research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ammonium 3′-azido-3′-de­­oxy­thymidine-5′-amino­carbonyl­phospho­nate hemi­hydrate: an anti-HIV agent

aEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Vavilov St 32, Moscow, Russian Federation, and bA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Vavilov St 28, Moscow, Russian Federation
*Correspondence e-mail: ib@ineos.ac.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 September 2014; accepted 11 October 2014; online 24 October 2014)

The asymmetric unit of the title compound, NH4+·C11H14N6O7P·0.5H2O, contains one 3′-azido-3′-de­oxy­thymidine-5′amino­carbonyl­phospho­nate (ACP–AZT) anion, half of an NH4+ cation lying on a twofold rotation axis and in another position, occupied with equal probabilities of 0.5, an NH4+ cation and a water mol­ecule. The amide group of the ACP–AZT anion is disordered (occupancy ratio 0.5:0.5), with one part forming an N—H⋯O (involving C=O⋯H4N+) hydrogen bond and the other an O—H⋯N (involving C—NH2⋯OH2) hydrogen bond with the components of the split NH4+/H2O position. The pseudorotation parameters of ACP–AZT set it apart from previously studied AZT and thymidine. In the crystal, the various components are linked by N—H⋯O, O—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional framework.

1. Chemical context

Nucleoside analogues play an important role in clinics as anti­viral drugs. At present, seven nucleoside analogues have been approved by the US FDA for the treatment of HIV-infected patients, the first of which was 3′-azido-3′-de­oxy­thymidine (AZT) (DeClercq, 2010[DeClercq, E. (2010). Curr. Opin. Pharmacol. 10, 507-515.]). Despite progress in the treatment of HIV-infected patients, these drugs possess some drawbacks: AZT lifetime in patients is only one h, requiring frequent dose administration; long-term usage of AZT causes toxic side effects, viz anaemia, bone-marrow suppression, neuropathy and emergence of HIV-resistant strains (Stańczak et al., 2006[Stańczak, A. & Ferra, A. (2006). Pharmacol. Rep. 58, 599-613.]; Beaumont et al., 2003[Beaumont, K., Webster, R., Gardner, I. & Dack, K. (2003). Curr. Drug Metab. 4, 461-485.]). Various forms of nucleosides and nucleotides have been developed in order to reduce the toxic effects of anti-HIV drugs, to increase their oral bioavailability and to improve their pharmacokinetic properties (Kukhanova & Shirokova, 2005[Kukhanova, M. K. & Shirokova, E. A. (2005). 5'-O-Modified Nucleoside Analogues as Prodrugs of Anti-HIV Agents. In Frontiers in Nucleic Acids, edited by R. F. Schinazi & D. C. Liotta, pp. 339-341. Tucker, USA: IHL Press]). Out of a large number of potential HIV drugs, only one compound has been approved by the FDA for the treatment of HIV-infected patients, namely, tenofovir disoproxil fumarate (Viread®; DeClercq, 2010[DeClercq, E. (2010). Curr. Opin. Pharmacol. 10, 507-515.]), and one prodrug of AZT (5′-hydrogenphospho­nate AZT, Nikavir®) has been used in clinical trials in Russia (Ivanova et al., 2010[Ivanova, E., Shmagel, N. & Vorobeva, N. (2010). Nikavir in chemoprevention regimens of vertical HIV transmission. In Understanding HIV/AIDS management and care-pandemic approaches in the 21st century, edited by F. H. Kasenga, pp. 125-148. Rijeka, Croatia: InTech]; Kukhanova & Shirokova, 2005[Kukhanova, M. K. & Shirokova, E. A. (2005). 5'-O-Modified Nucleoside Analogues as Prodrugs of Anti-HIV Agents. In Frontiers in Nucleic Acids, edited by R. F. Schinazi & D. C. Liotta, pp. 339-341. Tucker, USA: IHL Press]). In a continuation of the search for compounds with improved medicinal properties, we have synthesized a novel derivative form of AZT, 5′-amino­carbonyl­phospho­nate 3′-azido-3′-de­oxy­thymidine (ACP–AZT). Biological testing of ACP–AZT in cell cultures infected with HIV-1 showed that this compound inhibited virus replication and its toxicity was much lower compared to that of AZT and Nikavir. ACP–AZT displayed improved pharmacokinetic characteristics com­pared to AZT (Khandazhinskaya et al., 2009[Khandazhinskaya, A. L., Yanvarev, D. V., Jasko, M. V., Shipitsin, A. V., Khalizev, V. A., Shram, S. I., Skoblov, Y. S., Shirokova, E. A. & Kukhanova, M. K. (2009). Drug. Metab. Dispos. 37, 494-501.]; Kukhanova, 2012[Kukhanova, M. K. (2012). Mol. Biol. (Mosk.), 46, 860-873.]; Shirokova et al., 2006[Shirokova, E. A., Khandazhinskaja, A. L., Jaśko, M. V., Kukhanova, M. K., Shipitsyn, A. V. & Pokrovskij, A. G. (2006). Patent WO/2006/062434.]). Accumulation of ACP–AZT in animal blood was slower than the accumulation of AZT, leading to a decrease in the toxic side effects displayed by AZT. The half-life of ACP–AZT in animal blood is three to four times longer than that of AZT, making it a perspective candidate as an anti-HIV drug for clinical usage. At present, the title compound is undergoing clinical trials as a potential anti-HIV drug.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, ACP–AZT, is illustrated in Fig. 1[link]. The comparative analysis of the crystal structure conformation of the title ACP–AZT mol­ecule with the conformation of AZT and natural thymidine mol­ecules (Young et al., 1969[Young, D. W., Tollin, P. & Wilson, H. R. (1969). Acta Cryst. B25, 1423-1432.]) is discussed below. The main differences are observed in the carbohydrate fragments of the mol­ecules. In terms of pseudorotation (IUPAC–IUB, 1983[IUPAC-IUB (1983). Eur. J. Biochem. 131, 9-15.]), the conformation of the furan­ose ring in the ACP–AZT mol­ecule is described by the phase angle of pseudorotation, P = 25.2°, and the degree of pucker, Ψm = 35.0°. These results correspond to a C3′-endo-C4′-exo (3T4) conformation of the sugar cycle. Atoms C3′ and C4′ deviate from the plane of atoms C1′/O4′/C2′ by 0.458 and −0.101 Å, respectively. Unlike the AZT mol­ecules and the mol­ecule of thymidine, which exhibit a C3′-exo- class of pucker, the ACP–AZT mol­ecule exhibits a C3′-endo pucker. The orientation of the thymine base relative to the de­oxy­ribose ring in the ACP–AZT mol­ecule is anti, similar to that in natural thymidine and AZT, the glycosyl torsion angle χACP–AZT(O4′—C1′—N1—C2) = −147.75 (16)°. The geometric parameters of the azido residue and the orientation relative to the de­oxy­ribose ring in ACP–AZT and AZT coincide within experimental error.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title salt, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The ammonium cation, N1S, lies on a twofold rotation axis.

3. Supra­molecular features

The C(O)NH2 group of ACP–AZT is disordered, one part forming a C=O⋯H4N+ hydrogen bond and the other a C—NH2⋯OH2 hydrogen bond with the components of the NH4+/H2O position (Table 1[link] and Fig. 2[link]). In the crystal, the various components are linked by N—H⋯O, O—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]), forming a three-dimensional framework. The structure can be described by an ordered supercell doubled in the c direction (Fig. 2[link]); however, this was not observed in the diffraction experiment.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1S—H1SA⋯O4i 0.85 (2) 2.01 (2) 2.8565 (19) 173 (2)
N1S—H1SB⋯O6 0.94 (3) 1.86 (3) 2.780 (2) 168 (2)
N3—H3⋯O5ii 0.90 (3) 1.90 (3) 2.781 (2) 167 (3)
O2S—H2SA⋯O5iii 0.87 (2) 2.00 (2) 2.868 (11) 176 (3)
N2S—H2SA⋯O5iii 0.93 (2) 2.00 (2) 2.857 (11) 154 (3)
N2S—H2SC⋯O6 0.94 (3) 2.21 (4) 3.013 (12) 143 (5)
N2S—H2SC⋯O7 0.94 (3) 2.20 (5) 2.901 (16) 130 (5)
O2S—H2SB⋯O2iv 0.93 (2) 1.91 (2) 2.822 (11) 166 (3)
N2S—H2SB⋯O2iv 0.95 (2) 1.91 (2) 2.818 (12) 159 (3)
N2S—H2SD⋯O7v 0.95 (3) 1.99 (3) 2.902 (16) 162 (5)
N7—H7A⋯N7vi 0.91 (3) 1.93 (5) 2.67 (3) 136 (5)
N7—H7B⋯N2Svii 0.92 (3) 2.66 (6) 3.265 (17) 124 (5)
N7A—H7AA⋯O2Sv 0.90 (3) 2.00 (3) 2.887 (18) 167 (6)
N7A—H7AB⋯O2S 0.91 (3) 2.03 (3) 2.856 (15) 150 (4)
C1′—H1′⋯O6viii 0.90 (3) 2.53 (2) 3.100 (2) 122.3 (19)
C3′—H3′⋯N4iv 0.92 (2) 2.65 (2) 3.274 (3) 125.1 (19)
C4′—H4′⋯O4ix 1.00 2.51 3.257 (2) 131
C6—H6⋯O5′ 0.95 2.47 3.402 (2) 168
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 4}}]; (ii) [y+{\script{1\over 2}}, -x+{\script{3\over 2}}, z+{\script{3\over 4}}]; (iii) [-y+1, -x+1, -z+{\script{1\over 2}}]; (iv) [-y+{\script{3\over 2}}, x-{\script{1\over 2}}, z+{\script{1\over 4}}]; (v) y, x, -z+1; (vi) y, x, -z; (vii) [-x+1, -y+1, z-{\script{1\over 2}}]; (viii) [y+{\script{1\over 2}}, -x+{\script{3\over 2}}, z-{\script{1\over 4}}]; (ix) x, y, z-1.
[Figure 2]
Figure 2
The hydrogen bonds involving the disordered water and ammonia mol­ecules in the crystal packing of ACP–AZT (see Table 1[link] for details). A fragment of the hypothetically ordered `supercell' is shown.

4. Database survey

Earlier, in 1986, we studied the crystal and mol­ecular structures of AZT and then some other HIV replication inhibitors by X-ray analysis (Gurskaya et al., 1986[Gurskaya, G. V., Tsapkina, E. N., Skaptsova, N. V., Kraevskii, A. A., Lindeman, S. V. & Struchkov, Yu. T. (1986). Sov. Phys. Dokl. 31, 924-926.], 1990[Gurskaya, G. V., Bochkarev, A. V., Zdanov, A. S., Papchikhin, A. V., Purygin, P. P. & Krayevsky, A. A. (1990). FEBS Lett. 265, 63-66.], 1991[Gurskaya, G. V., Bochkarev, A. V., Zhdanov, A. S., Dyatkina, N. B. & Krayevsky, A. A. (1991). Int. J. Purine Pyrimidine Res. 2, 55-60.], 1992[Gurskaya, G. V., Bochkarev, A. V., Zdanov, A. S., Papchikhin, A. V., Purygin, P. P. & Krayevsky, A. A. (1992). Nucleosides Nucleotides, 11, 1-9.]). AZT structures obtained later by four other laboratories were similar to our structure (Camerman et al., 1987[Camerman, A., Mastropaolo, D. & Camerman, N. (1987). Proc. Natl Acad. Sci. USA, 84, 8239-8242.]; Birnbaum et al., 1987[Birnbaum, G. I., Giziewicz, J., Gabe, E. J., Lin, T. S. & Prusoff, W. H. (1987). Can. J. Chem. 65, 2135-2139.]; Parthasarathy et al., 1988[Parthasarathy, R. & Kim, H. (1988). Biochem. Biophys. Res. Commun. 152, 351-358.]; Van Roey et al., 1988[Van Roey, P., Salerno, J. M., Duax, W. L., Chu, C. K., Ahn, M. K. & Schinazi, R. F. (1988). J. Am. Chem. Soc. 110, 2277-2282.]).

5. Synthesis and crystallization

The title compound was synthesized as described earlier (Shirokova et al., 2004[Shirokova, E. A., Jasko, M. V., Khandazhinskaya, A. L., Ivanov, A. V., Yanvarev, D. V., Skoblov, Y. S., Mitkevich, V. A., Bocharov, E. V., Pronyaeva, T. R., Fedyuk, N. V., Kukhanova, M. K. & Pokrovsky, A. G. (2004). J. Med. Chem. 47, 3606-3614.]). The crystals for X-ray analysis were selected from a highly dispersed (fine crystals) batch of ACP–AZT prepared for clinical usage.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The other distance restraints and SIMU parameters are given below: DFIX 1.234 0.005 O7A C6′ O7 C6′; DFIX 0.9 N7 H7a N7 H7b; DFIX 0.95 N2S H2Sc N2S H2Sd N2S H2Sa N2S H2Sb O2S H2Sb O2S H2Sa; DFIX 1.325 0.005 N7 C6′ N7A C6′; DFIX 0.9 N7A H7Aa N7A H7Ab; SIMU 0.01 0.005 1.7 N2S O2S; SIMU 0.01 0.005 1.7 N7A O7 O7A N7. The split NH4+/H2O position was refined with an occupancy of 0.5 for each atom.

Table 2
Experimental details

Crystal data
Chemical formula NH4+·C11H14N6O7P·0.5H2O
Mr 400.30
Crystal system, space group Tetragonal, P41212
Temperature (K) 100
a, c (Å) 18.5564 (6), 10.1139 (4)
V3) 3482.6 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.21 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.670, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 47562, 5322, 4822
Rint 0.047
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.09
No. of reflections 5322
No. of parameters 315
No. of restraints 32
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.29
Absolute structure Flack x determined using 1919 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (3)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Nucleoside analogues play an important role in clinics as anti­viral drugs. At present, seven nucleoside analogues have been approved by the US FDA for the treatment of HIV-infected patients, the first of which was 3'-azido-3'-de­oxy­thymidine (AZT) (DeClercq, 2010). Despite progress in the treatment of HIV-infected patients, these drugs possess some drawbacks: AZT lifetime in patients is only one hour, requiring frequent dose administration; long-term usage of AZT causes toxic side effects, viz anaemia, bone-marrow suppression, neuropathy and emergence of HIV-resistant strains (Stańczak et al., 2006; Beaumont et al., 2003). Various forms of nucleosides and nucleotides have been developed in order to reduce the toxic effects of anti-HIV drugs, to increase their oral bioavailability and to improve their pharmacokinetic properties (Kukhanova & Shirokova, 2005). Out of a large number of potential HIV drugs, only one compound has been approved by the FDA for the treatment of HIV-infected patients, namely, tenofovir disoproxil fumarate (Viread®; DeClercq, 2010), and one prodrug of AZT (5'-hydrogenphospho­nate AZT, Nikavir®) has been used in clinical trials in Russia (Ivanova et al., 2010; Kukhanova & Shirokova, 2005). Continuing the search for compounds with improved medicinal properties, we have synthesized a novel derivative form of AZT, 5'-amino­carbonyl­phospho­nate 3'-azido-3'-de­oxy­thymidine (ACP–AZT). Biological testing of ACP–AZT in cell cultures infected with HIV-1 showed that this compound inhibited virus replication and its toxicity was much lower compared to that of AZT and Nikavir. ACP–AZT displayed improved pharmacokinetic characteristics compared to AZT (Khandazhinskaya et al., 2009; Kukhanova, 2012; Shirokova et al., 2006). Accumulation of ACP–AZT in animal blood was slower than the accumulation of AZT, leading to a decrease in the toxic side effects displayed by AZT. The half-life of ACP–AZT in animal blood is three to four times longer than that of AZT, making it a perspective candidate as an anti-HIV drug for clinical usage. At present, the title compound is undergoing clinical trials as a potential anti-HIV drug.

Structural commentary top

The molecular structure of the title compound, ACP–AZT, is illustrated in Fig. 1. The comparative analysis of the crystal structure conformation of the title ACP–AZT molecule with the conformation of AZT and natural thymidine molecules (Young et al., 1969) is discussed below. The main differences are observed in the carbohydrate fragments of the molecules. In terms of pseudorotation (IUPAC–IUB, 1983), the conformation of the furan­ose ring in the ACP–AZT molecule is described by the phase angle of pseudorotation, P = 25.2°, and the degree of pucker, Ψm = 35.0°. These results correspond to a C3'-endo-C4'-exo (3T4) conformation of the sugar cycle. Atoms C3' and C4' deviate from the plane of atoms C1'/O4'/C2' by 0.458 and -0.101 Å, respectively. Unlike the AZT molecules and the molecule of thymidine, which exhibit a C3'-exo- class of pucker, the ACP–AZT molecule exhibits a C3'-endo one. The orientation of the thymine base relative to the de­oxy­ribose ring in the ACP–AZT molecule is anti, similar to that in natural thymidine and AZT, the glycosyl torsion angle χACP–AZT(O4'—C1'—N1—C2) = -147.75 (16)°. The geometric parameters of the azido residue and the orientation relative to the de­oxy­ribose ring in ACP–AZT and AZT coincide within experimental error.

Supra­molecular features top

The C(O)NH2 group of ACP–AZT is disordered, one part forming a C O···H4N+ hydrogen bond and the other a C—NH2···OH2 hydrogen bond with the components of the NH4+/H2O position (Table 1 and Fig. 2). In the crystal, the various components are linked by N—H···O, O—H···O, N—H···N, C—H···O and C—H···N hydrogen bonds (Table 1), forming a three-dimensional framework. The structure can be described by an ordered supercell doubled in the c direction (Fig. 2); however, this was not observed in the diffraction experiment.

Database survey top

Earlier, in 1986, we studied the crystal and molecular structures of AZT and then some other HIV replication inhibitors by X-ray analysis (Gurskaya et al., 1986, 1990, 1991, 1992). AZT structures obtained later by four other laboratories were similar to our structure (Camerman et al., 1987; Birnbaum et al., 1987; Parthasarathy et al., 1988; Van Roey et al., 1988).

Synthesis and crystallization top

The title compound was synthesized as described earlier (Shirokova et al., 2004). The crystals for X-ray analysis were selected from a highly dispersed (fine crystals) batch of ACP–AZT prepared for clinical usage.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The other distance restraints and SIMU parameters are given below: DFIX 1.234 0.005 O7A C6' O7 C6'; DFIX 0.9 N7 H7a N7 H7b; DFIX 0.95 N2S H2Sc N2S H2Sd N2S H2Sa N2S H2Sb O2S H2Sb O2S H2Sa; DFIX 1.325 0.005 N7 C6' N7A C6'; DFIX 0.9 N7A H7Aa N7A H7Ab; SIMU 0.01 0.005 1.7 N2S O2S; SIMU 0.01 0.005 1.7 N7A O7 O7A N7. The split NH4+/H2O position was refined with an occupancy of 0.5 for each atom.

Related literature top

For the synthesis, see Shirokova et al., 2004. For crystallographic data on related compounds, see Gurskaya et al., 1986; Gurskaya et al., 1990; Gurskaya et al., 1991; Gurskaya et al., 1992. For pseudorotation definition, see IUPAC-IUB, 1983.

For synthetic and pharmaceutical data, see: Beaumont et al. (2003); Birnbaum et al. (1987); Camerman et al. (1987); DeClercq (2010); Ivanova et al. (2010); Khandazhinskaya et al. (2009); Kukhanova (2012); Kukhanova & Shirokova (2005); Parthasarathy & Kim (1988); Shirokova et al. (2006); Stańczak & Ferra (2006); Van Roey, Salerno, Duax, Chu, Ahin & Schinazi (1988); Young et al. (1969).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
A view of the molecular structure of the title salt, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The ammonium cation, N1S, lies on a twofold rotation axis.

The hydrogen bonds involving the disordered water and ammonia molecules in the crystal packing of ACP–AZT (see Table 1 for details). A fragment of the hypothetically ordered `supercell' is shown.
Ammonium 3'-azido-3'-deoxythymidine-5'-aminocarbonylphosphonate hemihydrate top
Crystal data top
NH4+·C11H14N6O7P·0.5H2ODx = 1.527 Mg m3
Mr = 400.30Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 9998 reflections
a = 18.5564 (6) Åθ = 2.3–30.3°
c = 10.1139 (4) ŵ = 0.21 mm1
V = 3482.6 (3) Å3T = 100 K
Z = 8Prism, colourless
F(000) = 16720.21 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5322 independent reflections
Radiation source: sealed tube4822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8 pixels mm-1θmax = 30.5°, θmin = 2.2°
ϕ and ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2626
Tmin = 0.670, Tmax = 0.746l = 1414
47562 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.5648P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5322 reflectionsΔρmax = 0.34 e Å3
315 parametersΔρmin = 0.29 e Å3
32 restraintsAbsolute structure: Flack x determined using 1919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
NH4+·C11H14N6O7P·0.5H2OZ = 8
Mr = 400.30Mo Kα radiation
Tetragonal, P41212µ = 0.21 mm1
a = 18.5564 (6) ÅT = 100 K
c = 10.1139 (4) Å0.21 × 0.20 × 0.20 mm
V = 3482.6 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5322 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4822 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.746Rint = 0.047
47562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.34 e Å3
S = 1.09Δρmin = 0.29 e Å3
5322 reflectionsAbsolute structure: Flack x determined using 1919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
315 parametersAbsolute structure parameter: 0.00 (3)
32 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.68921 (3)0.49006 (3)0.20527 (5)0.01645 (10)
O20.92567 (8)0.79475 (9)0.50029 (14)0.0247 (3)
O2S0.5859 (5)0.4368 (6)0.5786 (9)0.0241 (17)0.5
O40.79798 (8)0.68215 (7)0.82247 (13)0.0194 (3)
O4'0.81753 (7)0.69188 (7)0.21627 (13)0.0172 (3)
O50.68747 (8)0.45502 (8)0.07236 (14)0.0229 (3)
O5'0.74688 (8)0.55407 (8)0.20885 (14)0.0234 (3)
O60.70278 (9)0.44576 (8)0.32578 (14)0.0257 (3)
O70.5715 (9)0.5389 (8)0.3380 (10)0.026 (2)0.5
O7A0.5847 (6)0.5815 (6)0.1427 (10)0.0303 (19)0.5
N10.85030 (9)0.70295 (9)0.43868 (15)0.0156 (3)
N1S0.69819 (9)0.30181 (9)0.25000.0156 (4)
H1SA0.7013 (13)0.2684 (13)0.308 (2)0.018 (6)*
H1SB0.7014 (14)0.3480 (14)0.287 (3)0.025 (6)*
H30.8853 (15)0.7633 (15)0.719 (3)0.029*
H2SA0.5720 (15)0.3982 (11)0.536 (3)0.029*
H2SC0.619 (3)0.461 (3)0.478 (4)0.029*0.5
H2SB0.6270 (12)0.4260 (15)0.628 (2)0.029*
H2SD0.570 (3)0.477 (3)0.590 (5)0.029*0.5
N2S0.5985 (7)0.4395 (7)0.5538 (11)0.028 (2)0.5
N30.86108 (9)0.73708 (9)0.65883 (15)0.0163 (3)
N40.94590 (10)0.55785 (9)0.10114 (18)0.0229 (4)
N50.92571 (10)0.49900 (10)0.05676 (19)0.0266 (4)
N60.91507 (14)0.44520 (13)0.0082 (3)0.0464 (6)
N70.5716 (7)0.5749 (8)0.1320 (14)0.0259 (17)0.5
H7A0.597 (3)0.578 (3)0.055 (4)0.037 (16)*0.5
H7B0.531 (2)0.604 (3)0.133 (6)0.038 (16)*0.5
N7A0.5747 (10)0.5256 (10)0.3488 (11)0.0199 (17)0.5
H7AA0.532 (2)0.549 (3)0.361 (6)0.033 (17)*0.5
H7AB0.593 (2)0.494 (2)0.407 (4)0.011 (11)*0.5
C1'0.87645 (10)0.70731 (10)0.30064 (18)0.0166 (3)
H1'0.8922 (13)0.7528 (14)0.290 (2)0.016 (6)*
C20.88180 (10)0.74798 (10)0.52988 (18)0.0164 (3)
C2'0.93586 (11)0.65280 (11)0.26815 (19)0.0206 (4)
H2'A0.97350.67470.21160.025*
H2'B0.95860.63410.34980.025*
C3'0.89591 (10)0.59331 (10)0.19471 (19)0.0168 (3)
H3'0.8762 (13)0.5614 (14)0.255 (2)0.018 (6)*
C40.81153 (10)0.68706 (10)0.70369 (17)0.0154 (3)
C4'0.83606 (10)0.63509 (10)0.12478 (17)0.0163 (3)
H4'0.85570.65690.04190.020*
C50.77850 (11)0.64287 (11)0.60195 (19)0.0204 (4)
C5'0.76867 (12)0.59301 (11)0.09211 (19)0.0211 (4)
H5'A0.72980.62620.06400.025*
H5'B0.77840.55890.01890.025*
C60.79969 (11)0.65210 (10)0.47609 (19)0.0198 (4)
H60.77900.62240.40970.024*
C6'0.60339 (12)0.53904 (11)0.23020 (18)0.0207 (4)
C70.72211 (16)0.58965 (16)0.6417 (2)0.0416 (7)
H7C0.74220.55620.70700.062*
H7D0.70610.56270.56380.062*
H7E0.68100.61520.68050.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0215 (2)0.0144 (2)0.01346 (19)0.00265 (18)0.00230 (17)0.00192 (16)
O20.0285 (8)0.0300 (8)0.0157 (6)0.0136 (6)0.0020 (6)0.0018 (6)
O2S0.024 (3)0.033 (3)0.015 (2)0.017 (2)0.0025 (18)0.0010 (17)
O40.0261 (7)0.0193 (6)0.0127 (6)0.0011 (5)0.0019 (5)0.0005 (5)
O4'0.0213 (6)0.0177 (6)0.0125 (5)0.0009 (5)0.0039 (5)0.0014 (5)
O50.0287 (8)0.0212 (7)0.0189 (6)0.0021 (6)0.0005 (6)0.0088 (5)
O5'0.0289 (8)0.0269 (7)0.0143 (6)0.0122 (6)0.0027 (6)0.0011 (6)
O60.0348 (8)0.0200 (7)0.0223 (7)0.0033 (6)0.0079 (6)0.0049 (5)
O70.026 (2)0.033 (5)0.018 (2)0.008 (3)0.0044 (19)0.0120 (19)
O7A0.041 (5)0.031 (3)0.019 (2)0.012 (3)0.007 (3)0.000 (2)
N10.0213 (7)0.0161 (7)0.0095 (6)0.0030 (6)0.0009 (6)0.0001 (5)
N1S0.0175 (6)0.0175 (6)0.0119 (9)0.0014 (8)0.0005 (6)0.0005 (6)
N2S0.025 (4)0.018 (2)0.042 (6)0.006 (2)0.015 (4)0.008 (3)
N30.0190 (8)0.0190 (8)0.0110 (6)0.0029 (6)0.0028 (6)0.0001 (6)
N40.0264 (9)0.0184 (8)0.0239 (8)0.0024 (7)0.0071 (7)0.0026 (7)
N50.0293 (9)0.0229 (9)0.0276 (9)0.0021 (7)0.0081 (8)0.0030 (7)
N60.0528 (14)0.0334 (11)0.0529 (14)0.0122 (10)0.0144 (12)0.0194 (11)
N70.016 (3)0.039 (3)0.023 (3)0.002 (2)0.0084 (18)0.008 (3)
N7A0.022 (3)0.028 (5)0.009 (2)0.009 (3)0.005 (2)0.006 (2)
C1'0.0214 (8)0.0183 (8)0.0101 (7)0.0043 (7)0.0002 (6)0.0005 (6)
C20.0182 (8)0.0173 (8)0.0138 (8)0.0007 (7)0.0025 (7)0.0002 (7)
C2'0.0184 (9)0.0276 (10)0.0158 (8)0.0021 (7)0.0014 (7)0.0026 (7)
C3'0.0189 (8)0.0182 (8)0.0132 (7)0.0005 (7)0.0022 (7)0.0014 (7)
C40.0171 (8)0.0142 (7)0.0148 (7)0.0017 (7)0.0009 (7)0.0002 (6)
C4'0.0227 (9)0.0156 (8)0.0107 (7)0.0021 (7)0.0011 (7)0.0001 (6)
C50.0241 (10)0.0205 (9)0.0165 (8)0.0068 (8)0.0012 (7)0.0017 (7)
C5'0.0260 (10)0.0251 (10)0.0123 (7)0.0080 (8)0.0019 (7)0.0012 (7)
C60.0226 (9)0.0186 (9)0.0182 (9)0.0066 (7)0.0015 (7)0.0037 (7)
C6'0.0277 (10)0.0203 (9)0.0140 (8)0.0016 (7)0.0016 (7)0.0009 (7)
C70.0536 (16)0.0472 (15)0.0242 (11)0.0338 (13)0.0121 (11)0.0092 (11)
Geometric parameters (Å, º) top
P1—O51.4936 (14)N4—C3'1.480 (3)
P1—O5'1.5991 (14)N5—N61.130 (3)
P1—O61.4916 (15)N7—H7A0.91 (3)
P1—C6'1.851 (2)N7—H7B0.92 (3)
O2—C21.227 (2)N7—C6'1.333 (6)
O2S—H2SA0.874 (19)N7A—H7AA0.90 (3)
O2S—H2SB0.93 (2)N7A—H7AB0.91 (3)
O4—C41.231 (2)N7A—C6'1.336 (5)
O4'—C1'1.416 (2)C1'—H1'0.90 (3)
O4'—C4'1.444 (2)C1'—C2'1.532 (3)
O5'—C5'1.442 (2)C2'—H2'A0.9900
O7—C6'1.241 (6)C2'—H2'B0.9900
O7A—C6'1.234 (5)C2'—C3'1.523 (3)
N1—C1'1.480 (2)C3'—H3'0.92 (2)
N1—C21.375 (2)C3'—C4'1.528 (3)
N1—C61.384 (2)C4—C51.452 (3)
N1S—H1SA0.85 (2)C4'—H4'1.0000
N1S—H1SB0.94 (3)C4'—C5'1.511 (3)
N2S—H2SA0.93 (2)C5—C61.343 (3)
N2S—H2SC0.94 (3)C5—C71.494 (3)
N2S—H2SB0.95 (2)C5'—H5'A0.9900
N2S—H2SD0.95 (3)C5'—H5'B0.9900
N3—H30.90 (3)C6—H60.9500
N3—C21.375 (2)C7—H7C0.9800
N3—C41.383 (2)C7—H7D0.9800
N4—N51.239 (2)C7—H7E0.9800
O5—P1—O5'110.99 (8)C3'—C2'—C1'103.47 (15)
O5—P1—C6'108.53 (9)C3'—C2'—H2'A111.1
O5'—P1—C6'102.01 (9)C3'—C2'—H2'B111.1
O6—P1—O5119.94 (9)N4—C3'—C2'109.21 (16)
O6—P1—O5'106.13 (8)N4—C3'—H3'112.6 (15)
O6—P1—C6'107.73 (9)N4—C3'—C4'112.67 (15)
H2SA—O2S—H2SB109 (3)C2'—C3'—H3'109.6 (15)
C1'—O4'—C4'110.47 (14)C2'—C3'—C4'102.23 (15)
C5'—O5'—P1122.76 (12)C4'—C3'—H3'109.9 (15)
C2—N1—C1'117.39 (15)O4—C4—N3120.38 (17)
C2—N1—C6121.29 (16)O4—C4—C5124.32 (17)
C6—N1—C1'121.17 (15)N3—C4—C5115.30 (16)
H1SA—N1S—H1SB113 (2)O4'—C4'—C3'104.29 (14)
H2SA—N2S—H2SC113 (4)O4'—C4'—H4'109.2
H2SA—N2S—H2SB103 (3)O4'—C4'—C5'108.68 (16)
H2SA—N2S—H2SD113 (4)C3'—C4'—H4'109.2
H2SC—N2S—H2SB122 (4)C5'—C4'—C3'116.14 (16)
H2SC—N2S—H2SD103 (5)C5'—C4'—H4'109.2
H2SB—N2S—H2SD101 (4)C4—C5—C7118.58 (17)
C2—N3—H3114.9 (18)C6—C5—C4118.44 (18)
C2—N3—C4126.57 (16)C6—C5—C7122.99 (18)
C4—N3—H3118.3 (18)O5'—C5'—C4'108.18 (15)
N5—N4—C3'115.73 (17)O5'—C5'—H5'A110.1
N6—N5—N4171.6 (2)O5'—C5'—H5'B110.1
H7A—N7—H7B113 (5)C4'—C5'—H5'A110.1
C6'—N7—H7A116 (4)C4'—C5'—H5'B110.1
C6'—N7—H7B130 (4)H5'A—C5'—H5'B108.4
H7AA—N7A—H7AB124 (5)N1—C6—H6118.5
C6'—N7A—H7AA112 (4)C5—C6—N1123.00 (17)
C6'—N7A—H7AB124 (3)C5—C6—H6118.5
O4'—C1'—N1107.70 (14)O7—C6'—P1121.9 (6)
O4'—C1'—H1'111.8 (15)O7—C6'—N7116.4 (11)
O4'—C1'—C2'107.03 (15)O7A—C6'—P1117.2 (6)
N1—C1'—H1'105.5 (16)O7A—C6'—N7A130.6 (9)
N1—C1'—C2'113.71 (15)N7—C6'—P1121.6 (8)
C2'—C1'—H1'111.1 (15)N7A—C6'—P1111.9 (7)
O2—C2—N1123.25 (17)C5—C7—H7C109.5
O2—C2—N3121.39 (17)C5—C7—H7D109.5
N3—C2—N1115.35 (16)C5—C7—H7E109.5
C1'—C2'—H2'A111.1H7C—C7—H7D109.5
C1'—C2'—H2'B111.1H7C—C7—H7E109.5
H2'A—C2'—H2'B109.0H7D—C7—H7E109.5
P1—O5'—C5'—C4'165.61 (14)C1'—O4'—C4'—C3'24.84 (18)
O4—C4—C5—C6177.9 (2)C1'—O4'—C4'—C5'149.32 (15)
O4—C4—C5—C72.6 (3)C1'—N1—C2—O26.0 (3)
O4'—C1'—C2'—C3'18.00 (19)C1'—N1—C2—N3173.72 (16)
O4'—C4'—C5'—O5'68.8 (2)C1'—N1—C6—C5174.96 (19)
O5—P1—O5'—C5'25.85 (19)C1'—C2'—C3'—N4151.29 (15)
O5—P1—C6'—O7139.4 (11)C1'—C2'—C3'—C4'31.75 (18)
O5—P1—C6'—O7A52.1 (6)C2—N1—C1'—O4'147.75 (16)
O5—P1—C6'—N738.8 (8)C2—N1—C1'—C2'93.8 (2)
O5—P1—C6'—N7A132.9 (11)C2—N1—C6—C50.5 (3)
O5'—P1—C6'—O7103.3 (11)C2—N3—C4—O4179.38 (18)
O5'—P1—C6'—O7A65.2 (6)C2—N3—C4—C50.6 (3)
O5'—P1—C6'—N778.4 (8)C2'—C3'—C4'—O4'34.79 (18)
O5'—P1—C6'—N7A109.8 (11)C2'—C3'—C4'—C5'154.33 (16)
O6—P1—O5'—C5'157.72 (16)C3'—C4'—C5'—O5'48.3 (2)
O6—P1—C6'—O78.1 (11)C4—N3—C2—O2178.93 (18)
O6—P1—C6'—O7A176.6 (6)C4—N3—C2—N11.3 (3)
O6—P1—C6'—N7170.1 (8)C4—C5—C6—N11.6 (3)
O6—P1—C6'—N7A1.6 (11)C4'—O4'—C1'—N1126.92 (15)
N1—C1'—C2'—C3'100.81 (17)C4'—O4'—C1'—C2'4.29 (19)
N3—C4—C5—C62.0 (3)C6—N1—C1'—O4'36.6 (2)
N3—C4—C5—C7177.5 (2)C6—N1—C1'—C2'81.8 (2)
N4—C3'—C4'—O4'151.88 (15)C6—N1—C2—O2178.36 (19)
N4—C3'—C4'—C5'88.6 (2)C6—N1—C2—N31.9 (3)
N5—N4—C3'—C2'164.58 (18)C6'—P1—O5'—C5'89.59 (17)
N5—N4—C3'—C4'82.6 (2)C7—C5—C6—N1177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1S—H1SA···O4i0.85 (2)2.01 (2)2.8565 (19)173 (2)
N1S—H1SB···O60.94 (3)1.86 (3)2.780 (2)168 (2)
N3—H3···O5ii0.90 (3)1.90 (3)2.781 (2)167 (3)
O2S—H2SA···O5iii0.87 (2)2.00 (2)2.868 (11)176 (3)
N2S—H2SA···O5iii0.93 (2)2.00 (2)2.857 (11)154 (3)
N2S—H2SC···O60.94 (3)2.21 (4)3.013 (12)143 (5)
N2S—H2SC···O70.94 (3)2.20 (5)2.901 (16)130 (5)
O2S—H2SB···O2iv0.93 (2)1.91 (2)2.822 (11)166 (3)
N2S—H2SB···O2iv0.95 (2)1.91 (2)2.818 (12)159 (3)
N2S—H2SD···O7v0.95 (3)1.99 (3)2.902 (16)162 (5)
N7—H7A···N7vi0.91 (3)1.93 (5)2.67 (3)136 (5)
N7—H7B···N2Svii0.92 (3)2.66 (6)3.265 (17)124 (5)
N7A—H7AA···O2Sv0.90 (3)2.00 (3)2.887 (18)167 (6)
N7A—H7AB···O2S0.91 (3)2.03 (3)2.856 (15)150 (4)
C1—H1···O6viii0.90 (3)2.53 (2)3.100 (2)122.3 (19)
C3—H3···N4iv0.92 (2)2.65 (2)3.274 (3)125.1 (19)
C4—H4···O4ix1.002.513.257 (2)131
C6—H6···O50.952.473.402 (2)168
Symmetry codes: (i) x+3/2, y1/2, z+5/4; (ii) y+1/2, x+3/2, z+3/4; (iii) y+1, x+1, z+1/2; (iv) y+3/2, x1/2, z+1/4; (v) y, x, z+1; (vi) y, x, z; (vii) x+1, y+1, z1/2; (viii) y+1/2, x+3/2, z1/4; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formulaNH4+·C11H14N6O7P·0.5H2O
Mr400.30
Crystal system, space groupTetragonal, P41212
Temperature (K)100
a, c (Å)18.5564 (6), 10.1139 (4)
V3)3482.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.21 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.670, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
47562, 5322, 4822
Rint0.047
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.09
No. of reflections5322
No. of parameters315
No. of restraints32
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.29
Absolute structureFlack x determined using 1919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.00 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1S—H1SA···O4i0.85 (2)2.01 (2)2.8565 (19)173 (2)
N1S—H1SB···O60.94 (3)1.86 (3)2.780 (2)168 (2)
N3—H3···O5ii0.90 (3)1.90 (3)2.781 (2)167 (3)
O2S—H2SA···O5iii0.874 (19)1.996 (19)2.868 (11)176 (3)
N2S—H2SA···O5iii0.93 (2)1.996 (19)2.857 (11)154 (3)
N2S—H2SC···O60.94 (3)2.21 (4)3.013 (12)143 (5)
N2S—H2SC···O70.94 (3)2.20 (5)2.901 (16)130 (5)
O2S—H2SB···O2iv0.93 (2)1.907 (18)2.822 (11)166 (3)
N2S—H2SB···O2iv0.95 (2)1.907 (18)2.818 (12)159 (3)
N2S—H2SD···O7v0.95 (3)1.99 (3)2.902 (16)162 (5)
N7—H7A···N7vi0.91 (3)1.93 (5)2.67 (3)136 (5)
N7—H7B···N2Svii0.92 (3)2.66 (6)3.265 (17)124 (5)
N7A—H7AA···O2Sv0.90 (3)2.00 (3)2.887 (18)167 (6)
N7A—H7AB···O2S0.91 (3)2.03 (3)2.856 (15)150 (4)
C1'—H1'···O6viii0.90 (3)2.53 (2)3.100 (2)122.3 (19)
C3'—H3'···N4iv0.92 (2)2.65 (2)3.274 (3)125.1 (19)
C4'—H4'···O4ix1.002.513.257 (2)131
C6—H6···O5'0.952.473.402 (2)168
Symmetry codes: (i) x+3/2, y1/2, z+5/4; (ii) y+1/2, x+3/2, z+3/4; (iii) y+1, x+1, z+1/2; (iv) y+3/2, x1/2, z+1/4; (v) y, x, z+1; (vi) y, x, z; (vii) x+1, y+1, z1/2; (viii) y+1/2, x+3/2, z1/4; (ix) x, y, z1.
 

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Project 12–04-00581), and the project of Presidium RAN `Mol­ecular and Cellular Biology'.

References

First citationBeaumont, K., Webster, R., Gardner, I. & Dack, K. (2003). Curr. Drug Metab. 4, 461–485.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBirnbaum, G. I., Giziewicz, J., Gabe, E. J., Lin, T. S. & Prusoff, W. H. (1987). Can. J. Chem. 65, 2135–2139.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerman, A., Mastropaolo, D. & Camerman, N. (1987). Proc. Natl Acad. Sci. USA, 84, 8239–8242.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDeClercq, E. (2010). Curr. Opin. Pharmacol. 10, 507–515.  CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGurskaya, G. V., Bochkarev, A. V., Zdanov, A. S., Papchikhin, A. V., Purygin, P. P. & Krayevsky, A. A. (1990). FEBS Lett. 265, 63–66.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationGurskaya, G. V., Bochkarev, A. V., Zdanov, A. S., Papchikhin, A. V., Purygin, P. P. & Krayevsky, A. A. (1992). Nucleosides Nucleotides, 11, 1–9.  CrossRef CAS Web of Science Google Scholar
First citationGurskaya, G. V., Bochkarev, A. V., Zhdanov, A. S., Dyatkina, N. B. & Krayevsky, A. A. (1991). Int. J. Purine Pyrimidine Res. 2, 55–60.  Google Scholar
First citationGurskaya, G. V., Tsapkina, E. N., Skaptsova, N. V., Kraevskii, A. A., Lindeman, S. V. & Struchkov, Yu. T. (1986). Sov. Phys. Dokl. 31, 924–926.  Google Scholar
First citationIUPAC–IUB (1983). Eur. J. Biochem. 131, 9–15.  CrossRef PubMed Google Scholar
First citationIvanova, E., Shmagel, N. & Vorobeva, N. (2010). Nikavir in chemoprevention regimens of vertical HIV transmission. In Understanding HIV/AIDS management and care–pandemic approaches in the 21st century, edited by F. H. Kasenga, pp. 125–148. Rijeka, Croatia: InTech  Google Scholar
First citationKhandazhinskaya, A. L., Yanvarev, D. V., Jasko, M. V., Shipitsin, A. V., Khalizev, V. A., Shram, S. I., Skoblov, Y. S., Shirokova, E. A. & Kukhanova, M. K. (2009). Drug. Metab. Dispos. 37, 494–501.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKukhanova, M. K. (2012). Mol. Biol. (Mosk.), 46, 860–873.  CAS PubMed Google Scholar
First citationKukhanova, M. K. & Shirokova, E. A. (2005). 5'-O-Modified Nucleoside Analogues as Prodrugs of Anti-HIV Agents. In Frontiers in Nucleic Acids, edited by R. F. Schinazi & D. C. Liotta, pp. 339–341. Tucker, USA: IHL Press  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParthasarathy, R. & Kim, H. (1988). Biochem. Biophys. Res. Commun. 152, 351–358.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirokova, E. A., Jasko, M. V., Khandazhinskaya, A. L., Ivanov, A. V., Yanvarev, D. V., Skoblov, Y. S., Mitkevich, V. A., Bocharov, E. V., Pronyaeva, T. R., Fedyuk, N. V., Kukhanova, M. K. & Pokrovsky, A. G. (2004). J. Med. Chem. 47, 3606–3614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShirokova, E. A., Khandazhinskaja, A. L., Jaśko, M. V., Kukhanova, M. K., Shipitsyn, A. V. & Pokrovskij, A. G. (2006). Patent WO/2006/062434.  Google Scholar
First citationStańczak, A. & Ferra, A. (2006). Pharmacol. Rep. 58, 599–613.  PubMed Google Scholar
First citationVan Roey, P., Salerno, J. M., Duax, W. L., Chu, C. K., Ahn, M. K. & Schinazi, R. F. (1988). J. Am. Chem. Soc. 110, 2277–2282.  CSD CrossRef CAS Web of Science Google Scholar
First citationYoung, D. W., Tollin, P. & Wilson, H. R. (1969). Acta Cryst. B25, 1423–1432.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds