)0.44226 (16)0.98744 (14)0.0467 (7)
H30.63080.43111.03330.056*
C40.6807 (2)0.48534 (17)0.96195 (15)0.0511 (8)
H40.75010.50360.99050.061*
C50.6504 (2)0.50250 (15)0.89322 (14)0.0457 (7)
H50.69990.53230.87640.055*
C60.5483 (2)0.47596 (14)0.84989 (13)0.0357 (6)
C70.4316 (2)0.37029 (15)0.97413 (12)0.0411 (6)
H7A0.45880.36271.02050.049*
C80.5749 (3)0.54206 (16)0.75438 (15)0.0500 (7)
H8A0.65220.52290.75640.060*
H8B0.58430.58760.78020.060*
C90.5078 (3)0.5565 (2)0.68265 (17)0.0771 (11)
H9A0.49180.51040.65870.116*
H9B0.55340.58760.66170.116*
H9C0.43520.58070.68150.116*
C100.0680 (2)0.31538 (14)0.71813 (12)0.0356 (6)
C110.0010 (2)0.27358 (15)0.74985 (14)0.0392 (6)
C120.1098 (3)0.24408 (18)0.71145 (17)0.0557 (8)
H120.15530.21640.73280.067*
C130.1476 (3)0.2559 (2)0.64441 (18)0.0737 (11)
H130.21910.23630.61980.088*
C140.0808 (3)0.2970 (2)0.61172 (16)0.0684 (10)
H140.10790.30440.56530.082*
C150.0254 (2)0.32719 (17)0.64725 (14)0.0473 (7)
C160.0336 (2)0.25793 (14)0.82021 (14)0.0413 (6)
H160.01860.22970.83630.050*
C170.0579 (3)0.3882 (2)0.55026 (15)0.0729 (11)
H17A0.01630.41410.54150.088*
H17B0.04660.34410.52230.088*
C180.1481 (4)0.4368 (2)0.53403 (17)0.0868 (13)
H18A0.12400.44940.48690.130*
H18B0.22180.41120.54410.130*
H18C0.15660.48110.56060.130*
C190.6290 (2)0.30649 (14)0.80685 (12)0.0351 (6)
C200.6729 (2)0.29049 (15)0.87667 (13)0.0412 (6)
C210.7816 (3)0.31710 (18)0.91231 (15)0.0554 (8)
H210.81070.30590.95800.066*
C220.8483 (3)0.36059 (18)0.88073 (16)0.0567 (8)
H220.92030.37900.90580.068*
C230.8093 (2)0.37603 (16)0.81448 (16)0.0495 (7)
H230.85510.40450.79390.059*
C240.6985 (2)0.34914 (15)0.77547 (13)0.0399 (6)
C250.6616 (2)0.36812 (15)0.70571 (14)0.0436 (7)
H250.71350.39690.68990.052*
C260.6419 (3)0.2228 (2)0.97025 (15)0.0687 (10)
H26A0.65660.26421.00140.082*
H26B0.71490.19600.97580.082*
C270.5526 (4)0.1736 (2)0.98454 (17)0.0903 (13)
H27A0.57990.15541.03000.135*
H27B0.53860.13280.95350.135*
H27C0.48100.20070.97940.135*
C280.2287 (2)0.18807 (13)0.65121 (12)0.0308 (5)
C290.1559 (2)0.14007 (14)0.67567 (13)0.0363 (6)
C300.0640 (3)0.10353 (16)0.63112 (16)0.0535 (8)
H300.01630.07200.64760.064*
C310.0426 (3)0.11373 (19)0.56139 (16)0.0644 (9)
H310.01840.08810.53190.077*
C320.1090 (3)0.16011 (18)0.53657 (15)0.0540 (8)
H320.09300.16690.49010.065*
C330.2032 (2)0.19863 (14)0.58073 (12)0.0352 (6)
C340.2671 (2)0.24922 (14)0.55117 (12)0.0365 (6)
H340.23990.25530.50460.044*
C350.1192 (3)0.08154 (17)0.77209 (17)0.0576 (8)
H35A0.11870.03360.75090.069*
H35B0.03880.09830.76370.069*
C360.1749 (3)0.0756 (2)0.84620 (18)0.0783 (11)
H36A0.13150.04120.86550.117*
H36B0.17470.12320.86680.117*
H36C0.25420.05860.85410.117*
C370.7841 (4)0.4555 (2)0.2688 (2)0.0958 (14)
H37A0.79000.42680.23060.144*
H37B0.82670.50090.27030.144*
H37C0.70320.46630.26470.144*
C380.8329 (4)0.4144 (2)0.3298 (2)0.0813 (12)
Cl10.13472 (7)0.44690 (4)0.86746 (4)0.0548 (2)
Cl20.55591 (7)0.18069 (4)0.65509 (4)0.05256 (19)
Fe10.24653 (3)0.35131 (2)0.845034 (16)0.03200 (11)
Fe20.44691 (3)0.27615 (2)0.680267 (17)0.03308 (11)
H70.41020.25310.84090.050*
H14A0.28550.36870.68930.050*
H7B0.30420.23000.79910.050*
H14B0.39260.39590.72670.050*
N10.8708 (4)0.3813 (2)0.3776 (2)0.1248 (16)
O10.37557 (14)0.40635 (9)0.83148 (8)0.0357 (4)
O20.33580 (16)0.34094 (10)0.94490 (8)0.0422 (4)
O30.17033 (14)0.34421 (10)0.74945 (8)0.0368 (4)
O40.12491 (16)0.27731 (10)0.86278 (9)0.0421 (4)
O50.09822 (18)0.36832 (12)0.62027 (9)0.0562 (6)
O60.51042 (16)0.48883 (10)0.78201 (9)0.0417 (4)
O70.33730 (15)0.24998 (10)0.83627 (8)0.0392 (4)
O80.31635 (14)0.22101 (9)0.69505 (8)0.0335 (4)
O90.35436 (16)0.28597 (10)0.58031 (8)0.0403 (4)
O100.52406 (15)0.28135 (10)0.77521 (8)0.0376 (4)
O110.56879 (16)0.35092 (11)0.66343 (9)0.0446 (5)
O120.59928 (17)0.24897 (12)0.90188 (9)0.0515 (5)
O130.18531 (16)0.13332 (10)0.74457 (9)0.0420 (4)
O140.35666 (15)0.37611 (10)0.69009 (8)0.0391 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0282 (13)0.0326 (13)0.0322 (13)0.0006 (10)0.0065 (10)0.0087 (11)
C20.0313 (14)0.0454 (15)0.0306 (13)0.0007 (11)0.0070 (11)0.0066 (11)
C30.0394 (16)0.0601 (18)0.0342 (14)0.0006 (14)0.0004 (12)0.0133 (13)
C40.0341 (15)0.0617 (19)0.0515 (17)0.0091 (14)0.0017 (13)0.0206 (15)
C50.0368 (15)0.0457 (16)0.0538 (17)0.0092 (12)0.0113 (13)0.0114 (14)
C60.0327 (14)0.0365 (14)0.0381 (14)0.0027 (11)0.0100 (11)0.0065 (11)
C70.0434 (16)0.0526 (16)0.0235 (12)0.0017 (13)0.0029 (11)0.0024 (12)
C80.0502 (18)0.0429 (16)0.0629 (19)0.0088 (13)0.0258 (15)0.0053 (14)
C90.076 (3)0.089 (3)0.069 (2)0.013 (2)0.025 (2)0.031 (2)
C100.0267 (13)0.0404 (14)0.0352 (13)0.0073 (11)0.0011 (11)0.0065 (12)
C110.0287 (14)0.0440 (15)0.0447 (15)0.0002 (11)0.0099 (12)0.0111 (12)
C120.0345 (16)0.065 (2)0.065 (2)0.0077 (14)0.0099 (15)0.0148 (17)
C130.0355 (18)0.108 (3)0.067 (2)0.0123 (19)0.0041 (17)0.022 (2)
C140.0471 (19)0.102 (3)0.0422 (17)0.0010 (19)0.0112 (15)0.0115 (18)
C150.0385 (16)0.0628 (19)0.0356 (14)0.0097 (14)0.0018 (12)0.0037 (14)
C160.0349 (15)0.0388 (14)0.0536 (17)0.0069 (12)0.0179 (13)0.0040 (13)
C170.084 (3)0.093 (3)0.0333 (16)0.032 (2)0.0016 (16)0.0142 (17)
C180.131 (4)0.084 (3)0.049 (2)0.027 (3)0.033 (2)0.0260 (19)
C190.0261 (13)0.0431 (14)0.0335 (13)0.0029 (11)0.0040 (11)0.0105 (11)
C200.0327 (14)0.0521 (16)0.0354 (14)0.0063 (12)0.0038 (12)0.0033 (13)
C210.0413 (17)0.070 (2)0.0426 (16)0.0059 (15)0.0086 (14)0.0056 (15)
C220.0320 (16)0.069 (2)0.060 (2)0.0048 (14)0.0034 (14)0.0154 (17)
C230.0312 (15)0.0517 (17)0.065 (2)0.0040 (13)0.0128 (14)0.0137 (15)
C240.0312 (14)0.0463 (15)0.0420 (15)0.0013 (12)0.0100 (12)0.0116 (12)
C250.0366 (15)0.0462 (16)0.0518 (16)0.0091 (12)0.0187 (13)0.0066 (13)
C260.078 (3)0.088 (3)0.0302 (15)0.004 (2)0.0023 (16)0.0079 (16)
C270.109 (3)0.119 (3)0.0420 (19)0.007 (3)0.019 (2)0.016 (2)
C280.0261 (12)0.0312 (12)0.0340 (13)0.0022 (10)0.0065 (10)0.0069 (11)
C290.0313 (14)0.0384 (14)0.0386 (14)0.0006 (11)0.0089 (11)0.0049 (12)
C300.0401 (16)0.0514 (17)0.067 (2)0.0149 (14)0.0118 (15)0.0030 (16)
C310.0495 (19)0.081 (2)0.0526 (19)0.0257 (17)0.0029 (15)0.0149 (18)
C320.0459 (18)0.070 (2)0.0384 (15)0.0093 (15)0.0018 (13)0.0072 (15)
C330.0319 (14)0.0409 (14)0.0307 (13)0.0018 (11)0.0049 (11)0.0066 (11)
C340.0373 (15)0.0473 (15)0.0238 (12)0.0091 (12)0.0065 (11)0.0036 (11)
C350.060 (2)0.0526 (18)0.071 (2)0.0060 (15)0.0350 (17)0.0076 (16)
C360.092 (3)0.083 (3)0.072 (2)0.001 (2)0.043 (2)0.026 (2)
C370.081 (3)0.089 (3)0.121 (4)0.028 (2)0.034 (3)0.025 (3)
C380.080 (3)0.071 (3)0.097 (3)0.023 (2)0.031 (2)0.001 (2)
Cl10.0538 (4)0.0557 (4)0.0578 (4)0.0102 (4)0.0200 (4)0.0059 (4)
Cl20.0491 (4)0.0603 (5)0.0508 (4)0.0039 (3)0.0180 (3)0.0090 (4)
Fe10.0288 (2)0.0411 (2)0.02566 (18)0.00498 (15)0.00670 (14)0.00089 (15)
Fe20.0304 (2)0.0436 (2)0.02459 (18)0.00648 (15)0.00658 (15)0.00295 (15)
N10.163 (4)0.103 (3)0.103 (3)0.048 (3)0.028 (3)0.008 (3)
O10.0312 (9)0.0468 (10)0.0276 (8)0.0103 (8)0.0053 (7)0.0003 (8)
O20.0426 (11)0.0564 (12)0.0271 (9)0.0081 (9)0.0088 (8)0.0021 (8)
O30.0302 (9)0.0504 (10)0.0275 (8)0.0057 (8)0.0042 (7)0.0011 (8)
O40.0372 (10)0.0507 (11)0.0387 (10)0.0093 (8)0.0110 (8)0.0018 (9)
O50.0547 (13)0.0775 (15)0.0301 (10)0.0058 (11)0.0012 (9)0.0105 (10)
O60.0398 (10)0.0444 (10)0.0408 (10)0.0137 (8)0.0111 (8)0.0023 (8)
O70.0349 (10)0.0467 (10)0.0344 (9)0.0000 (8)0.0072 (8)0.0038 (8)
O80.0305 (9)0.0430 (10)0.0258 (8)0.0068 (8)0.0058 (7)0.0036 (7)
O90.0410 (11)0.0526 (11)0.0267 (9)0.0066 (9)0.0081 (8)0.0014 (8)
O100.0298 (9)0.0538 (11)0.0278 (9)0.0070 (8)0.0054 (7)0.0017 (8)
O110.0400 (11)0.0584 (12)0.0362 (10)0.0130 (9)0.0117 (9)0.0013 (9)
O120.0478 (12)0.0713 (13)0.0283 (9)0.0010 (10)0.0012 (9)0.0063 (9)
O130.0403 (11)0.0453 (11)0.0430 (10)0.0052 (8)0.0159 (9)0.0021 (9)
O140.0377 (10)0.0456 (10)0.0324 (9)0.0036 (8)0.0072 (8)0.0051 (8)
Geometric parameters (Å, º) top
C1—O11.319 (3)C24—C251.423 (4)
C1—C61.414 (3)C25—O111.240 (3)
C1—C21.414 (3)C25—H250.9300
C2—C71.416 (4)C26—O121.438 (3)
C2—C31.420 (3)C26—C271.473 (5)
C3—C41.353 (4)C26—H26A0.9700
C3—H30.9300C26—H26B0.9700
C4—C51.395 (4)C27—H27A0.9600
C4—H40.9300C27—H27B0.9600
C5—C61.377 (3)C27—H27C0.9600
C5—H50.9300C28—O81.316 (3)
C6—O61.364 (3)C28—C331.411 (3)
C7—O21.248 (3)C28—C291.411 (3)
C7—H7A0.9300C29—O131.369 (3)
C8—O61.440 (3)C29—C301.383 (4)
C8—C91.494 (4)C30—C311.399 (4)
C8—H8A0.9700C30—H300.9300
C8—H8B0.9700C31—C321.344 (4)
C9—H9A0.9600C31—H310.9300
C9—H9B0.9600C32—C331.414 (4)
C9—H9C0.9600C32—H320.9300
C10—O31.315 (3)C33—C341.426 (4)
C10—C111.401 (4)C34—O91.237 (3)
C10—C151.422 (4)C34—H340.9300
C11—C121.418 (4)C35—O131.433 (3)
C11—C161.420 (4)C35—C361.489 (4)
C12—C131.345 (5)C35—H35A0.9700
C12—H120.9300C35—H35B0.9700
C13—C141.387 (5)C36—H36A0.9600
C13—H130.9300C36—H36B0.9600
C14—C151.383 (4)C36—H36C0.9600
C14—H140.9300C37—C381.436 (6)
C15—O51.368 (4)C37—H37A0.9600
C16—O41.241 (3)C37—H37B0.9600
C16—H160.9300C37—H37C0.9600
C17—O51.433 (3)C38—N11.133 (5)
C17—C181.491 (5)Cl1—Fe12.3007 (8)
C17—H17A0.9700Cl2—Fe22.2990 (8)
C17—H17B0.9700Fe1—O11.9088 (17)
C18—H18A0.9600Fe1—O31.9296 (16)
C18—H18B0.9600Fe1—O22.0447 (17)
C18—H18C0.9600Fe1—O42.0719 (18)
C19—O101.317 (3)Fe1—O72.1573 (18)
C19—C241.408 (4)Fe2—O101.9181 (16)
C19—C201.417 (3)Fe2—O81.9343 (17)
C20—O121.358 (3)Fe2—O92.0551 (17)
C20—C211.382 (4)Fe2—O112.0763 (18)
C21—C221.396 (5)Fe2—O142.1379 (18)
C21—H210.9300O7—H70.8453
C22—C231.343 (4)O7—H7B0.8394
C22—H220.9300O14—H14A0.8504
C23—C241.423 (4)O14—H14B0.8371
C23—H230.9300
O1—C1—C6118.1 (2)C26—C27—H27B109.5
O1—C1—C2123.4 (2)H27A—C27—H27B109.5
C6—C1—C2118.5 (2)C26—C27—H27C109.5
C1—C2—C7122.3 (2)H27A—C27—H27C109.5
C1—C2—C3119.6 (2)H27B—C27—H27C109.5
C7—C2—C3118.1 (2)O8—C28—C33123.3 (2)
C4—C3—C2120.4 (3)O8—C28—C29118.6 (2)
C4—C3—H3119.8C33—C28—C29118.1 (2)
C2—C3—H3119.8O13—C29—C30125.0 (2)
C3—C4—C5120.5 (3)O13—C29—C28114.7 (2)
C3—C4—H4119.8C30—C29—C28120.3 (2)
C5—C4—H4119.8C29—C30—C31120.3 (3)
C6—C5—C4120.9 (3)C29—C30—H30119.8
C6—C5—H5119.5C31—C30—H30119.8
C4—C5—H5119.5C32—C31—C30120.8 (3)
O6—C6—C5125.9 (2)C32—C31—H31119.6
O6—C6—C1114.0 (2)C30—C31—H31119.6
C5—C6—C1120.1 (2)C31—C32—C33120.3 (3)
O2—C7—C2127.3 (2)C31—C32—H32119.8
O2—C7—H7A116.4C33—C32—H32119.8
C2—C7—H7A116.4C28—C33—C32120.1 (3)
O6—C8—C9108.1 (2)C28—C33—C34122.5 (2)
O6—C8—H8A110.1C32—C33—C34117.4 (2)
C9—C8—H8A110.1O9—C34—C33127.5 (2)
O6—C8—H8B110.1O9—C34—H34116.2
C9—C8—H8B110.1C33—C34—H34116.2
H8A—C8—H8B108.4O13—C35—C36108.4 (3)
C8—C9—H9A109.5O13—C35—H35A110.0
C8—C9—H9B109.5C36—C35—H35A110.0
H9A—C9—H9B109.5O13—C35—H35B110.0
C8—C9—H9C109.5C36—C35—H35B110.0
H9A—C9—H9C109.5H35A—C35—H35B108.4
H9B—C9—H9C109.5C35—C36—H36A109.5
O3—C10—C11124.4 (2)C35—C36—H36B109.5
O3—C10—C15117.5 (2)H36A—C36—H36B109.5
C11—C10—C15118.1 (2)C35—C36—H36C109.5
C10—C11—C12120.1 (3)H36A—C36—H36C109.5
C10—C11—C16122.7 (2)H36B—C36—H36C109.5
C12—C11—C16117.1 (3)C38—C37—H37A109.5
C13—C12—C11120.5 (3)C38—C37—H37B109.5
C13—C12—H12119.8H37A—C37—H37B109.5
C11—C12—H12119.8C38—C37—H37C109.5
C12—C13—C14120.6 (3)H37A—C37—H37C109.5
C12—C13—H13119.7H37B—C37—H37C109.5
C14—C13—H13119.7N1—C38—C37179.3 (6)
C15—C14—C13120.9 (3)O1—Fe1—O393.15 (7)
C15—C14—H14119.6O1—Fe1—O288.89 (7)
C13—C14—H14119.6O3—Fe1—O2170.39 (8)
O5—C15—C14125.8 (3)O1—Fe1—O4170.79 (8)
O5—C15—C10114.4 (2)O3—Fe1—O489.05 (7)
C14—C15—C10119.8 (3)O2—Fe1—O487.50 (7)
O4—C16—C11127.9 (3)O1—Fe1—O789.54 (7)
O4—C16—H16116.1O3—Fe1—O787.86 (7)
C11—C16—H16116.1O2—Fe1—O782.76 (7)
O5—C17—C18108.2 (3)O4—Fe1—O781.59 (7)
O5—C17—H17A110.1O1—Fe1—Cl199.62 (6)
C18—C17—H17A110.1O3—Fe1—Cl196.92 (6)
O5—C17—H17B110.1O2—Fe1—Cl191.99 (6)
C18—C17—H17B110.1O4—Fe1—Cl188.98 (6)
H17A—C17—H17B108.4O7—Fe1—Cl1169.38 (5)
C17—C18—H18A109.5O10—Fe2—O892.46 (7)
C17—C18—H18B109.5O10—Fe2—O9171.40 (8)
H18A—C18—H18B109.5O8—Fe2—O988.40 (7)
C17—C18—H18C109.5O10—Fe2—O1188.82 (7)
H18A—C18—H18C109.5O8—Fe2—O11170.26 (8)
H18B—C18—H18C109.5O9—Fe2—O1188.92 (7)
O10—C19—C24123.7 (2)O10—Fe2—O1488.45 (7)
O10—C19—C20117.6 (2)O8—Fe2—O1488.73 (7)
C24—C19—C20118.6 (2)O9—Fe2—O1483.01 (7)
O12—C20—C21126.4 (3)O11—Fe2—O1481.66 (7)
O12—C20—C19113.9 (2)O10—Fe2—Cl297.26 (6)
C21—C20—C19119.7 (3)O8—Fe2—Cl299.93 (6)
C20—C21—C22120.9 (3)O9—Fe2—Cl291.01 (6)
C20—C21—H21119.5O11—Fe2—Cl289.47 (6)
C22—C21—H21119.5O14—Fe2—Cl2169.37 (5)
C23—C22—C21120.6 (3)C1—O1—Fe1131.13 (15)
C23—C22—H22119.7C7—O2—Fe1126.59 (17)
C21—C22—H22119.7C10—O3—Fe1129.49 (17)
C22—C23—C24120.5 (3)C16—O4—Fe1124.91 (18)
C22—C23—H23119.7C15—O5—C17118.1 (2)
C24—C23—H23119.7C6—O6—C8117.2 (2)
C19—C24—C25122.6 (2)Fe1—O7—H7116.9
C19—C24—C23119.6 (3)Fe1—O7—H7B108.8
C25—C24—C23117.8 (3)H7—O7—H7B109.8
O11—C25—C24127.9 (3)C28—O8—Fe2129.83 (15)
O11—C25—H25116.1C34—O9—Fe2125.71 (17)
C24—C25—H25116.1C19—O10—Fe2129.90 (16)
O12—C26—C27108.4 (3)C25—O11—Fe2124.78 (18)
O12—C26—H26A110.0C20—O12—C26117.8 (2)
C27—C26—H26A110.0C29—O13—C35117.1 (2)
O12—C26—H26B110.0Fe2—O14—H14A112.6
C27—C26—H26B110.0Fe2—O14—H14B107.6
H26A—C26—H26B108.4H14A—O14—H14B109.9
C26—C27—H27A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O100.852.222.887 (2)136
O7—H7···O120.852.253.027 (3)153
O14—H14A···O30.852.132.862 (2)145
O14—H14A···O50.852.283.008 (3)143
O7—H7B···O80.842.192.896 (2)142
O7—H7B···O130.842.333.063 (2)146
O14—H14B···O10.842.232.908 (2)139
O14—H14B···O60.842.283.026 (2)149
C7—H7A···Cl2i0.932.803.724 (3)171
C34—H34···O2ii0.932.573.014 (3)110
C37—H37C···O6iii0.962.583.506 (5)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) top
Fe1—O11.9088 (17)Fe2—O101.9181 (16)
Fe1—O31.9296 (16)Fe2—O81.9343 (17)
Fe1—O22.0447 (17)Fe2—O92.0551 (17)
Fe1—O42.0719 (18)Fe2—O112.0763 (18)
Fe1—O72.1573 (18)Fe2—O142.1379 (18)
O1—Fe1—O393.15 (7)O10—Fe2—O892.46 (7)
O1—Fe1—O288.89 (7)O10—Fe2—O9171.40 (8)
O3—Fe1—O2170.39 (8)O8—Fe2—O988.40 (7)
O1—Fe1—O4170.79 (8)O10—Fe2—O1188.82 (7)
O3—Fe1—O489.05 (7)O8—Fe2—O11170.26 (8)
O2—Fe1—O487.50 (7)O9—Fe2—O1188.92 (7)
O1—Fe1—O789.54 (7)O10—Fe2—O1488.45 (7)
O3—Fe1—O787.86 (7)O8—Fe2—O1488.73 (7)
O2—Fe1—O782.76 (7)O9—Fe2—O1483.01 (7)
O4—Fe1—O781.59 (7)O11—Fe2—O1481.66 (7)
O1—Fe1—Cl199.62 (6)O10—Fe2—Cl297.26 (6)
O3—Fe1—Cl196.92 (6)O8—Fe2—Cl299.93 (6)
O2—Fe1—Cl191.99 (6)O9—Fe2—Cl291.01 (6)
O4—Fe1—Cl188.98 (6)O11—Fe2—Cl289.47 (6)
O7—Fe1—Cl1169.38 (5)O14—Fe2—Cl2169.37 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O100.852.222.887 (2)136.2
O7—H7···O120.852.253.027 (3)153.2
O14—H14A···O30.852.132.862 (2)144.6
O14—H14A···O50.852.283.008 (3)143.3
O7—H7B···O80.842.192.896 (2)141.5
O7—H7B···O130.842.333.063 (2)146.1
O14—H14B···O10.842.232.908 (2)138.5
O14—H14B···O60.842.283.026 (2)148.7
C7—H7A···Cl2i0.932.803.724 (3)171
C34—H34···O2ii0.932.573.014 (3)110
C37—H37C···O6iii0.962.583.506 (5)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C9H9O3)2Cl(H2O)]·0.5C2H3N
Mr460.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8565 (4), 18.0786 (5), 20.5785 (6)
β (°) 105.981 (3)
V3)4240.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerSuperNova, Single source at offset, Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.811, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
17797, 7544, 6145
Rint0.022
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.00
No. of reflections7544
No. of parameters517
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), Olex2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21161006) and the Program for Excellent Talents in Guangxi Higher Education Institutions (GuiJiaoRen[2012]41).

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhelenji, S., Kargar, H., Sharafi, Z. & Kia, R. (2011). Acta Cryst. E67, m1393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, Z.-Q. (2008). Acta Cryst. E64, m592.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Zare, K. & Khan, I. U. (2010). Acta Cryst. E66, m366–m367.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-H., Li, N., Ge, C. M., Feng, C. & Ma, L. F. (2011). Dalton Trans. 40, 3000–3007.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, S.-H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Zhao, R.-X., Li, H.-P., Ge, C.-M., Li, G., Huang, Q.-P. & Zou, H.-H. (2014a). J. Solid State Chem. 216, 30–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Zhao, R.-X., Li, G., Zhang, H.-Y., Huang, Q.-P. & Liang, F.-P. (2014b). J. Solid State Chem. 220, 206–212.  CrossRef CAS Google Scholar
First citationZhao, R.-X., Hai, H., Li, G., Zhang, H.-Y., Huang, Q.-P., Zhang, S.-H. & Li, H. P. (2014). J. Clust. Sci. doi: 10.1007/s10876-014-0750-0.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds