organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-2-hy­dr­oxy-4-methyl-N′-(4-oxo-1,3-thia­zolidin-2-yl­­idene)benzohydrazide trihydrate

aCollege of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: longfei.jin@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 8 October 2014; accepted 23 October 2014; online 29 October 2014)

In the title compound, C11H11N3O3S·3H2O, the non-H atoms of the main mol­ecule are approximately planar, with an r.m.s. deviation of 0.030 Å. There is a bifurcated intra­molecular N—H⋯(O,S) hydrogen bond present forming S(6) and S(5) ring motifs. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the molecules into a three-dimensional network.

1. Related literature

For the biological activities of thia­zolidin-4-one compounds, see: Jain et al. (2012[Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378-3395.]); Verma & Saraf (2008[Verma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897-905.]); Singh et al. (1981[Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.]). For the synthesis, see: Brown (1961[Brown, F. C. (1961). Chem. Rev. 61, 463-521.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H11N3O3S·3H2O

  • Mr = 319.33

  • Triclinic, [P \overline 1]

  • a = 7.3739 (12) Å

  • b = 8.5110 (13) Å

  • c = 12.493 (2) Å

  • α = 103.047 (2)°

  • β = 101.385 (2)°

  • γ = 92.532 (2)°

  • V = 745.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.957

  • 5460 measured reflections

  • 2731 independent reflections

  • 2266 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.10

  • 2731 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O5i 0.84 1.83 2.655 (3) 167
N1—H1A⋯S1 0.86 2.51 2.941 (2) 112
N1—H1A⋯O1 0.86 1.92 2.609 (3) 137
N3—H3B⋯O4 0.86 1.89 2.739 (4) 170
O4—H4OA⋯O3ii 0.84 2.10 2.813 (4) 143
O4—H4OB⋯O6 0.81 1.81 2.587 (4) 161
O5—H5OA⋯O2iii 0.84 2.02 2.864 (3) 178
O5—H5OB⋯O4 0.84 2.40 3.239 (6) 180
O6—H6OA⋯O2iv 0.84 2.11 2.947 (4) 180
O6—H6OB⋯O2 0.84 2.02 2.862 (3) 180
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-Thiazolidinones are compounds which have a sulfur atom at position 1, a nitrogen atom at position 3 and a carbonyl group at position 4. Derivatives of 4-thiazolidinone exhibit prominent biological activites such as antibacterial, antifungal, antitubercular, anticancer, antiinflammtory, analgesic, anticonvulsant, antidepressant, antiviral/anti-HIV, antidiabetic, muscarinic receptor 1 agonist, FSH receptor agonist, trypanocidal (anti-epimastigote) and antiarrhythmic activity (Jain, et al., 2012; Verma & Saraf, 2008; Singh et al., 1981). Several hydrogen bond acceptor sites exist in these compounds, which could potentially lead to the formation of supermolecular structures. As part of our ongoing studies, the preparation and X-ray structure determination of the title compound, (I), was undertaken.

In the title molecule (Fig. 1) the bond lengths show normal ranges of values. The non-hydrogen atoms of the main molecule are approximately planar with an r.m.s. deviation of 0.030Å. There is a bifurcated intramolecular N—H···(O,S) hydrogen bond present forming S(6) and S(5) ring motifs. In the crystal, O—H···O and N—H···O hydrogen bonds form a three-dimensional network (Fig. 2).

Related literature top

For the biological activities of thiazolidin-4-one compounds, see: Jain et al. (2012); Verma & Saraf (2008); Singh et al. (1981). For the synthesis, see: Brown (1961).

Experimental top

The synthesis followed the prodecures of Brown (1961). 4-(4-Methyl salicyloyl) thiosemicarbazide (2.25 g, 0.01 mol), ethyl bromoacetate (3.34 g, 0.02 mol) and 50 ml of ethyl alcohol were added to a round-bottom flask. The mixture was stirred for 10 minutes, then slowly warmed to boiling and stirred for 8 h. After cooling to room temperature, 40 ml of water were added and the reaction mixture was left for 12 h. The resulting precipitate was filtered and recrystallized with ethyl alcohol to give 2.30 g of the title compound. Single crystals suitable for X-ray diffraction analysis were growned by slow evaporation of a solution of the title compound in methanol/water/ether (20:7:5) at room temperature.

Refinement top

H atoms bonded to C and N atoms were placed in calculated positions and included in a riding-model approximation with C—H = 0.93–0.97Å, N—H = 0.86Å and Uiso(H)=1.2Ueq(C,N) or 1.5Ueq(Cmethyl). The hydroxyl H atom was placed in an 'as found' position and refined as riding with Uiso(H)=1.5Ueq(O). The H atoms bonded to the solvent water molecules were included in positions which gave the most sensible and consistent hydrogen bond interactions and were refined as riding with Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1 The molecular structure of (I), showing 30% probability displacement ellipsoids. The solvent water molecules have been omitted for clarity. Dashed lines indicate hydrogen bonds.

Figure 2 Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
(Z)-2-Hydroxy-4-methyl-N'-(4-oxo-1,3-thiazolidin-2-ylidene)benzohydrazide trihydrate top
Crystal data top
C11H11N3O3S·3H2OZ = 2
Mr = 319.33F(000) = 336
Triclinic, P1Dx = 1.423 Mg m3
a = 7.3739 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5110 (13) ÅCell parameters from 2596 reflections
c = 12.493 (2) Åθ = 2.5–31.1°
α = 103.047 (2)°µ = 0.25 mm1
β = 101.385 (2)°T = 296 K
γ = 92.532 (2)°Block, yellow
V = 745.5 (2) Å30.21 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2266 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.950, Tmax = 0.957k = 1010
5460 measured reflectionsl = 1415
2731 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.5146P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2731 reflectionsΔρmax = 0.53 e Å3
191 parametersΔρmin = 0.44 e Å3
Crystal data top
C11H11N3O3S·3H2Oγ = 92.532 (2)°
Mr = 319.33V = 745.5 (2) Å3
Triclinic, P1Z = 2
a = 7.3739 (12) ÅMo Kα radiation
b = 8.5110 (13) ŵ = 0.25 mm1
c = 12.493 (2) ÅT = 296 K
α = 103.047 (2)°0.21 × 0.20 × 0.18 mm
β = 101.385 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2731 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2266 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.957Rint = 0.020
5460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.10Δρmax = 0.53 e Å3
2731 reflectionsΔρmin = 0.44 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43631 (10)0.07307 (8)0.18232 (6)0.0437 (2)
O10.2052 (3)0.2057 (2)0.11504 (16)0.0516 (5)
H1O0.21700.30430.13930.077*
O20.1220 (3)0.2836 (2)0.06337 (16)0.0554 (6)
O30.6060 (3)0.2112 (3)0.47760 (17)0.0650 (6)
N10.2365 (3)0.0858 (3)0.01408 (17)0.0383 (5)
H1A0.25250.01540.00600.046*
N20.3037 (3)0.1936 (2)0.11730 (17)0.0394 (5)
N30.4615 (3)0.2237 (3)0.30031 (18)0.0424 (5)
H3B0.45410.32660.31680.051*
C10.0805 (3)0.0165 (3)0.1811 (2)0.0348 (5)
C20.1095 (4)0.1485 (3)0.2005 (2)0.0385 (6)
C30.0424 (4)0.2507 (3)0.3061 (2)0.0459 (7)
H3A0.06280.35970.31760.055*
C40.0540 (4)0.1944 (3)0.3946 (2)0.0444 (6)
C50.0822 (4)0.0295 (3)0.3762 (2)0.0436 (6)
H5A0.14560.01140.43450.052*
C60.0159 (4)0.0715 (3)0.2714 (2)0.0394 (6)
H6A0.03600.18060.26030.047*
C70.1260 (5)0.3079 (4)0.5088 (3)0.0658 (9)
H7A0.17130.41040.49960.099*
H7B0.02720.32300.54890.099*
H7C0.22510.26220.55040.099*
C80.1471 (4)0.1390 (3)0.0727 (2)0.0365 (6)
C90.3903 (3)0.1303 (3)0.1930 (2)0.0361 (6)
C100.5429 (4)0.1475 (4)0.3782 (2)0.0450 (6)
C110.5482 (4)0.0303 (4)0.3291 (2)0.0484 (7)
H11A0.48370.09400.36780.058*
H11B0.67580.05740.33730.058*
O40.4027 (6)0.5448 (4)0.3300 (3)0.1451 (18)
H4OA0.35600.58850.38460.218*
H4OB0.32210.55400.27780.218*
O50.7047 (5)0.5074 (3)0.1718 (3)0.1071 (12)
H5OA0.75430.56770.13880.161*
H5OB0.62640.51680.21280.161*
O60.1984 (7)0.5417 (4)0.1356 (3)0.160 (2)
H6OA0.10740.59180.11480.241*
H6OB0.17660.46610.07710.241*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0523 (4)0.0375 (4)0.0412 (4)0.0101 (3)0.0083 (3)0.0095 (3)
O10.0767 (14)0.0345 (10)0.0386 (10)0.0106 (9)0.0014 (9)0.0093 (8)
O20.0862 (15)0.0350 (10)0.0397 (11)0.0137 (10)0.0006 (10)0.0076 (8)
O30.0801 (15)0.0747 (15)0.0328 (11)0.0121 (12)0.0027 (10)0.0094 (10)
N10.0508 (13)0.0315 (10)0.0296 (11)0.0045 (9)0.0029 (9)0.0056 (8)
N20.0496 (13)0.0344 (11)0.0309 (11)0.0037 (9)0.0039 (9)0.0050 (9)
N30.0535 (13)0.0363 (11)0.0323 (11)0.0036 (10)0.0002 (10)0.0058 (9)
C10.0363 (13)0.0376 (13)0.0311 (12)0.0036 (10)0.0081 (10)0.0083 (10)
C20.0431 (14)0.0394 (14)0.0330 (13)0.0032 (11)0.0072 (11)0.0098 (10)
C30.0568 (17)0.0372 (14)0.0395 (15)0.0060 (12)0.0054 (12)0.0046 (11)
C40.0447 (15)0.0492 (15)0.0341 (14)0.0044 (12)0.0026 (11)0.0044 (12)
C50.0424 (14)0.0534 (16)0.0342 (13)0.0114 (12)0.0046 (11)0.0105 (12)
C60.0419 (14)0.0410 (14)0.0356 (13)0.0098 (11)0.0074 (11)0.0094 (11)
C70.080 (2)0.059 (2)0.0419 (17)0.0092 (17)0.0070 (15)0.0042 (14)
C80.0416 (13)0.0350 (13)0.0330 (13)0.0040 (10)0.0073 (10)0.0089 (10)
C90.0383 (13)0.0352 (13)0.0343 (13)0.0014 (10)0.0081 (10)0.0079 (10)
C100.0467 (15)0.0555 (16)0.0342 (14)0.0067 (12)0.0068 (12)0.0149 (12)
C110.0536 (17)0.0538 (17)0.0426 (15)0.0139 (13)0.0107 (13)0.0194 (13)
O40.216 (4)0.0616 (18)0.097 (2)0.052 (2)0.072 (2)0.0211 (16)
O50.162 (3)0.0516 (15)0.139 (3)0.0217 (17)0.088 (3)0.0362 (17)
O60.285 (5)0.0653 (19)0.073 (2)0.074 (3)0.067 (3)0.0197 (15)
Geometric parameters (Å, º) top
S1—C91.759 (3)C3—H3A0.9300
S1—C111.803 (3)C4—C51.401 (4)
O1—C21.357 (3)C4—C71.511 (4)
O1—H1O0.8400C5—C61.376 (4)
O2—C81.236 (3)C5—H5A0.9300
O3—C101.224 (3)C6—H6A0.9300
N1—C81.334 (3)C7—H7A0.9600
N1—N21.387 (3)C7—H7B0.9600
N1—H1A0.8600C7—H7C0.9600
N2—C91.271 (3)C10—C111.504 (4)
N3—C101.349 (3)C11—H11A0.9700
N3—C91.382 (3)C11—H11B0.9700
N3—H3B0.8600O4—H4OA0.8430
C1—C61.396 (4)O4—H4OB0.8119
C1—C21.404 (4)O5—H5OA0.8400
C1—C81.489 (3)O5—H5OB0.8399
C2—C31.388 (4)O6—H6OA0.8400
C3—C41.385 (4)O6—H6OB0.8400
C9—S1—C1191.62 (12)C1—C6—H6A118.8
C2—O1—H1O108.8C4—C7—H7A109.5
C8—N1—N2120.0 (2)C4—C7—H7B109.5
C8—N1—H1A120.0H7A—C7—H7B109.5
N2—N1—H1A120.0C4—C7—H7C109.5
C9—N2—N1114.6 (2)H7A—C7—H7C109.5
C10—N3—C9117.5 (2)H7B—C7—H7C109.5
C10—N3—H3B121.2O2—C8—N1121.3 (2)
C9—N3—H3B121.2O2—C8—C1121.7 (2)
C6—C1—C2117.5 (2)N1—C8—C1117.0 (2)
C6—C1—C8117.0 (2)N2—C9—N3120.5 (2)
C2—C1—C8125.5 (2)N2—C9—S1128.4 (2)
O1—C2—C3120.8 (2)N3—C9—S1111.13 (18)
O1—C2—C1119.0 (2)O3—C10—N3125.6 (3)
C3—C2—C1120.1 (2)O3—C10—C11122.5 (3)
C4—C3—C2121.7 (3)N3—C10—C11111.9 (2)
C4—C3—H3A119.2C10—C11—S1107.76 (18)
C2—C3—H3A119.2C10—C11—H11A110.2
C3—C4—C5118.5 (2)S1—C11—H11A110.2
C3—C4—C7120.8 (3)C10—C11—H11B110.2
C5—C4—C7120.7 (3)S1—C11—H11B110.2
C6—C5—C4119.7 (2)H11A—C11—H11B108.5
C6—C5—H5A120.1H4OA—O4—H4OB100.2
C4—C5—H5A120.1H5OA—O5—H5OB135.7
C5—C6—C1122.5 (2)H6OA—O6—H6OB95.3
C5—C6—H6A118.8
C8—N1—N2—C9178.4 (2)C6—C1—C8—O21.6 (4)
C6—C1—C2—O1179.0 (2)C2—C1—C8—O2177.2 (3)
C8—C1—C2—O10.2 (4)C6—C1—C8—N1178.9 (2)
C6—C1—C2—C30.4 (4)C2—C1—C8—N12.3 (4)
C8—C1—C2—C3179.2 (2)N1—N2—C9—N3178.8 (2)
O1—C2—C3—C4179.4 (3)N1—N2—C9—S10.7 (4)
C1—C2—C3—C40.0 (4)C10—N3—C9—N2176.4 (2)
C2—C3—C4—C50.5 (4)C10—N3—C9—S13.1 (3)
C2—C3—C4—C7180.0 (3)C11—S1—C9—N2177.6 (3)
C3—C4—C5—C60.6 (4)C11—S1—C9—N31.9 (2)
C7—C4—C5—C6179.9 (3)C9—N3—C10—O3177.0 (3)
C4—C5—C6—C10.2 (4)C9—N3—C10—C112.8 (4)
C2—C1—C6—C50.3 (4)O3—C10—C11—S1178.6 (2)
C8—C1—C6—C5179.2 (2)N3—C10—C11—S11.2 (3)
N2—N1—C8—O20.1 (4)C9—S1—C11—C100.4 (2)
N2—N1—C8—C1179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O5i0.841.832.655 (3)167
N1—H1A···S10.862.512.941 (2)112
N1—H1A···O10.861.922.609 (3)137
N3—H3B···O40.861.892.739 (4)170
O4—H4OA···O3ii0.842.102.813 (4)143
O4—H4OB···O60.811.812.587 (4)161
O5—H5OA···O2iii0.842.022.864 (3)178
O5—H5OB···O40.842.403.239 (6)180
O6—H6OA···O2iv0.842.112.947 (4)180
O6—H6OB···O20.842.022.862 (3)180
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O5i0.841.832.655 (3)167.0
N1—H1A···S10.862.512.941 (2)112.0
N1—H1A···O10.861.922.609 (3)136.7
N3—H3B···O40.861.892.739 (4)169.7
O4—H4OA···O3ii0.842.102.813 (4)142.7
O4—H4OB···O60.811.812.587 (4)160.5
O5—H5OA···O2iii0.842.022.864 (3)178.4
O5—H5OB···O40.842.403.239 (6)179.8
O6—H6OA···O2iv0.842.112.947 (4)179.6
O6—H6OB···O20.842.022.862 (3)179.5
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Hubei Province, China (grant No. 2008CDA067) and the Students Science and Technology Innovation Funds of the South-Central University for Nationalities.

References

First citationBrown, F. C. (1961). Chem. Rev. 61, 463–521.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897–905.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds