research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of penta­kis­(ethyl­enedi­amine-κ2N,N′)lanthanum(III) trichloride–ethylene­di­amine–di­chloro­methane (1/1/1)

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 29 September 2014; accepted 22 October 2014; online 29 October 2014)

We report here the crystal structure of a ten-coordinate lanthanum(III) metal coordinated by five bidentate ethyl­enedi­amine ligands, [La(C2H8N2)5]Cl3·C2H8N2·CH2Cl2. One free ethyl­enedi­amine mol­ecule and three Cl anions are also located in the asymmetric unit. The overall structure is held together by an extensive hydrogen-bonding network between the Cl anions and the NH groups on the metal-bound ethyl­enedi­amine ligands. The free ethyl­enedi­amine mol­ecule is held in an ordered position by additional hydrogen bonds involving both the chlorides and –NH groups on the metal-bound ligands. One highly disordered mol­ecule of di­chloro­methane is located on an inversion center; however, all attempts to model this disorder were unsuccessful. The electron density in this space was removed using the BYPASS procedure [van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]). Acta Cryst. A46, 194–201].

1. Chemical context

The coordination chemistry of rare earth elements has impact in the areas of nuclear power, light-emitting diodes, medical imaging agents, and fluorescent sensors. The geometry of this ten-coordinate lanthanum(III) structure is of inter­est to researchers developing high denticity ligands for lanthanides and actinides.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains one LaIII ion chelated by five ethyl­enedi­amine mol­ecules, one unbound ethyl­enedi­amine mol­ecule, and three chloride ions (Fig. 1[link]). The coordination geometry of the La3+ ion resembles a distorted bicapped square anti­prism [range of La—N bond lengths = 2.715 (3)–2.876 (3) Å]. Inter­estingly, all three Cl ions and the free ethyl­enedi­amine mol­ecule are involved in an extensive hydrogen-bonding network that acts to rigidify the three-dimensional structure within the crystal lattice (see Figs. 2[link] and 3[link], and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl2i 0.91 2.53 3.405 (3) 160
N2—H2C⋯N11 0.91 2.40 3.284 (5) 164
N2—H2D⋯Cl2ii 0.91 2.72 3.417 (3) 134
N3—H3D⋯Cl2 0.91 2.59 3.497 (3) 176
N4—H4D⋯N11 0.91 2.49 3.267 (5) 144
N5—H5C⋯Cl2i 0.91 2.74 3.573 (3) 153
N7—H7C⋯Cl3iii 0.91 2.54 3.376 (3) 154
N7—H7D⋯Cl3 0.91 2.63 3.470 (3) 154
N8—H8D⋯Cl2 0.91 2.40 3.292 (3) 168
N10—H10C⋯Cl2ii 0.91 2.57 3.445 (3) 161
N11—H11D⋯Cl2ii 1.00 (5) 2.83 (5) 3.642 (5) 139 (4)
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title crystal structure, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Color codes: black C, blue N, purple La, light blue Cl.
[Figure 2]
Figure 2
The hydrogen-bonding network surrounding one chair-shaped void, viewed down the a axis. The center of the void lies on an inversion center. H atoms not involved in a hydrogen bond have been omitted for clarity. Hydrogen bonds are shown as red dashed lines. Color codes as in Fig. 1[link].
[Figure 3]
Figure 3
The extended hydrogen-bonding network forming a honeycomb-like network, viewed down the a axis. H atoms not involved in a hydrogen bond have been omitted for clarity. Hydrogen bonds are shown as red dashed lines. Color codes as in Fig. 1[link].

Each asymmetric unit contains one small void that lies on an inversion center (see the Supra­molecular features and Refinement sections for more discussion on the contents and treatment of this void).

3. Supra­molecular features

Six La3+-containing complex cations and twelve Cl anions are arranged in a rough hexa­gon in the bc plane (Fig. 2[link]). The center of this hexa­gon contains two free ethyl­enedi­amine mol­ecules involved in extensive hydrogen bonding with the Cl ions and bound –NH groups of the lanthanum complex. The relatively non-polar portion of the free ethyl­enedi­amine mol­ecules face the inter­ior of the hexa­gon, which creates a void that resembles the shape of the chair conformation of cyclo­hexane. There are two of these voids per unit cell (see Refinement section) each located about an inversion center and likely containing one highly disordered di­chloro­methane mol­ecule.

A view of the packing down the a axis (Fig. 3[link]) reveals that the lanthanum complexes are arranged into a honeycomb-like lattice. Each side of the lanthanum complex supra­molecular hexa­gon is shared with a neighboring hexa­gon and held together with extensive hydrogen-bonding inter­actions (Table 1[link]).

4. Database survey

Related structures involving a lanthanum(III) ion coordinated by three or more ethyl­enedi­amine ligands have been reported by Jia et al. (2005[Jia, D., Zhao, Q., Zhang, Y., Dai, J. & Zuo, J. (2005). Inorg. Chem. 44, 8861-8867.], 2006[Jia, D.-X., Zhao, Q.-X., Zhang, Y., Dai, J. & Zhou, J. (2006). Eur. J. Inorg. Chem. pp. 2760-2765.]), Feng et al. (2009[Feng, M.-L., Ye, D. & Huang, X.-Y. (2009). Inorg. Chem. 48, 8060-8062.]) and Chen et al. (2009[Chen, J.-F., Jin, Q.-Y., Pan, Y.-L., Zhang, Y. & Jia, D.-X. (2009). Chem. Commun. pp. 7212-7214.]).

5. Synthesis and crystallization

Crystals suitable for X-ray diffraction studies were serendip­itously grown from the vapor diffusion of a 3:1 ethyl­enedi­amine–di­chloro­methane solution into a saturated solution of the lanthanum(III)–ligand complex previously reported by our group (Sartain et al., 2014[Sartain, H. T., McGraw, S. N., Lawrence, C. J., Werner, E. J. & Biros, S. M. (2014). Inorg. Chim. Acta. Submitted.]) in aceto­nitrile.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) for methyl­ene and amino groups. In the free ethyl­enedi­amine mol­ecule, N—H distances were restrained to 0.9 Å using DFIX instructions in SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). If these hydrogens were left unrestrained, the result was bond lengths that were outside accepted values.

Table 2
Experimental details

Crystal data
Chemical formula [La(C2H8N2)5]Cl3·C2H8N2·CH2Cl2
Mr 690.78
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.8070 (7), 14.6530 (12), 22.1110 (18)
β (°) 92.1560 (9)
V3) 2851.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.99
Crystal size (mm) 0.26 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.641, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24978, 5609, 4502
Rint 0.056
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.07
No. of reflections 5609
No. of parameters 265
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.], 2014[Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. & Bourhis, L. J. (2014). Acta Cryst. A70. In the press [PC5043].]).

There are two small void spaces, each located on an inversion center, per unit cell. The coordinates of the inversion centers are (0, ½, 0) and (½, 0, ½). Attempts to model a disordered di­chloro­methane mol­ecule in this void were unsuccessful. The intensity contribution of the disordered solvent mol­ecules was removed by the BYPASS procedure (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]), as implemented in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.], 2014[Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. & Bourhis, L. J. (2014). Acta Cryst. A70. In the press [PC5043].]). The size of the void was calculated to be 153.6 Å3, containing approximately 35 electrons.

Supporting information


Chemical context top

The coordination chemistry of rare earth elements has impact in the areas of nuclear power, light-emitting diodes, medical-imaging agents, and fluorescent sensors. The geometry of this ten-coordinate lanthanum(III) structure is of inter­est to researchers developing high denticity ligands for lanthanides and actinides.

Structural commentary top

The asymmetric unit of the title compound contains one LaIII ion chelated by five ethyl­enedi­amine molecules, one unbound ethyl­enedi­amine molecule, and three chloride ions (Fig. 1). The coordination geometry of the La3+ ion resembles a distorted bicapped square anti­prism [range of La—N bond lengths = 2.715 (3)–2.794 (3) Å]. Inter­estingly, all three Cl- ions and the free ethyl­enedi­amine molecule are involved in an extensive hydrogen-bonding network that acts to rigidify the three-dimensional structure within the crystal lattice (see Figs. 2 and 3, and Table 1).

Each asymmetric unit contains one small void that lies on an inversion center (see the Supra­molecular features and Refinement sections for more discussion on the contents and treatment of this void).

Supra­molecular features top

Six La3+-containing complex cations and twelve Cl- anions are arranged in a rough hexagon in the bc plane (Fig. 2). The center of this hexagon contains two free ethyl­enedi­amine molecules involved in extensive hydrogen bonding with the Cl- ions and bound –NH groups of the lanthanum complex. The relatively non-polar portion of the free ethyl­enedi­amine molecules face the inter­ior of the hexagon, which creates a void that resembles the shape of the chair conformation of cyclo­hexane. There are two of these voids per unit cell (see Refinement section) each located about an inversion center and likely containing one highly disordered di­chloro­methane molecule.

A view of the packing down the a axis (Fig. 3) reveals that the lanthanum complexes are arranged into a honeycomb-like lattice. Each side of the lanthanum complex supra­molecular hexagon is shared with a neighboring hexagon and held together with extensive hydrogen-bonding inter­actions (Table 1).

Database survey top

Related structures involving a lanthanum(III) ion coordinated by three or more ethyl­enedi­amine ligands have been reported by Jia et al. (2005, 2006), Feng et al. (2009) and Chen et al. (2009).

Synthesis and crystallization top

Crystals suitable for X-ray diffraction studies were serendipitously grown from the vapor diffusion of a 3:1 ethyl­enedi­amine–di­chloro­methane solution into a saturated solution of the lanthanum(III)–ligand complex previously reported by our group (Sartain et al., 2014) in aceto­nitrile.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) for methyl­ene and amino groups. In the free ethyl­enedi­amine molecule, N—H distances were restrained to 0.9 Å using DFIX instructions in SHELXL (Sheldrick, 2008). If these hydrogens were left unrestrained, the result was bond lengths that were outside accepted values.

There are two small void spaces, each located on an inversion center, per unit cell. The coordinates of the inversion centers are (0, 1/2, 0) and (1/2, 0, 1/2). Attempts to model a disordered di­chloro­methane molecule in this void were unsuccessful. The intensity contribution of the disordered solvent molecules was removed by the BYPASS procedure (van der Sluis & Spek, 1990), as implemented in OLEX2 (Dolomanov et al., 2009, 2014). The size of the void was calculated to be 153.6 Å3, containing approximately 35 electrons.

Related literature top

For related literature, see: Chen et al. (2009); Dolomanov et al. (2009, 2014); Feng et al. (2009); Jia et al. (2005, 2006); Sartain et al. (2014); Sheldrick (2008); Sluis & Spek (1990).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009, 2014).

Figures top
The asymmetric unit of the title crystal structure, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Color codes: black C, blue N, purple La, light blue Cl.

The hydrogen-bonding network surrounding one chair-shaped void, viewed down the a axis. The center of the void lies on an inversion center. H atoms not involved in a hydrogen bond have been omitted for clarity. Hydrogen bonds are shown as red dashed lines.

The extended hydrogen-bonding network forming a honeycomb-like network, viewed down the a axis. H atoms not involved in a hydrogen bond have been omitted for clarity. Hydrogen bonds are shown as red dashed lines.
Pentakis(ethylenediamine-κ2N,N')lanthanum(III) trichloride–ethylenediamine–dichloromethane (1/1/1) top
Crystal data top
[La(C2H8N2)5]Cl3·C2H8N2·CH2Cl2F(000) = 1248
Mr = 690.78Dx = 1.609 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8070 (7) ÅCell parameters from 9898 reflections
b = 14.6530 (12) Åθ = 2.3–26.0°
c = 22.1110 (18) ŵ = 1.99 mm1
β = 92.1560 (9)°T = 173 K
V = 2851.4 (4) Å3Block, colourless
Z = 40.26 × 0.20 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
4502 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 26.0°, θmin = 1.7°
Tmin = 0.641, Tmax = 0.745h = 1010
24978 measured reflectionsk = 1818
5609 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0267P)2 + 1.7999P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5609 reflectionsΔρmax = 0.80 e Å3
265 parametersΔρmin = 0.48 e Å3
2 restraints
Crystal data top
[La(C2H8N2)5]Cl3·C2H8N2·CH2Cl2V = 2851.4 (4) Å3
Mr = 690.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8070 (7) ŵ = 1.99 mm1
b = 14.6530 (12) ÅT = 173 K
c = 22.1110 (18) Å0.26 × 0.20 × 0.08 mm
β = 92.1560 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
5609 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
4502 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.745Rint = 0.056
24978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.80 e Å3
5609 reflectionsΔρmin = 0.48 e Å3
265 parameters
Special details top

Experimental. Absorption correction: SADABS-2012/1 (Bruker, 2012) was used for absorption correction. wR2(int) was 0.0852 before and 0.0598 after correction. The Ratio of minimum to maximum transmission is 0.8603.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2628 (4)0.5116 (2)0.18320 (17)0.0262 (9)
H1A0.33190.51610.14910.031*
H1B0.16600.54210.17120.031*
C20.2336 (4)0.4129 (3)0.19737 (18)0.0266 (9)
H2A0.16320.40830.23110.032*
H2B0.18600.38230.16150.032*
C30.7194 (5)0.5131 (3)0.16495 (17)0.0310 (9)
H3A0.77600.55490.13880.037*
H3B0.62420.49490.14290.037*
C40.8134 (5)0.4305 (3)0.17969 (19)0.0339 (10)
H4A0.83980.39910.14190.041*
H4B0.90900.44900.20130.041*
C50.3650 (5)0.6338 (3)0.40189 (17)0.0305 (9)
H5A0.42080.62710.44140.037*
H5B0.27160.66940.40850.037*
C60.4623 (5)0.6844 (3)0.35888 (19)0.0344 (10)
H6A0.40390.69610.32050.041*
H6B0.49290.74390.37660.041*
C70.7721 (4)0.4076 (3)0.44040 (17)0.0294 (9)
H7A0.77950.34220.42960.035*
H7B0.79650.41390.48430.035*
C80.8836 (4)0.4622 (3)0.40492 (17)0.0269 (9)
H8A0.88350.52640.41870.032*
H8B0.98730.43740.41210.032*
C90.3576 (4)0.2426 (2)0.35430 (17)0.0237 (8)
H9A0.33270.21480.31430.028*
H9B0.29490.21250.38470.028*
C100.5227 (4)0.2286 (2)0.37051 (18)0.0257 (9)
H10A0.54660.25320.41150.031*
H10B0.54680.16260.37070.031*
C110.4553 (7)0.3735 (4)0.0489 (2)0.0655 (16)
H11A0.50730.43250.04280.079*
H11B0.35970.38680.06940.079*
C120.4146 (6)0.3342 (4)0.0121 (2)0.0622 (15)
H12A0.36090.27550.00720.075*
H12B0.34520.37650.03460.075*
N10.3317 (3)0.55679 (19)0.23696 (13)0.0219 (7)
H1C0.25580.57390.26130.026*
H1D0.37850.60860.22470.026*
N20.3778 (3)0.3682 (2)0.21431 (14)0.0252 (7)
H2C0.43560.36530.18110.030*
H2D0.35830.31000.22600.030*
N30.6840 (3)0.5592 (2)0.22174 (14)0.0256 (7)
H3C0.62360.60810.21260.031*
H3D0.77220.58100.23900.031*
N40.7274 (3)0.3678 (2)0.21809 (14)0.0260 (7)
H4C0.79450.33010.23800.031*
H4D0.66630.33250.19360.031*
N50.3228 (3)0.5422 (2)0.37834 (14)0.0256 (7)
H5C0.23450.54750.35590.031*
H5D0.30410.50540.41040.031*
N60.5999 (4)0.6293 (2)0.34667 (15)0.0329 (8)
H6C0.65880.62600.38130.039*
H6D0.65450.65900.31860.039*
N70.6166 (3)0.4406 (2)0.42665 (13)0.0245 (7)
H7C0.60570.49640.44400.029*
H7D0.54970.40200.44390.029*
N80.8420 (3)0.45799 (19)0.33983 (13)0.0212 (7)
H8C0.88600.40730.32450.025*
H8D0.88440.50710.32180.025*
N90.3234 (3)0.34180 (19)0.35234 (13)0.0209 (7)
H9C0.30590.36060.39070.025*
H9D0.23570.34990.32990.025*
N100.6137 (3)0.27590 (19)0.32585 (14)0.0226 (7)
H10C0.60340.24550.29000.027*
H10D0.71320.27250.33830.027*
N110.5512 (6)0.3182 (4)0.08964 (19)0.0620 (13)
H11C0.637 (6)0.307 (4)0.067 (2)0.074*
H11D0.517 (6)0.255 (4)0.100 (2)0.074*
N120.5498 (5)0.3195 (4)0.04637 (19)0.0626 (13)
H12C0.517 (6)0.301 (4)0.0835 (13)0.075*
H12D0.599 (5)0.271 (3)0.028 (2)0.075*
Cl21.01159 (10)0.64537 (6)0.29560 (4)0.0277 (2)
Cl30.29715 (13)0.36410 (9)0.49867 (5)0.0470 (3)
La10.54253 (2)0.45443 (2)0.30593 (2)0.01558 (7)
Cl10.99179 (10)0.25647 (6)0.30115 (4)0.0258 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.023 (2)0.028 (2)0.0032 (17)0.0073 (17)0.0034 (17)
C20.023 (2)0.026 (2)0.031 (2)0.0002 (17)0.0042 (17)0.0012 (17)
C30.029 (2)0.040 (2)0.024 (2)0.0064 (19)0.0041 (18)0.0083 (18)
C40.026 (2)0.043 (3)0.032 (2)0.0007 (19)0.0099 (19)0.0028 (19)
C50.036 (2)0.031 (2)0.025 (2)0.0080 (19)0.0063 (18)0.0065 (18)
C60.051 (3)0.0153 (19)0.036 (2)0.0070 (19)0.004 (2)0.0030 (18)
C70.028 (2)0.034 (2)0.026 (2)0.0024 (18)0.0077 (17)0.0045 (18)
C80.023 (2)0.028 (2)0.029 (2)0.0052 (17)0.0054 (17)0.0026 (17)
C90.022 (2)0.0191 (19)0.030 (2)0.0055 (16)0.0024 (16)0.0000 (16)
C100.023 (2)0.0169 (18)0.037 (2)0.0005 (16)0.0039 (17)0.0050 (17)
C110.093 (4)0.062 (4)0.041 (3)0.004 (3)0.005 (3)0.009 (3)
C120.069 (4)0.071 (4)0.047 (3)0.010 (3)0.005 (3)0.014 (3)
N10.0183 (15)0.0187 (16)0.0285 (17)0.0004 (13)0.0002 (13)0.0018 (13)
N20.0290 (18)0.0188 (16)0.0277 (18)0.0046 (14)0.0014 (14)0.0011 (14)
N30.0191 (16)0.0244 (18)0.0331 (19)0.0015 (13)0.0003 (14)0.0061 (14)
N40.0235 (17)0.0281 (18)0.0262 (17)0.0037 (14)0.0023 (14)0.0019 (15)
N50.0274 (17)0.0266 (17)0.0230 (17)0.0043 (14)0.0027 (14)0.0037 (14)
N60.041 (2)0.0261 (18)0.0322 (19)0.0063 (16)0.0094 (16)0.0028 (15)
N70.0230 (16)0.0242 (17)0.0261 (18)0.0044 (14)0.0022 (14)0.0012 (14)
N80.0227 (16)0.0177 (15)0.0233 (16)0.0037 (13)0.0027 (13)0.0012 (13)
N90.0175 (15)0.0222 (16)0.0231 (16)0.0008 (13)0.0001 (13)0.0019 (13)
N100.0181 (16)0.0167 (15)0.0328 (18)0.0022 (13)0.0012 (14)0.0048 (14)
N110.079 (4)0.076 (3)0.031 (2)0.011 (3)0.003 (2)0.004 (2)
N120.058 (3)0.093 (4)0.037 (3)0.007 (3)0.004 (2)0.005 (3)
Cl20.0252 (5)0.0238 (5)0.0344 (5)0.0039 (4)0.0016 (4)0.0055 (4)
Cl30.0445 (7)0.0638 (8)0.0329 (6)0.0136 (6)0.0039 (5)0.0157 (6)
La10.01471 (11)0.01412 (11)0.01787 (12)0.00034 (9)0.00007 (8)0.00003 (9)
Cl10.0181 (4)0.0217 (5)0.0371 (5)0.0024 (4)0.0034 (4)0.0033 (4)
Geometric parameters (Å, º) top
C1—H1A0.9900C11—N111.458 (7)
C1—H1B0.9900C12—H12A0.9900
C1—C21.504 (5)C12—H12B0.9900
C1—N11.472 (5)C12—N121.451 (6)
C2—H2A0.9900N1—H1C0.9100
C2—H2B0.9900N1—H1D0.9100
C2—N21.465 (4)N1—La12.794 (3)
C3—H3A0.9900N2—H2C0.9100
C3—H3B0.9900N2—H2D0.9100
C3—C41.495 (6)N2—La12.754 (3)
C3—N31.470 (5)N3—H3C0.9100
C4—H4A0.9900N3—H3D0.9100
C4—H4B0.9900N3—La12.748 (3)
C4—N41.479 (5)N4—H4C0.9100
C5—H5A0.9900N4—H4D0.9100
C5—H5B0.9900N4—La12.876 (3)
C5—C61.500 (5)N5—H5C0.9100
C5—N51.481 (5)N5—H5D0.9100
C6—H6A0.9900N5—La12.863 (3)
C6—H6B0.9900N6—H6C0.9100
C6—N61.490 (5)N6—H6D0.9100
C7—H7A0.9900N6—La12.756 (3)
C7—H7B0.9900N7—H7C0.9100
C7—C81.509 (5)N7—H7D0.9100
C7—N71.474 (4)N7—La12.731 (3)
C8—H8A0.9900N8—H8C0.9100
C8—H8B0.9900N8—H8D0.9100
C8—N81.473 (5)N8—La12.715 (3)
C9—H9A0.9900N9—H9C0.9100
C9—H9B0.9900N9—H9D0.9100
C9—C101.498 (5)N9—La12.766 (3)
C9—N91.485 (4)N10—H10C0.9100
C10—H10A0.9900N10—H10D0.9100
C10—H10B0.9900N10—La12.722 (3)
C10—N101.469 (4)N11—H11C0.94 (5)
C11—H11A0.9900N11—H11D1.00 (5)
C11—H11B0.9900N12—H12C0.899 (19)
C11—C121.498 (7)N12—H12D0.915 (19)
H1A—C1—H1B108.2C4—N4—La1115.4 (2)
C2—C1—H1A109.8H4C—N4—H4D107.5
C2—C1—H1B109.8La1—N4—H4C108.4
N1—C1—H1A109.8La1—N4—H4D108.4
N1—C1—H1B109.8C5—N5—H5C108.3
N1—C1—C2109.5 (3)C5—N5—H5D108.3
C1—C2—H2A109.8C5—N5—La1115.9 (2)
C1—C2—H2B109.8H5C—N5—H5D107.4
H2A—C2—H2B108.3La1—N5—H5C108.3
N2—C2—C1109.3 (3)La1—N5—H5D108.3
N2—C2—H2A109.8C6—N6—H6C108.5
N2—C2—H2B109.8C6—N6—H6D108.5
H3A—C3—H3B108.3C6—N6—La1115.0 (2)
C4—C3—H3A110.0H6C—N6—H6D107.5
C4—C3—H3B110.0La1—N6—H6C108.5
N3—C3—H3A110.0La1—N6—H6D108.5
N3—C3—H3B110.0C7—N7—H7C108.7
N3—C3—C4108.6 (3)C7—N7—H7D108.7
C3—C4—H4A109.7C7—N7—La1114.3 (2)
C3—C4—H4B109.7H7C—N7—H7D107.6
H4A—C4—H4B108.2La1—N7—H7C108.7
N4—C4—C3109.6 (3)La1—N7—H7D108.7
N4—C4—H4A109.7C8—N8—H8C107.7
N4—C4—H4B109.7C8—N8—H8D107.7
H5A—C5—H5B108.0C8—N8—La1118.3 (2)
C6—C5—H5A109.3H8C—N8—H8D107.1
C6—C5—H5B109.3La1—N8—H8C107.7
N5—C5—H5A109.3La1—N8—H8D107.7
N5—C5—H5B109.3C9—N9—H9C108.1
N5—C5—C6111.5 (3)C9—N9—H9D108.1
C5—C6—H6A109.8C9—N9—La1116.8 (2)
C5—C6—H6B109.8H9C—N9—H9D107.3
H6A—C6—H6B108.2La1—N9—H9C108.1
N6—C6—C5109.6 (3)La1—N9—H9D108.1
N6—C6—H6A109.8C10—N10—H10C108.4
N6—C6—H6B109.8C10—N10—H10D108.4
H7A—C7—H7B108.2C10—N10—La1115.7 (2)
C8—C7—H7A109.7H10C—N10—H10D107.4
C8—C7—H7B109.7La1—N10—H10C108.4
N7—C7—H7A109.7La1—N10—H10D108.4
N7—C7—H7B109.7C11—N11—H11C103 (3)
N7—C7—C8109.7 (3)C11—N11—H11D119 (3)
C7—C8—H8A109.6H11C—N11—H11D103 (4)
C7—C8—H8B109.6C12—N12—H12C106 (4)
H8A—C8—H8B108.2C12—N12—H12D106 (3)
N8—C8—C7110.1 (3)H12C—N12—H12D107 (5)
N8—C8—H8A109.6N1—La1—N4104.45 (9)
N8—C8—H8B109.6N1—La1—N567.35 (9)
H9A—C9—H9B108.2N2—La1—N161.58 (8)
C10—C9—H9A109.8N2—La1—N466.21 (9)
C10—C9—H9B109.8N2—La1—N5105.61 (9)
N9—C9—H9A109.8N2—La1—N6138.76 (10)
N9—C9—H9B109.8N2—La1—N969.13 (9)
N9—C9—C10109.5 (3)N3—La1—N168.85 (9)
C9—C10—H10A109.9N3—La1—N289.86 (9)
C9—C10—H10B109.9N3—La1—N460.42 (9)
H10A—C10—H10B108.3N3—La1—N5117.46 (9)
N10—C10—C9108.9 (3)N3—La1—N667.65 (9)
N10—C10—H10A109.9N3—La1—N9157.71 (9)
N10—C10—H10B109.9N5—La1—N4170.99 (9)
H11A—C11—H11B107.3N6—La1—N177.84 (9)
C12—C11—H11A108.0N6—La1—N4121.97 (9)
C12—C11—H11B108.0N6—La1—N561.26 (9)
N11—C11—H11A108.0N6—La1—N9123.74 (9)
N11—C11—H11B108.0N7—La1—N1134.62 (9)
N11—C11—C12117.1 (5)N7—La1—N2141.70 (9)
C11—C12—H12A109.5N7—La1—N3127.29 (9)
C11—C12—H12B109.5N7—La1—N4120.46 (9)
H12A—C12—H12B108.1N7—La1—N568.18 (9)
N12—C12—C11110.7 (5)N7—La1—N673.46 (9)
N12—C12—H12A109.5N7—La1—N974.78 (9)
N12—C12—H12B109.5N8—La1—N1139.36 (8)
C1—N1—H1C108.2N8—La1—N2133.73 (9)
C1—N1—H1D108.2N8—La1—N373.49 (9)
C1—N1—La1116.4 (2)N8—La1—N468.06 (9)
H1C—N1—H1D107.3N8—La1—N5120.47 (9)
La1—N1—H1C108.2N8—La1—N674.19 (9)
La1—N1—H1D108.2N8—La1—N762.48 (9)
C2—N2—H2C108.7N8—La1—N9126.37 (8)
C2—N2—H2D108.7N8—La1—N1076.02 (9)
C2—N2—La1114.2 (2)N9—La1—N193.69 (9)
H2C—N2—H2D107.6N9—La1—N4114.06 (8)
La1—N2—H2C108.7N9—La1—N564.21 (8)
La1—N2—H2D108.7N10—La1—N1138.45 (9)
C3—N3—H3C108.3N10—La1—N277.87 (9)
C3—N3—H3D108.3N10—La1—N3122.62 (9)
C3—N3—La1116.0 (2)N10—La1—N463.40 (9)
H3C—N3—H3D107.4N10—La1—N5119.86 (9)
La1—N3—H3C108.3N10—La1—N6143.34 (10)
La1—N3—H3D108.3N10—La1—N774.08 (9)
C4—N4—H4C108.4N10—La1—N961.72 (8)
C4—N4—H4D108.4
C1—C2—N2—La153.4 (3)C9—C10—N10—La151.9 (3)
C2—C1—N1—La138.3 (4)C10—C9—N9—La137.7 (4)
C3—C4—N4—La137.3 (4)N1—C1—C2—N260.2 (4)
C4—C3—N3—La155.8 (4)N3—C3—C4—N460.3 (4)
C5—C6—N6—La154.5 (4)N5—C5—C6—N656.6 (4)
C6—C5—N5—La132.3 (4)N7—C7—C8—N855.7 (4)
C7—C8—N8—La135.5 (4)N9—C9—C10—N1057.8 (4)
C8—C7—N7—La150.1 (3)N11—C11—C12—N1262.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.912.533.405 (3)160
N2—H2C···N110.912.403.284 (5)164
N2—H2D···Cl2ii0.912.723.417 (3)134
N3—H3D···Cl20.912.593.497 (3)176
N4—H4D···N110.912.493.267 (5)144
N5—H5C···Cl2i0.912.743.573 (3)153
N7—H7C···Cl3iii0.912.543.376 (3)154
N7—H7D···Cl30.912.633.470 (3)154
N8—H8D···Cl20.912.403.292 (3)168
N10—H10C···Cl2ii0.912.573.445 (3)161
N11—H11D···Cl2ii1.00 (5)2.83 (5)3.642 (5)139 (4)
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.912.533.405 (3)160.4
N2—H2C···N110.912.403.284 (5)164.1
N2—H2D···Cl2ii0.912.723.417 (3)134.1
N3—H3D···Cl20.912.593.497 (3)175.5
N4—H4D···N110.912.493.267 (5)144.0
N5—H5C···Cl2i0.912.743.573 (3)153.2
N7—H7C···Cl3iii0.912.543.376 (3)153.6
N7—H7D···Cl30.912.633.470 (3)153.5
N8—H8D···Cl20.912.403.292 (3)167.9
N10—H10C···Cl2ii0.912.573.445 (3)160.6
N11—H11D···Cl2ii1.00 (5)2.83 (5)3.642 (5)139 (4)
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[La(C2H8N2)5]Cl3·C2H8N2·CH2Cl2
Mr690.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.8070 (7), 14.6530 (12), 22.1110 (18)
β (°) 92.1560 (9)
V3)2851.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.26 × 0.20 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.641, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
24978, 5609, 4502
Rint0.056
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.07
No. of reflections5609
No. of parameters265
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.48

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS2013 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007), OLEX2 (Dolomanov et al., 2009, 2014).

 

Acknowledgements

The authors thank GVSU for financial support (Weldon Fund, CSCE, OURS) and the NSF for student support (HTS, REU-1062944). The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J.-F., Jin, Q.-Y., Pan, Y.-L., Zhang, Y. & Jia, D.-X. (2009). Chem. Commun. pp. 7212–7214.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. & Bourhis, L. J. (2014). Acta Cryst. A70. In the press [PC5043].  CrossRef IUCr Journals Google Scholar
First citationFeng, M.-L., Ye, D. & Huang, X.-Y. (2009). Inorg. Chem. 48, 8060–8062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJia, D.-X., Zhao, Q.-X., Zhang, Y., Dai, J. & Zhou, J. (2006). Eur. J. Inorg. Chem. pp. 2760–2765.  Web of Science CSD CrossRef Google Scholar
First citationJia, D., Zhao, Q., Zhang, Y., Dai, J. & Zuo, J. (2005). Inorg. Chem. 44, 8861–8867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationSartain, H. T., McGraw, S. N., Lawrence, C. J., Werner, E. J. & Biros, S. M. (2014). Inorg. Chim. Acta. Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds