organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(4-chloro­phen­yl)-3-(4-meth­­oxy­phen­yl)-3-(methyl­sulfanyl)­acrylo­nitrile

aDepartment of Physics, SJB Institute of Technology, Kengeri, Bangalore 560 060, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: dorephy@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 September 2014; accepted 30 September 2014; online 11 October 2014)

In the title compound, C17H14ClNOS, the aromatic rings are inclined to one another by 64.22 (9)°. The acrylo­nitrile group (C=C—C≡N) is planar to within 0.003 (2) Å, with the S atom and the methyl C atom displaced from this plane by 0.2317 (6) and −0.637 (2) Å, respectively. In the crystal, mol­ecules are linked via pairs of C—H⋯π inter­actions, forming inversion dimers. There are no other significant inter­molecular inter­actions present.

1. Related literature

For the biological and pharmacological activities of acrylo­nitrile derivatives, see: Boëdec et al. (2008[Boëdec, A., Sicard, H., Dessolin, J., Herbette, G., Ingoure, S., Raymond, C., Belmant, C. & Kraus, J. L. (2008). J. Med. Chem. 51, 1747-1754.]); Napolitano et al. (2001[Napolitano, A., Bruno, I., Rovero, P., Lucas, R., Peris, M. P. & Riccio, R. (2001). Tetrahedron, 57, 6249-6255.]); Saczewski et al. (2004[Saczewski, F., Reszka, P., Gdaniec, M., Grünert, R. & Bednarski, P. J. (2004). J. Med. Chem. 47, 3438-3449.]); Sommen et al. (2003[Sommen, G., Comel, A. & Kirsch, G. (2003). Tetrahedron, 59, 1557-1564.]). For related literature, see: Saufi & Ismail (2002[Saufi, S. M. & Ismail, A. F. (2002). Songklanakarin J. Sci. Technol. 24, 843-854.]); Urska et al. (2003[Urska, B., Anton, M., Jurij, S. & Branko, S. (2003). Arkivoc, 5, 77-86.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H14ClNOS

  • Mr = 315.81

  • Monoclinic, P 21 /c

  • a = 8.3060 (4) Å

  • b = 10.5048 (6) Å

  • c = 17.9795 (9) Å

  • β = 100.598 (5)°

  • V = 1542.00 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • 6889 measured reflections

  • 3537 independent reflections

  • 2807 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.114

  • S = 1.04

  • 3537 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg1i 0.93 2.96 3.739 (2) 142
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For the biological and pharmacological activities of acrylonitrile derivatives, see: Boëdec et al. (2008); Napolitano et al. (2001); Saczewski et al. (2004); Sommen et al. (2003). For related literature [on what subjects?], see: Saufi & Ismail (2002); Urska et al. (2003).

Experimental top

To a stirred suspension of NaH (0.45 g, 11.0 mmol, 60% suspension in oil) in dry THF (25 ml), a solution of (4-chloro-phenyl)-acetonitrile (0.75 g, 5.0 mmol) and 4-methoxy-dithiobenzoic acid methyl ester (0.99 g, 5.0 mmol) in dry THF (50 ml) was added drop wise at 273 K under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 4 h. It was again cooled to 273 K and methyl iodide (1.42 g, 10 mmol) was added drop wise. The reaction mixture was further stirred at room temperature for 4 h and poured into ice cold water (25 ml). The aqueous layer was extracted with CH2Cl2 (3 × 10 ml). The combined organic extracts were washed with water (1 × 20 ml), brine (1 × 20 ml), and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give a crude product which was purified by silica gel column using EtOAc:hexane as eluent. Colourless block-like crystals were grown by dissolving the product in absolute ethanol followed by slow evaporation at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93 - 0.96 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

For the biological and pharmacological activities of acrylonitrile derivatives, see: Boëdec et al. (2008); Napolitano et al. (2001); Saczewski et al. (2004); Sommen et al. (2003). For related literature [on what subjects?], see: Saufi & Ismail (2002); Urska et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound.
2-(4-Chlorophenyl)-3-(4-methoxyphenyl)-3-(methylsulfanyl)acrylonitrile top
Crystal data top
C17H14ClNOSF(000) = 656
Mr = 315.81Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3537 reflections
a = 8.3060 (4) Åθ = 2.5–27.5°
b = 10.5048 (6) ŵ = 0.38 mm1
c = 17.9795 (9) ÅT = 293 K
β = 100.598 (5)°Block, colourless
V = 1542.00 (14) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
Rint = 0.028
ω and φ scansθmax = 27.5°, θmin = 2.5°
6889 measured reflectionsh = 106
3537 independent reflectionsk = 135
2807 reflections with I > 2σ(I)l = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.045P)2 + 0.3209P]
where P = (Fo2 + 2Fc2)/3
3537 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H14ClNOSV = 1542.00 (14) Å3
Mr = 315.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3060 (4) ŵ = 0.38 mm1
b = 10.5048 (6) ÅT = 293 K
c = 17.9795 (9) Å0.30 × 0.25 × 0.20 mm
β = 100.598 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2807 reflections with I > 2σ(I)
6889 measured reflectionsRint = 0.028
3537 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3537 reflectionsΔρmin = 0.26 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.19319 (7)1.21573 (7)0.19619 (4)0.0708 (2)
S120.39592 (6)0.84311 (6)0.00222 (3)0.0463 (2)
O201.09261 (17)0.59095 (16)0.06455 (9)0.0603 (6)
N100.5710 (2)0.9039 (2)0.25595 (10)0.0575 (7)
C10.2687 (2)1.09961 (19)0.18246 (10)0.0396 (6)
C20.1284 (2)1.1742 (2)0.19521 (11)0.0463 (6)
C30.0153 (2)1.1236 (2)0.18024 (11)0.0441 (6)
C40.0223 (2)1.0011 (2)0.15428 (12)0.0496 (7)
C50.1178 (2)0.9272 (2)0.14196 (11)0.0452 (6)
C60.2658 (2)0.97624 (18)0.15536 (9)0.0347 (5)
C80.4179 (2)0.89756 (18)0.14288 (10)0.0346 (5)
C90.5065 (2)0.8996 (2)0.20479 (10)0.0401 (6)
C110.4820 (2)0.83108 (18)0.07963 (10)0.0353 (5)
C130.4464 (3)0.6919 (2)0.04764 (12)0.0570 (8)
C140.6374 (2)0.75884 (19)0.07423 (10)0.0350 (5)
C150.7767 (2)0.7996 (2)0.02329 (10)0.0402 (6)
C160.9244 (2)0.7402 (2)0.02164 (11)0.0443 (6)
C170.9379 (2)0.6388 (2)0.06941 (11)0.0406 (6)
C180.8005 (2)0.5942 (2)0.11771 (11)0.0441 (6)
C190.6513 (2)0.6553 (2)0.11980 (11)0.0429 (6)
C211.1194 (3)0.4982 (3)0.11813 (15)0.0742 (10)
H10.366401.133000.192300.0470*
H20.131401.256800.213500.0550*
H40.120600.968000.145100.0600*
H50.113300.844100.124600.0540*
H13A0.400500.624600.014200.0860*
H13B0.402200.687800.093300.0860*
H13C0.563200.682500.059600.0860*
H150.768800.867100.009400.0480*
H161.016500.768200.011900.0530*
H180.807900.524000.148400.0530*
H190.559000.625800.152600.0520*
H21A1.060800.421800.110700.1110*
H21B1.234300.479800.111700.1110*
H21C1.081100.530000.168300.1110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0571 (3)0.0760 (5)0.0789 (4)0.0308 (3)0.0114 (3)0.0093 (4)
S120.0507 (3)0.0523 (3)0.0385 (3)0.0136 (2)0.0150 (2)0.0035 (2)
O200.0451 (8)0.0666 (11)0.0699 (10)0.0192 (7)0.0125 (7)0.0035 (9)
N100.0579 (11)0.0707 (14)0.0479 (10)0.0082 (10)0.0199 (8)0.0068 (10)
C10.0436 (10)0.0401 (11)0.0362 (9)0.0011 (8)0.0104 (8)0.0014 (9)
C20.0594 (12)0.0383 (11)0.0421 (10)0.0073 (9)0.0120 (9)0.0045 (9)
C30.0447 (10)0.0491 (12)0.0376 (10)0.0149 (9)0.0049 (8)0.0006 (9)
C40.0348 (9)0.0585 (14)0.0548 (12)0.0010 (9)0.0065 (8)0.0081 (11)
C50.0393 (10)0.0412 (12)0.0532 (11)0.0006 (8)0.0033 (8)0.0103 (10)
C60.0369 (9)0.0369 (10)0.0293 (8)0.0019 (8)0.0033 (7)0.0004 (8)
C80.0344 (9)0.0353 (10)0.0336 (9)0.0007 (7)0.0051 (7)0.0027 (8)
C90.0374 (9)0.0437 (12)0.0377 (10)0.0035 (8)0.0033 (8)0.0013 (9)
C110.0360 (9)0.0346 (10)0.0351 (9)0.0002 (7)0.0064 (7)0.0039 (8)
C130.0608 (13)0.0651 (16)0.0479 (12)0.0059 (11)0.0171 (10)0.0161 (11)
C140.0368 (9)0.0365 (10)0.0321 (8)0.0022 (7)0.0078 (7)0.0015 (8)
C150.0423 (10)0.0408 (11)0.0370 (9)0.0008 (8)0.0063 (8)0.0078 (9)
C160.0358 (9)0.0521 (13)0.0437 (10)0.0014 (9)0.0036 (8)0.0044 (10)
C170.0405 (10)0.0420 (12)0.0409 (10)0.0071 (8)0.0118 (8)0.0077 (9)
C180.0552 (11)0.0366 (11)0.0405 (10)0.0078 (9)0.0091 (9)0.0052 (9)
C190.0434 (10)0.0434 (12)0.0396 (10)0.0022 (9)0.0013 (8)0.0049 (9)
C210.0776 (17)0.0797 (19)0.0691 (15)0.0403 (15)0.0239 (13)0.0036 (15)
Geometric parameters (Å, º) top
Cl7—C31.745 (2)C15—C161.372 (3)
S12—C111.7550 (18)C16—C171.386 (3)
S12—C131.800 (2)C17—C181.383 (3)
O20—C171.368 (2)C18—C191.390 (3)
O20—C211.416 (3)C1—H10.9300
N10—C91.147 (2)C2—H20.9300
C1—C21.388 (3)C4—H40.9300
C1—C61.386 (3)C5—H50.9300
C2—C31.378 (3)C13—H13A0.9600
C3—C41.374 (3)C13—H13B0.9600
C4—C51.382 (3)C13—H13C0.9600
C5—C61.394 (2)C15—H150.9300
C6—C81.492 (2)C16—H160.9300
C8—C91.443 (2)C18—H180.9300
C8—C111.357 (3)C19—H190.9300
C11—C141.485 (2)C21—H21A0.9600
C14—C151.404 (2)C21—H21B0.9600
C14—C191.379 (3)C21—H21C0.9600
C11—S12—C13102.71 (10)C2—C1—H1119.00
C17—O20—C21118.21 (17)C6—C1—H1119.00
C2—C1—C6121.16 (16)C1—C2—H2121.00
C1—C2—C3118.77 (19)C3—C2—H2121.00
Cl7—C3—C2119.45 (16)C3—C4—H4120.00
Cl7—C3—C4119.20 (14)C5—C4—H4120.00
C2—C3—C4121.34 (17)C4—C5—H5120.00
C3—C4—C5119.57 (17)C6—C5—H5120.00
C4—C5—C6120.52 (19)S12—C13—H13A109.00
C1—C6—C5118.62 (17)S12—C13—H13B109.00
C1—C6—C8120.12 (15)S12—C13—H13C110.00
C5—C6—C8121.24 (17)H13A—C13—H13B109.00
C6—C8—C9114.44 (15)H13A—C13—H13C109.00
C6—C8—C11127.02 (16)H13B—C13—H13C109.00
C9—C8—C11118.48 (16)C14—C15—H15120.00
N10—C9—C8176.9 (2)C16—C15—H15120.00
S12—C11—C8120.54 (14)C15—C16—H16120.00
S12—C11—C14117.73 (13)C17—C16—H16120.00
C8—C11—C14121.34 (16)C17—C18—H18120.00
C11—C14—C15119.27 (17)C19—C18—H18120.00
C11—C14—C19122.06 (16)C14—C19—H19119.00
C15—C14—C19118.62 (16)C18—C19—H19119.00
C14—C15—C16120.12 (18)O20—C21—H21A109.00
C15—C16—C17120.68 (17)O20—C21—H21B110.00
O20—C17—C16115.16 (16)O20—C21—H21C109.00
O20—C17—C18124.96 (18)H21A—C21—H21B109.00
C16—C17—C18119.88 (17)H21A—C21—H21C109.00
C17—C18—C19119.30 (19)H21B—C21—H21C109.00
C14—C19—C18121.31 (17)
C13—S12—C11—C8152.50 (16)C9—C8—C11—S12170.97 (14)
C13—S12—C11—C1434.67 (17)C9—C8—C11—C141.6 (3)
C21—O20—C17—C187.3 (3)C6—C8—C11—S125.9 (3)
C21—O20—C17—C16172.2 (2)C6—C8—C11—C14178.51 (17)
C2—C1—C6—C8179.37 (17)S12—C11—C14—C1560.3 (2)
C2—C1—C6—C50.9 (3)C8—C11—C14—C1965.1 (3)
C6—C1—C2—C30.2 (3)S12—C11—C14—C19122.17 (18)
C1—C2—C3—Cl7179.80 (15)C8—C11—C14—C15112.5 (2)
C1—C2—C3—C41.0 (3)C11—C14—C19—C18175.46 (18)
C2—C3—C4—C50.8 (3)C15—C14—C19—C182.1 (3)
Cl7—C3—C4—C5179.59 (16)C11—C14—C15—C16174.94 (18)
C3—C4—C5—C60.3 (3)C19—C14—C15—C162.7 (3)
C4—C5—C6—C8179.57 (18)C14—C15—C16—C170.7 (3)
C4—C5—C6—C11.1 (3)C15—C16—C17—C182.0 (3)
C1—C6—C8—C947.0 (2)C15—C16—C17—O20177.50 (18)
C5—C6—C8—C1151.5 (3)O20—C17—C18—C19176.86 (19)
C1—C6—C8—C11130.0 (2)C16—C17—C18—C192.6 (3)
C5—C6—C8—C9131.45 (18)C17—C18—C19—C140.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.932.963.739 (2)142
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.932.963.739 (2)142
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors are grateful to the SJB Institute of Technology, Kengeri, Bangalore, for their support.

References

First citationBoëdec, A., Sicard, H., Dessolin, J., Herbette, G., Ingoure, S., Raymond, C., Belmant, C. & Kraus, J. L. (2008). J. Med. Chem. 51, 1747–1754.  Web of Science PubMed Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNapolitano, A., Bruno, I., Rovero, P., Lucas, R., Peris, M. P. & Riccio, R. (2001). Tetrahedron, 57, 6249–6255.  Web of Science CrossRef CAS Google Scholar
First citationSaczewski, F., Reszka, P., Gdaniec, M., Grünert, R. & Bednarski, P. J. (2004). J. Med. Chem. 47, 3438–3449.  Web of Science PubMed CAS Google Scholar
First citationSaufi, S. M. & Ismail, A. F. (2002). Songklanakarin J. Sci. Technol. 24, 843–854.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSommen, G., Comel, A. & Kirsch, G. (2003). Tetrahedron, 59, 1557–1564.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrska, B., Anton, M., Jurij, S. & Branko, S. (2003). Arkivoc, 5, 77–86.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds