research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(4-bromo­phenyl­sulfon­yl)-2,5,6-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by G. M. Rosair, Heriot-Watt University, Scotland (Received 25 September 2014; accepted 7 October 2014; online 11 October 2014)

In the title compound, C17H15BrO3S, the dihedral angle between the planes of the benzo­furan ring system [r.m.s. deviation = 0.015 (2) Å] and the 4-bromo­phenyl ring is 89.29 (6)°. In the crystal, mol­ecules are linked into a chain along the b-axis direction by C—H⋯π hydrogen bonds and C—Br⋯π [3.626 (1) Å] inter­actions.

1. Chemical context

Mol­ecules containing a benzo­furan ring show significant biological properties, such as anti­bacterial and anti­fungal (Aslam et al., 2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]), anti­tumor and anti­viral (Galal et al., 2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]) and anti­microbial activities (Wahab Khan et al., 2005[Wahab Khan, M., Jahangir Alam, M., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]), and are potential inhibitors of β-amyloid aggregation (Ono et al., 2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). Benzo­furan compounds occur widely in nature (Akgul & Anil, 2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]; Soekamto et al., 2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). As a part of our continuing project concerning 3-(aryl­sulfon­yl)-2,5,7-trimethyl-1-benzo­furan derivatives, we report herein on the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

In the title mol­ecule (Fig. 1[link]), the benzo­furan unit (O1/C1–C8) is essentially planar, with a mean deviation of 0.015 (2) Å from the mean plane defined by the nine constituent atoms. The 4-bromo­phenyl ring (C12–C17) is inclined to the benzo­furan ring by 89.29 (6)°. The title compound crystallized in the non-centrosymmetric space group Pc in spite of having no asymmetric C atoms.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, mol­ecules are linked into a chain along the b-axis direction by C—H⋯π hydrogen bonds (Fig. 2[link] and Table 1[link]), and by C15—Br1⋯π inter­actions between the Br atom and the benzene ring of a neighbouring mol­ecule with a Br1⋯Cg1ii separation of 3.626 (1) Å [illustrated in Fig. 2[link]; Cg1 is the centroid of the C2–C7 benzene ring; symmetry code: (ii) x + 1, y, z].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1i 0.98 2.89 3.504 (3) 122
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the C—H⋯π and C—Br⋯π inter­actions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) x + 1, y, z; (iii) x, −y + 1, z − [{1\over 2}]; (iv) x − 1, y, z.]

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662-671.]) for 3-(aryl­sulfon­yl)benzo­furan gave 66 hits. Six of these are 3-aryl­sulfonyl-2,5,7-trimethyl-1-benzo­furan derivatives whose structures are closely related to that of the title compound. In these six compounds, the dihedral angle between the aryl­sulfonyl ring and the benzo­furan ring varies from ca 72.67° in 3-(4-fluoro­phenyl­sulfon­yl)-2,5,7-trimethyl-1-benzo­furan (Choi et al., 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1813.]) to 87.61° in 3-(2-fluoro­phenyl­sulfon­yl)-2,5,7-trimethyl-1-benzo­furan (Choi et al., 2014[Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o566.]). These dihedral angles are slightly smaller than the same angle of the title compound [89.29 (6)°].

5. Synthesis and crystallization

The starting material 3-(4-bromo­phenyl­sulfan­yl)-2,5,6-tri­methyl-1-benzo­furan was prepared by a literature method (Choi et al., 1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). 3-Chloro­per­oxy­benzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 3-(4-bromo­phenyl­sulfan­yl)-2,5,6-trimethyl-1-benzo­furan (312 mg, 0.9 mmol) in di­chloro­methane (30 ml) at 273 K. After being stirred at room temperature for 10 h, the mixture was washed with saturated sodium bicarbonate solution (2 × 10 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexa­ne–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 77%, 263 mg; m.p. 452–453 K; RF = 0.58 (hexa­ne–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (24 mg) in ethyl acetate (20 ml) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 for aryl and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H15BrO3S
Mr 379.26
Crystal system, space group Monoclinic, Pc
Temperature (K) 173
a, b, c (Å) 11.3395 (3), 8.0093 (2), 9.0439 (2)
β (°) 108.800 (1)
V3) 777.56 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.79
Crystal size (mm) 0.21 × 0.17 × 0.15
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.643, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12777, 3392, 3136
Rint 0.030
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.00
No. of reflections 3392
No. of parameters 202
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.37
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1710 Friedel pairs
Absolute structure parameter −0.001 (6)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Chemical context top

Molecules containing a benzo­furan ring show significant biological properties, such as anti­bacterial and anti­fungal (Aslam et al., 2009), anti­tumor and anti­viral (Galal et al., 2009) and anti­microbial activities (Wahab Khan et al., 2005), and are potential inhibitors of β-amyloid aggregation (Ono et al., 2002). Benzo­furan compounds occur widely in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing project concerning 3-(aryl­sulfonyl)-2,5,7-tri­methyl-1-benzo­furan derivatives, we report herein on the synthesis and crystal structure of the title compound.

Structural commentary top

In the title molecule (Fig. 1), the benzo­furan unit (O1/C1–C8) is essentially planar, with a mean deviation of 0.015 (2) Å from the mean plane defined by the nine constituent atoms. The 4-bromo­phenyl ring (C12–C17) is inclined to the benzo­furan ring by 89.29 (6)°. The title compound is crystallized in the non-centrosymmetric space group Pc in spite of having no asymmetric C atoms.

Supra­molecular features top

In the crystal, molecules are linked into a chain along the b-axis direction by C—H···π hydrogen bonds (Fig. 2 and Table 1), and by C15—Br1···π inter­actions between the Br atom and the benzene ring of a neighbouring molecule with a Br1···Cg1ii separation of 3.626 (1) Å [illustrated in Fig. 2; Cg1 is the centroid of the C2–C7 benzene ring; symmetry code: (ii) x+1, y, z].

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for 3-(aryl­sulfonyl)­benzo­furan gave 66 hits. Six of these involve 3-aryl­sulfonyl-2,5,7-tri­methyl-1-benzo­furan derivatives whose structures are closely related to that of the title compound. In these six compounds, the dihedral angle between the aryl­sulfonyl ring and the benzo­furan ring varies from ca 72.67° in 3-(4-fluoro­phenyl­sulfonyl)-2,5,7-tri­methyl-1-benzo­furan (Choi et al., 2010) to 87.61° in 3-(2-fluoro­phenyl­sulfonyl)-2,5,7-tri­methyl-1-benzo­furan (Choi et al., 2014). These dihedral angles are slightly smaller than the same angle of the title compound [89.29 (6)°].

Synthesis and crystallization top

The starting material 3-(4-bromo­phenyl­sulfanyl)-2,5,6-tri­methyl-1-benzo­furan was prepared by a literature method (Choi et al., 1999). 3-Chloro­per­oxy­benzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 3-(4-bromo­phenyl­sulfanyl)-2,5,6-tri­methyl-1-benzo­furan (312 mg, 0.9 mmol) in di­chloro­methane (30 ml) at 273 K. After being stirred at room temperature for 10 h, the mixture was washed with saturated sodium bicarbonate solution (2 × 10 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 77%, 263 mg; m.p. 452–453 K; RF = 0.58 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (24 mg) in ethyl acetate (20 ml) at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C)) for methyl H atoms. The positions of methyl hydrogens were optimized using the AFIX137 command in SHELXL97 (Sheldrick, 2008).

Related literature top

For related literature, see: Akgul & Anil (2003); Allen (2002); Aslam et al. (2009); Choi et al. (1999, 2010, 2014); Galal et al. (2009); Wahab Khan et al. (2005); Ono et al. (2002); Sheldrick (2008); Soekamto et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

A view of the C—H···π and C—Br···π interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen bonding are omitted for clarity. [Symmetry codes: (i) x, -y+1, z+1/2; (ii) x+1, y, z; (iii) x, -y+1, z-1/2; (iv) x-1, y, z.]
3-(4-Bromophenylsulfonyl)-2,5,6-trimethyl-1-benzofuran top
Crystal data top
C17H15BrO3SF(000) = 384
Mr = 379.26Dx = 1.620 Mg m3
Monoclinic, PcMelting point = 453–452 K
Hall symbol: P -2ycMo Kα radiation, λ = 0.71073 Å
a = 11.3395 (3) ÅCell parameters from 6185 reflections
b = 8.0093 (2) Åθ = 2.5–27.5°
c = 9.0439 (2) ŵ = 2.79 mm1
β = 108.800 (1)°T = 173 K
V = 777.56 (3) Å3Block, colourless
Z = 20.21 × 0.17 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3392 independent reflections
Radiation source: rotating anode3136 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.9°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.643, Tmax = 0.746l = 1111
12777 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0201P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3392 reflectionsΔρmax = 0.32 e Å3
202 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack (1983), 1710 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (6)
Crystal data top
C17H15BrO3SV = 777.56 (3) Å3
Mr = 379.26Z = 2
Monoclinic, PcMo Kα radiation
a = 11.3395 (3) ŵ = 2.79 mm1
b = 8.0093 (2) ÅT = 173 K
c = 9.0439 (2) Å0.21 × 0.17 × 0.15 mm
β = 108.800 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3136 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.746Rint = 0.030
12777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.32 e Å3
S = 1.00Δρmin = 0.37 e Å3
3392 reflectionsAbsolute structure: Flack (1983), 1710 Friedel pairs
202 parametersAbsolute structure parameter: 0.001 (6)
2 restraints
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.85 (d, J = 8.56 Hz, 2H), 7.63 (d, J = 8.21 Hz, 2H), 7.58 (s, 1H), 7.20(s, 1H), 2.76 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H)).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.89314 (3)0.76274 (4)0.54426 (3)0.04023 (8)
S10.49513 (5)0.71962 (7)0.90695 (6)0.02534 (13)
O10.27996 (15)0.39863 (18)0.61667 (18)0.0275 (4)
O20.44621 (15)0.8818 (2)0.92194 (19)0.0325 (4)
O30.54542 (16)0.6177 (2)1.04338 (19)0.0357 (4)
C10.3808 (2)0.6097 (2)0.7663 (2)0.0212 (4)
C20.2883 (2)0.6820 (3)0.6333 (2)0.0229 (4)
C30.2506 (2)0.8416 (3)0.5766 (3)0.0256 (5)
H30.28940.93700.63430.031*
C40.1567 (2)0.8602 (3)0.4364 (3)0.0278 (5)
C50.0994 (2)0.7185 (3)0.3471 (3)0.0301 (6)
C60.1362 (2)0.5613 (3)0.4028 (3)0.0305 (5)
H60.09860.46530.34510.037*
C70.22934 (19)0.5462 (3)0.5449 (3)0.0239 (5)
C80.3733 (2)0.4408 (3)0.7508 (3)0.0258 (5)
C90.1161 (3)1.0346 (3)0.3779 (3)0.0373 (6)
H9A0.16981.11640.44890.056*
H9B0.02951.05200.37400.056*
H9C0.12241.04850.27310.056*
C100.0008 (3)0.7398 (3)0.1912 (3)0.0429 (7)
H10A0.02110.63100.13970.064*
H10B0.02890.81520.12550.064*
H10C0.07550.78720.20710.064*
C110.4438 (3)0.3001 (3)0.8427 (3)0.0360 (6)
H11A0.49590.34050.94530.054*
H11B0.49680.25050.78760.054*
H11C0.38560.21570.85640.054*
C120.6123 (2)0.7434 (3)0.8190 (3)0.0238 (5)
C130.6082 (2)0.8757 (3)0.7190 (3)0.0303 (5)
H120.54690.96050.70460.036*
C140.6935 (2)0.8833 (3)0.6407 (3)0.0334 (6)
H130.69150.97370.57190.040*
C150.7818 (3)0.7605 (3)0.6615 (3)0.0293 (5)
C160.7893 (2)0.6306 (3)0.7645 (3)0.0349 (6)
H150.85270.54850.78100.042*
C170.7032 (2)0.6216 (3)0.8436 (3)0.0303 (5)
H160.70650.53250.91410.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03614 (13)0.05357 (16)0.03812 (15)0.01553 (15)0.02190 (11)0.01138 (13)
S10.0241 (3)0.0324 (3)0.0203 (3)0.0013 (3)0.0082 (2)0.0013 (2)
O10.0323 (9)0.0210 (8)0.0336 (9)0.0030 (7)0.0169 (8)0.0009 (6)
O20.0313 (9)0.0347 (9)0.0323 (9)0.0021 (7)0.0112 (7)0.0124 (7)
O30.0357 (9)0.0502 (11)0.0226 (8)0.0051 (8)0.0114 (7)0.0069 (7)
C10.0213 (11)0.0242 (10)0.0208 (10)0.0003 (9)0.0103 (9)0.0011 (8)
C20.0228 (11)0.0243 (11)0.0255 (12)0.0008 (9)0.0133 (9)0.0007 (8)
C30.0251 (11)0.0244 (11)0.0317 (12)0.0005 (9)0.0153 (9)0.0010 (9)
C40.0250 (12)0.0338 (13)0.0299 (13)0.0008 (9)0.0161 (10)0.0038 (9)
C50.0234 (13)0.0464 (14)0.0242 (13)0.0020 (10)0.0129 (11)0.0049 (10)
C60.0252 (12)0.0384 (13)0.0309 (14)0.0081 (10)0.0134 (11)0.0089 (10)
C70.0238 (11)0.0229 (11)0.0296 (13)0.0006 (9)0.0148 (10)0.0005 (9)
C80.0270 (12)0.0294 (11)0.0273 (12)0.0029 (9)0.0174 (10)0.0043 (9)
C90.0347 (13)0.0419 (16)0.0367 (13)0.0083 (12)0.0133 (11)0.0108 (11)
C100.0337 (15)0.0618 (19)0.0312 (16)0.0002 (12)0.0075 (13)0.0040 (12)
C110.0455 (15)0.0251 (12)0.0447 (16)0.0075 (11)0.0245 (13)0.0107 (10)
C120.0223 (11)0.0286 (11)0.0198 (12)0.0025 (9)0.0058 (10)0.0033 (8)
C130.0296 (12)0.0283 (12)0.0331 (13)0.0018 (10)0.0105 (10)0.0006 (10)
C140.0346 (14)0.0358 (14)0.0305 (13)0.0040 (11)0.0117 (11)0.0044 (10)
C150.0241 (12)0.0400 (13)0.0256 (13)0.0092 (10)0.0107 (10)0.0073 (9)
C160.0268 (12)0.0400 (14)0.0399 (14)0.0035 (11)0.0135 (11)0.0043 (11)
C170.0280 (12)0.0338 (13)0.0308 (13)0.0070 (10)0.0115 (10)0.0095 (10)
Geometric parameters (Å, º) top
Br1—C151.892 (3)C9—H9A0.9800
S1—O31.4354 (17)C9—H9B0.9800
S1—O21.4360 (17)C9—H9C0.9800
S1—C11.735 (2)C10—H10A0.9800
S1—C121.765 (3)C10—H10B0.9800
O1—C81.371 (3)C10—H10C0.9800
O1—C71.381 (2)C11—H11A0.9800
C1—C81.360 (3)C11—H11B0.9800
C1—C21.439 (3)C11—H11C0.9800
C2—C71.388 (3)C12—C171.384 (3)
C2—C31.392 (3)C12—C131.384 (3)
C3—C41.376 (3)C13—C141.372 (3)
C3—H30.9500C13—H120.9500
C4—C51.423 (3)C14—C151.372 (4)
C4—C91.512 (3)C14—H130.9500
C5—C61.370 (3)C15—C161.381 (4)
C5—C101.508 (4)C16—C171.386 (3)
C6—C71.381 (3)C16—H150.9500
C6—H60.9500C17—H160.9500
C8—C111.473 (3)
O3—S1—O2119.46 (10)C4—C9—H9C109.5
O3—S1—C1109.74 (10)H9A—C9—H9C109.5
O2—S1—C1107.95 (10)H9B—C9—H9C109.5
O3—S1—C12107.50 (11)C5—C10—H10A109.5
O2—S1—C12108.34 (11)C5—C10—H10B109.5
C1—S1—C12102.55 (11)H10A—C10—H10B109.5
C8—O1—C7106.92 (16)C5—C10—H10C109.5
C8—C1—C2108.04 (19)H10A—C10—H10C109.5
C8—C1—S1125.97 (18)H10B—C10—H10C109.5
C2—C1—S1125.47 (16)C8—C11—H11A109.5
C7—C2—C3118.3 (2)C8—C11—H11B109.5
C7—C2—C1104.63 (19)H11A—C11—H11B109.5
C3—C2—C1137.1 (2)C8—C11—H11C109.5
C4—C3—C2119.6 (2)H11A—C11—H11C109.5
C4—C3—H3120.2H11B—C11—H11C109.5
C2—C3—H3120.2C17—C12—C13120.7 (2)
C3—C4—C5120.8 (2)C17—C12—S1118.77 (18)
C3—C4—C9118.7 (2)C13—C12—S1120.39 (19)
C5—C4—C9120.4 (2)C14—C13—C12119.4 (2)
C6—C5—C4119.7 (2)C14—C13—H12120.3
C6—C5—C10119.8 (2)C12—C13—H12120.3
C4—C5—C10120.6 (2)C15—C14—C13120.1 (2)
C5—C6—C7118.3 (2)C15—C14—H13119.9
C5—C6—H6120.8C13—C14—H13119.9
C7—C6—H6120.8C14—C15—C16121.1 (3)
O1—C7—C6126.2 (2)C14—C15—Br1120.3 (2)
O1—C7—C2110.48 (19)C16—C15—Br1118.5 (2)
C6—C7—C2123.3 (2)C15—C16—C17119.1 (2)
C1—C8—O1109.9 (2)C15—C16—H15120.4
C1—C8—C11134.3 (2)C17—C16—H15120.4
O1—C8—C11115.8 (2)C12—C17—C16119.5 (2)
C4—C9—H9A109.5C12—C17—H16120.2
C4—C9—H9B109.5C16—C17—H16120.2
H9A—C9—H9B109.5
O3—S1—C1—C826.6 (2)C1—C2—C7—O10.4 (2)
O2—S1—C1—C8158.29 (18)C3—C2—C7—C60.7 (3)
C12—S1—C1—C887.4 (2)C1—C2—C7—C6177.6 (2)
O3—S1—C1—C2162.75 (18)C2—C1—C8—O10.9 (2)
O2—S1—C1—C231.0 (2)S1—C1—C8—O1172.93 (15)
C12—S1—C1—C283.2 (2)C2—C1—C8—C11177.4 (3)
C8—C1—C2—C70.3 (2)S1—C1—C8—C115.4 (4)
S1—C1—C2—C7172.36 (16)C7—O1—C8—C11.2 (2)
C8—C1—C2—C3177.5 (2)C7—O1—C8—C11177.5 (2)
S1—C1—C2—C35.4 (4)O3—S1—C12—C1725.8 (2)
C7—C2—C3—C40.3 (3)O2—S1—C12—C17156.21 (19)
C1—C2—C3—C4177.8 (2)C1—S1—C12—C1789.8 (2)
C2—C3—C4—C51.3 (3)O3—S1—C12—C13158.47 (19)
C2—C3—C4—C9179.2 (2)O2—S1—C12—C1328.1 (2)
C3—C4—C5—C61.4 (4)C1—S1—C12—C1385.9 (2)
C9—C4—C5—C6179.1 (2)C17—C12—C13—C141.6 (4)
C3—C4—C5—C10178.2 (2)S1—C12—C13—C14173.97 (18)
C9—C4—C5—C101.3 (4)C12—C13—C14—C150.1 (4)
C4—C5—C6—C70.4 (4)C13—C14—C15—C162.1 (4)
C10—C5—C6—C7179.2 (2)C13—C14—C15—Br1176.07 (19)
C8—O1—C7—C6177.0 (2)C14—C15—C16—C172.3 (4)
C8—O1—C7—C21.0 (2)Br1—C15—C16—C17175.84 (18)
C5—C6—C7—O1178.3 (2)C13—C12—C17—C161.4 (4)
C5—C6—C7—C20.6 (3)S1—C12—C17—C16174.32 (19)
C3—C2—C7—O1178.70 (17)C15—C16—C17—C120.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.982.893.504 (3)122
Symmetry code: (i) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.982.893.504 (3)121.6
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15BrO3S
Mr379.26
Crystal system, space groupMonoclinic, Pc
Temperature (K)173
a, b, c (Å)11.3395 (3), 8.0093 (2), 9.0439 (2)
β (°) 108.800 (1)
V3)777.56 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.21 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.643, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12777, 3392, 3136
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.00
No. of reflections3392
No. of parameters202
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37
Absolute structureFlack (1983), 1710 Friedel pairs
Absolute structure parameter0.001 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o566.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWahab Khan, M., Jahangir Alam, M., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds