research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(quinolin-6-yl)hydroxyl­amine

a125 Chemistry Bldg, University of Missouri Columbia, MO 65211, USA
*Correspondence e-mail: gatesk@missouri.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 September 2014; accepted 5 October 2014; online 11 October 2014)

The title compound, C9H8N2O, crystallized with four independent mol­ecules in the asymmetric unit. The four mol­ecules are linked via one O—H⋯N and two N—H⋯N hydrogen bonds, forming a tetra­mer-like unit. In the crystal, mol­ecules are further linked by O—H⋯N and N—H⋯O hydrogen bonds forming layers parallel to (001). These layers are linked via C—H⋯O hydrogen bonds and a number of weak C—H⋯π inter­actions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

1. Chemical context

N-Aryl­hydroxyl­amines can be generated in chemical, biochemical and biological systems either by reduction of nitro­aromatic compounds or oxidation of aryl­amines. Inter­estingly, few aryl hydroxyl­amines have been crystallographically characterized. In part, this may be due to the instability of these compounds. For example, N-aryl­hydroxyl­amines can undergo spontaneous oxidation to generate the nitroso derivatives (Rubin et al., 1987[Rubin, R. L., Uetrecht, J. P. & Jones, J. E. J. (1987). Pharmacol. Exp. Ther. 242, 833-841.]; Veggi et al., 2008[Veggi, L. M., Pretto, L., Ochoa, E. J., Catania, V. A., Luquita, M. G., Taborda, D. R., Sánchez Pozzi, E. J., Ikushiro, S., Coleman, P. A., Roma, M. G. & Mottino, A. D. (2008). Life Sci. 83, 155-163.]). These compounds, in turn, condense with the unreacted hydroxyl­amine to yield the az­oxy derivatives (Pizzolatti & Yunes, 1990[Pizzolatti, M. G. & Yunes, R. A. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 759-764.]; Agrawal & Tratnyek, 1996[Agrawal, A. & Tratnyek, P. G. (1996). Environ. Sci. Technol. 30, 153-160.]). They are also of particular importance as inter­mediates in the bioreductive activation of nitro­aromatic prodrugs (Wardman et al., 1995[Wardman, P., Dennis, M. F., Everett, S. A., Patel, K. B., Stratford, M. R. L. & Tracy, M. (1995). Biochem. Soc. Trans. 61, 171-194.]; Fitzsimmons et al., 1996[Fitzsimmons, S. A., Workman, P. A., Grever, M., Paull, K., Camalier, R. & Lewis, A. D. J. (1996). J. Natl Cancer Inst. 88, 259-269.]; Rooseboom et al., 2004[Rooseboom, M., Commandeur, J. N. M. & Vermeulen, N. P. E. (2004). Pharm. Rev. 56, 53-102.]; Chen & Hu, 2009[Chen, Y. & Hu, L. (2009). Med. Res. Rev. 29, 29-64.]; Wilson & Hay, 2011[Wilson, W. R. & Hay, M. P. (2011). Nat. Rev. Cancer, 11, 393-410.]; Wilson et al., 1989[Wilson, W. R., Anderson, R. F. & Denny, W. A. (1989). J. Med. Chem. 32, 23-30.]; Denny & Wilson, 1986[Denny, W. A. & Wilson, W. R. (1986). J. Med. Chem. 29, 879-887.]; Walton et al., 1989[Walton, M. I., Wolf, C. R. & Workman, P. (1989). Int. J. Radiat. Oncol. Biol. Phys. 16, 983-986.]; Wen et al., 2008[Wen, B., Coe, K. J., Rademacher, P., Fitch, W. L., Monshouwer, M. & Nelson, S. D. (2008). Chem. Res. Toxicol. 21, 2393-2406.]; James et al., 2001[James, A. L., Perry, J. D., Jay, C., Monget, D., Rasburn, J. W. & Gould, F. K. (2001). Lett. Appl. Microbiol. 33, 403-408.]; Patterson et al., 2007[Patterson, A. V., Ferry, D. M., Edmunds, S. J., Gu, Y., Singleton, R. S., Patel, K. B., Pullen, S. M., Hicks, K. O., Syddall, S. P., Atwell, G. J., Yang, S., Denny, W. A. & Wilson, W. R. (2007). Clin. Cancer Res. 13, 3922-3932.]). Our longstanding inter­est in this type of process (Daniels & Gates, 1996[Daniels, J. S. & Gates, K. S. (1996). J. Am. Chem. Soc. 118, 3380-3385.]; Junnotula et al., 2009[Junnotula, V., Sarkar, U., Sinha, S. & Gates, K. S. (2009). J. Am. Chem. Soc. 131, 1015-1024.], 2010[Junnotula, V., Rajapakse, A., Arbillaga, L., de Cerain, A. L., Solano, B., Villar, R., Monge, A. & Gates, K. S. (2010). Bioorg. Med. Chem. 18, 3125-3132.]) and our recent inter­est in the bioreductive activation of 6-nitro­quinoline (Rajapakse & Gates, 2012[Rajapakse, A. & Gates, K. S. (2012). J. Org. Chem. 77, 3531-3537.]; Rajapakse et al., 2013[Rajapakse, A., Linder, C., Morrison, R. D., Sarkar, U., Leigh, N. D., Barnes, C. L., Daniels, J. S. & Gates, K. S. (2013). Chem. Res. Toxicol. 26, 555-563.]) led us to prepare and characterize the title compound.

[Scheme 1]

2. Structural commentary

The title compound, C9H8N2O, crystallized with four independent mol­ecules (A, B, C, and D) in the asymmetric unit (Fig. 1[link]). The O atoms of the hydroxylamino groups in the four independent molecules A, B, C, and D are displaced from the aromatic ring planes by 0.745 (5), 0.550 (5), 0.971 (6) and 0.293 (5) Å, respectively. The four mol­ecules are linked via one O—H⋯N and two N—H⋯N hydrogen bonds, forming a tetra­mer-like unit (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg5, Cg8 and Cg11 are the centroids of the N1A/C1A–C4A/C9A, C4A–C9A, C4B–C9B, C4C–C9C and C4D–C9D rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1B 0.84 1.88 2.711 (5) 170
N2A—H2NA⋯N2C 0.78 (4) 2.58 (4) 3.351 (5) 169 (4)
N2D—H2ND⋯N2A 0.88 (4) 2.35 (4) 3.204 (4) 165 (4)
O1B—H1OB⋯N1Ai 0.84 1.87 2.689 (4) 166
O1C—H1C⋯N1Dii 0.84 1.82 2.628 (5) 160
O1D—H1OD⋯N1Ciii 0.84 1.93 2.764 (4) 172
N2B—H2NB⋯O1Div 0.85 (4) 2.14 (4) 2.935 (4) 157 (4)
N2C—H2NC⋯O1Bii 0.85 (4) 2.12 (4) 2.937 (4) 159 (4)
C7C—H7C⋯O1Bii 0.95 2.58 3.300 (4) 133
C3A—H3ACg5v 0.95 2.64 3.333 (3) 130
C3B—H3BCg2vi 0.95 2.59 3.265 (4) 129
C3C—H3CCg11vii 0.95 2.61 3.355 (3) 136
C3D—H3DCg8viii 0.95 2.85 3.436 (4) 121
C7D—H7DCg8 0.95 2.99 3.664 (4) 129
C8B—H8BCg1iv 0.95 2.85 3.527 (4) 129
Symmetry codes: (i) x+1, y+1, z; (ii) x, y-1, z; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) x, y+1, z; (vii) -x+1, -y+1, -z+1; (viii) x-1, y+1, z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the four independent mol­ecules (suffixes A, B, C and D) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

3. Supra­molecular features

In the crystal, the tetra­mer-like units are linked by O—H⋯N and N—H⋯O hydrogen bonds, forming layers parallel to (001); see Table 1[link] and Fig. 2[link]. These layers are linked via C—H⋯O hydrogen bonds and a number of C—H⋯π inter­actions (Table 1[link]), forming a three-dimensional structure.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details). C-bound H atoms have been omitted for clarity. Color key: mol­ecule A black, B red, C green and D blue.

4. Synthesis and crystallization

To a stirred solution of 6-nitro­quinoline [(1); 0.5 g, 2.87 mmol] in EtOH/CH2Cl2 (1:1 v/v, 20 ml) at 273 K was added a slurry of Raney nickel (0.5 ml). To this mixture, hydrazine hydrate (10 equivalents) was added dropwise with stirring over the course of 1 h while keeping the solution under an inert atmosphere of nitro­gen gas. The solid was removed by filtration and the resulting solution diluted with water (2 ml) and then extracted with ethyl acetate (2 × 10 ml). The combined organic extracts were washed with brine and dried over sodium sulfate. Column chromatography on silica gel, eluted with ethyl acetate and MeOH/CH2Cl2, gave the title compound as a yellow solid (yield: 100 mg, 25% yield, RF = 0.1 in MeOH/CH2Cl2 4:96). It was found to be unstable upon standing in organic solvents. Crystals of the title compound were obtained by dissolving pure product in warm ethyl acetate followed by rapid cooling to give yellow crystals. 1H NMR (CD3OD, 300 MHz): δ 8.53 (d, J = 5.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.82 (m, 1H), 7.33 (m, 3H). 13C NMR (CD3OD, 75.5 MHz) δ 151.40, 147.64, 144.76, 136.72, 131.05, 129.15, 122.54, 121.01, 107.68. HRMS (ESI, M+H+) m/z calculated for C9H9N2O: 160.0715; found: 160.0707.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atoms were located in a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding: O—H = 0.84, C—H = 0.95 Å with Uiso(H) = 1.2Ueq(O,C).

Table 2
Experimental details

Crystal data
Chemical formula C9H8N2O
Mr 160.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.3730 (15), 9.7117 (16), 18.937 (3)
α, β, γ (°) 84.855 (2), 83.043 (2), 67.477 (2)
V3) 1578.8 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (TWINABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, TWINABS and CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 31957, 7120, 5311
Rint 0.028
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.224, 1.06
No. of reflections 7120
No. of parameters 454
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.96, −0.70
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, TWINABS and CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Several crystals examined proved to have multiple domains. The final data crystal, while still a multiple, could be described having primarily two domains and was treated as such. Orientation matrices for the two domains were determined using the program CELL_NOW (Bruker, 2008[Bruker (2008). APEX2, SAINT, TWINABS and CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.]) and the data were processed further using TWINABS (Bruker, 2008[Bruker (2008). APEX2, SAINT, TWINABS and CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.]). The model converged well using the HKLF5 data but the final difference map shows several peaks of 0.4 to 0.96 e Å−3 near two of the four independent mol­ecules. While this residual electron density could be inter­preted as disorder of parts of those mol­ecules, attempts to model such disorder were unsatis­factory, requiring considerable restraints/constraints to achieve convergence, and were not included in the final model. An alternative explanation of this residual electron density is a possible contribution from crystalline domains not included in the twinning description.

Supporting information


Chemical context top

N-Aryl­hydroxyl­amines can be generated in chemical, biochemical and biological systems either by reduction of nitro­aromatic compounds or oxidation of aryl­amines. Inter­estingly, few aryl hydroxyl­amines have been crystallographically characterized. In part, this may be due to the instability of these compounds. For example, N-aryl­hydroxyl­amines can undergo spontaneous oxidation to generate the nitroso derivatives (Rubin et al., 1987; Veggi et al., 2008). These compounds, in turn, condense with the unreacted hydroxyl­amine to yield the az­oxy derivatives (Pizzolatti & Yunes, 1990; Agrawal & Tratnyek, 1996). They are also of particular importance as inter­mediates in the bioreductive activation of nitro­aromatic prodrugs (Wardman et al., 1995; Fitzsimmons et al., 1996; Rooseboom et al., 2004; Chen & Hu, 2009; Wilson & Hay, 2011; Wilson et al., 1989; Denny & Wilson, 1986; Walton et al., 1989; Wen et al., 2008; James et al., 2001; Patterson et al., 2007). Our longstanding inter­est in this type of process (Daniels & Gates, 1996; Junnotula et al., 2009, 2010) and our recent inter­est in the bioreductive activation of 6-nitro­quinoline (Rajapakse & Gates, 2012; Rajapakse et al., 2013) led us to prepare and characterize the title compound.

Structural commentary top

The title compound, C9H8N2O, crystallized with four independent molecules (A, B, C, and D) in the asymmetric unit (Fig. 1). The four molecules are linked via one O—H···N and two N—H···N hydrogen bonds, forming a tetra­mer-like unit (Fig. 1 and Table 1).

Supra­molecular features top

In the crystal, the tetra­mer-like units are linked by O—H···N and N—H···O hydrogen bonds, forming layers parallel to (001); see Table 1 and Fig. 2. These layers are linked via C—H···O hydrogen bonds and a number of C—H···π inter­actions (Table 1), forming a three-dimensional structure.

Synthesis and crystallization top

To a stirred solution of 6-nitro­quinoline [(1); 0.5 g, 2.87 mmol] in EtOH/CH2Cl2 (1:1 v/v, 20 ml) at 273 K was added a slurry of Raney nickel (0.5 ml). To this mixture, hydrazine hydrate (10 equivalents) was added dropwise with stirring over the course of 1 h while keeping the solution under an inert atmosphere of nitro­gen gas. The solid was removed by filtration and the resulting solution diluted with water (2 ml) and then extracted with ethyl acetate (2 × 10 ml). The combined organic extracts were washed with brine and dried over sodium sulfate. Column chromatography on silica gel, eluted with ethyl acetate and MeOH/CH2Cl2, gave the title compound as a yellow solid (yield: 100 mg, 25% yield, RF = 0.1 in MeOH/CH2Cl2 4:96). It was found to be unstable upon standing in organic solvents. Crystals of the title compound were obtained by dissolving pure product in warm ethyl acetate followed by rapid cooling to give yellow crystals. 1H NMR (CD3OD, 300 MHz): δ 8.53 (d, J = 5.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.82 (m, 1H), 7.33 (m, 3H). 13C NMR (CD3OD, 75.5 MHz) δ 151.40, 147.64, 144.76, 136.72, 131.05, 129.15, 122.54, 121.01, 107.68. HRMS (ESI, M+H+) m/z calculated for C9H9N2O: 160.0715; found: 160.0707.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atoms were located in a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding: O—H = 0.84, C—H = 0.95 Å with Uiso(H) = 1.2Ueq(O,C).

Several crystals examined proved to have multiple domains. The final data crystal, while still a multiple, could be described having primarily two domains and was treated as such. Orientation matrices for the two domains were determined using the program CELL_NOW (Bruker, 2008) and the data were processed further using TWINABS (Bruker, 2008). The model converged well using the HKLF5 data but the final difference map shows several peaks of 0.4 to 0.96 e Å-3 near two of the four independent molecules. While this residual electron density could be inter­preted as disorder of parts of those molecules, attempts to model such disorder were unsatisfactory, requiring considerable restraints/constraints to achieve convergence, and were not included in the final model. An alternative explanation of this residual electron density is a possible contribution from crystalline domains not included in the twinning description.

Related literature top

For related literature, see: Agrawal & Tratnyek (1996); Bruker (2008); Chen & Hu (2009); Daniels & Gates (1996); Denny & Wilson (1986); Fitzsimmons et al. (1996); James et al. (2001); Junnotula et al. (2009, 2010); Patterson et al. (2007); Pizzolatti & Yunes (1990); Rajapakse & Gates (2012); Rajapakse et al. (2013); Rooseboom et al. (2004); Rubin et al. (1987); Veggi et al. (2008); Walton et al. (1989); Wardman et al. (1995); Wen et al. (2008); Wilson & Hay (2011); Wilson et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
A view of the molecular structure of the four independent molecules (suffixes A, B, C and D) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details). C-bound H atoms have been omitted for clarity. Color key: molecule A black, B red, C green and D blue.
N-(Quinolin-6-yl)hydroxylamine top
Crystal data top
C9H8N2OZ = 8
Mr = 160.17F(000) = 672
Triclinic, P1Dx = 1.348 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3730 (15) ÅCell parameters from 7244 reflections
b = 9.7117 (16) Åθ = 2.4–27.4°
c = 18.937 (3) ŵ = 0.09 mm1
α = 84.855 (2)°T = 173 K
β = 83.043 (2)°Prism, yellow
γ = 67.477 (2)°0.35 × 0.20 × 0.20 mm
V = 1578.8 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7120 independent reflections
Radiation source: fine-focus sealed tube5311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
h = 1212
Tmin = 0.89, Tmax = 0.98k = 1212
31957 measured reflectionsl = 024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1048P)2 + 1.3081P]
where P = (Fo2 + 2Fc2)/3
7120 reflections(Δ/σ)max < 0.001
454 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C9H8N2Oγ = 67.477 (2)°
Mr = 160.17V = 1578.8 (4) Å3
Triclinic, P1Z = 8
a = 9.3730 (15) ÅMo Kα radiation
b = 9.7117 (16) ŵ = 0.09 mm1
c = 18.937 (3) ÅT = 173 K
α = 84.855 (2)°0.35 × 0.20 × 0.20 mm
β = 83.043 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7120 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
5311 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.98Rint = 0.028
31957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.224H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.96 e Å3
7120 reflectionsΔρmin = 0.70 e Å3
454 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The data crystal was a two- domain pseudo-merohedral twin. Data was processed using TWINABS and the final refinement was carried out with the HKLF 5 data. The H atoms on the N2 atoms were located and refined with isotropic thermal parameters. The H atoms on the OH groups appeared in difference maps, but were placed at calculated positions and allowed to find maximum overlap with the electron density in a riding model. Residual electron density near two of the four independent molecules was not amenable to reasonable modelling as disorder and may indicate contribution of an additional minor crystalline domain.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.5904 (3)0.2741 (3)0.13946 (17)0.0658 (7)
H1OA0.57050.36260.12390.079*
N1A0.0069 (3)0.1121 (3)0.12381 (13)0.0364 (5)
C1A0.0514 (3)0.1592 (4)0.06231 (16)0.0401 (7)
H1A0.13190.13010.05150.048*
N2A0.4790 (3)0.2709 (4)0.19701 (17)0.0485 (7)
C2A0.0015 (3)0.2493 (4)0.01207 (16)0.0450 (7)
H2A0.04680.27990.03180.054*
C3A0.1137 (3)0.2929 (3)0.02709 (15)0.0396 (6)
H3A0.14890.35470.00630.047*
C4A0.1803 (3)0.2457 (3)0.09231 (14)0.0291 (5)
C5A0.3032 (3)0.2823 (3)0.11080 (15)0.0335 (6)
H5A0.34410.34180.07870.040*
C6A0.3633 (3)0.2317 (3)0.17532 (15)0.0355 (6)
C7A0.3028 (4)0.1425 (4)0.22270 (16)0.0446 (7)
H7A0.34330.10930.26750.054*
C8A0.1871 (4)0.1032 (4)0.20521 (16)0.0414 (7)
H8A0.14980.04100.23730.050*
C9A0.1224 (3)0.1541 (3)0.13994 (14)0.0303 (5)
O1B0.8871 (3)0.9329 (3)0.20442 (14)0.0576 (6)
H1OB0.93520.98520.18430.069*
N1B0.5281 (3)0.5673 (4)0.1053 (2)0.0600 (8)
C1B0.3984 (5)0.6582 (5)0.0806 (3)0.0928 (19)
H1B0.32880.61610.06850.111*
N2B0.9495 (3)0.7941 (3)0.17819 (17)0.0483 (7)
C2B0.3559 (5)0.8113 (5)0.0709 (4)0.112 (3)
H2B0.25980.87120.05300.134*
C3B0.4536 (5)0.8747 (4)0.0874 (3)0.0774 (15)
H3B0.42780.97910.07950.093*
C4B0.5933 (3)0.7849 (4)0.11611 (18)0.0463 (8)
C5B0.6977 (3)0.8430 (4)0.13731 (17)0.0416 (7)
H5B0.67240.94780.13540.050*
C6B0.8354 (3)0.7477 (4)0.16065 (16)0.0405 (7)
C7B0.8759 (4)0.5891 (4)0.16110 (18)0.0467 (7)
H7B0.97530.52340.17370.056*
C8B0.7744 (4)0.5321 (4)0.14376 (18)0.0467 (7)
H8B0.80100.42710.14610.056*
C9B0.6279 (3)0.6292 (4)0.12197 (17)0.0427 (7)
O1C0.6927 (4)0.0383 (4)0.39244 (18)0.0834 (9)
H1C0.61570.06360.39750.100*
N1C0.8919 (3)0.5060 (3)0.38596 (13)0.0395 (6)
C1C0.8513 (4)0.5683 (3)0.44833 (17)0.0429 (7)
H1OC0.88990.64230.45630.051*
N2C0.6800 (4)0.0668 (3)0.33013 (15)0.0482 (7)
C2C0.7559 (4)0.5330 (3)0.50310 (16)0.0425 (7)
H2C0.73040.58170.54680.051*
C3C0.6997 (3)0.4265 (3)0.49252 (15)0.0369 (6)
H3C0.63540.39990.52940.044*
C4C0.7365 (3)0.3563 (3)0.42747 (14)0.0308 (5)
C5C0.6859 (3)0.2431 (3)0.41290 (15)0.0349 (6)
H5C0.62390.21040.44860.042*
C6C0.7249 (3)0.1798 (3)0.34798 (15)0.0353 (6)
C7C0.8151 (4)0.2316 (3)0.29446 (15)0.0386 (6)
H7C0.83720.19240.24840.046*
C8C0.8702 (4)0.3363 (3)0.30816 (15)0.0394 (6)
H8C0.93450.36560.27230.047*
C9C0.8333 (3)0.4017 (3)0.37463 (14)0.0325 (6)
O1D0.1032 (3)0.5575 (3)0.28275 (14)0.0602 (7)
H1OD0.04520.54040.31690.072*
N1D0.4155 (3)0.9499 (3)0.40248 (15)0.0443 (6)
C1D0.3083 (4)1.0657 (3)0.43441 (18)0.0481 (8)
H1D0.34111.13350.45450.058*
N2D0.2499 (4)0.5174 (4)0.30317 (17)0.0524 (7)
C2D0.1504 (4)1.0939 (4)0.4402 (2)0.0541 (9)
H2D0.07831.17950.46340.065*
C3D0.1000 (4)0.9987 (4)0.41264 (18)0.0479 (8)
H3D0.00771.01710.41630.058*
C4D0.2084 (3)0.8717 (3)0.37835 (14)0.0354 (6)
C5D0.1665 (4)0.7640 (3)0.35065 (15)0.0390 (6)
H5D0.06020.77810.35190.047*
C6D0.2797 (4)0.6380 (3)0.32161 (15)0.0418 (7)
C7D0.4385 (4)0.6209 (4)0.31648 (18)0.0468 (8)
H7D0.51580.53560.29520.056*
C8D0.4805 (4)0.7250 (3)0.34159 (17)0.0443 (7)
H8D0.58670.71260.33730.053*
C9D0.3671 (3)0.8519 (3)0.37414 (15)0.0363 (6)
H2NB1.008 (4)0.742 (4)0.209 (2)0.052 (11)*
H2NC0.748 (4)0.008 (4)0.301 (2)0.051 (10)*
H2NA0.521 (5)0.215 (4)0.227 (2)0.055 (12)*
H2ND0.315 (5)0.465 (5)0.269 (2)0.064 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0467 (14)0.0799 (18)0.080 (2)0.0340 (14)0.0043 (13)0.0167 (15)
N1A0.0344 (12)0.0440 (13)0.0362 (13)0.0209 (10)0.0002 (9)0.0056 (10)
C1A0.0325 (14)0.0558 (18)0.0361 (15)0.0196 (13)0.0028 (11)0.0098 (13)
N2A0.0376 (14)0.0678 (19)0.0485 (17)0.0266 (14)0.0068 (12)0.0104 (15)
C2A0.0372 (15)0.068 (2)0.0300 (14)0.0185 (14)0.0080 (12)0.0004 (13)
C3A0.0355 (14)0.0502 (17)0.0299 (14)0.0146 (13)0.0023 (11)0.0058 (12)
C4A0.0251 (12)0.0322 (12)0.0276 (12)0.0083 (10)0.0010 (9)0.0048 (10)
C5A0.0308 (13)0.0392 (14)0.0319 (14)0.0161 (11)0.0028 (10)0.0037 (11)
C6A0.0304 (13)0.0407 (15)0.0367 (15)0.0137 (11)0.0009 (11)0.0098 (11)
C7A0.0481 (17)0.0598 (19)0.0302 (15)0.0237 (15)0.0111 (12)0.0017 (13)
C8A0.0456 (16)0.0544 (18)0.0297 (14)0.0262 (14)0.0048 (12)0.0050 (12)
C9A0.0295 (12)0.0345 (13)0.0272 (13)0.0130 (11)0.0004 (10)0.0031 (10)
O1B0.0628 (15)0.0658 (16)0.0545 (15)0.0373 (13)0.0085 (12)0.0137 (12)
N1B0.0422 (15)0.0627 (19)0.080 (2)0.0199 (14)0.0133 (15)0.0185 (16)
C1B0.046 (2)0.072 (3)0.161 (5)0.003 (2)0.041 (3)0.052 (3)
N2B0.0488 (16)0.0511 (16)0.0539 (17)0.0289 (13)0.0117 (13)0.0074 (13)
C2B0.061 (3)0.069 (3)0.195 (6)0.017 (2)0.073 (4)0.065 (4)
C3B0.051 (2)0.047 (2)0.122 (4)0.0118 (17)0.039 (2)0.039 (2)
C4B0.0311 (14)0.0577 (19)0.0453 (17)0.0072 (13)0.0029 (12)0.0232 (15)
C5B0.0350 (14)0.0441 (16)0.0423 (16)0.0103 (13)0.0015 (12)0.0127 (13)
C6B0.0395 (15)0.0547 (17)0.0325 (14)0.0257 (14)0.0020 (11)0.0058 (12)
C7B0.0449 (17)0.0488 (17)0.0505 (18)0.0224 (14)0.0153 (14)0.0120 (14)
C8B0.0500 (18)0.0449 (17)0.0501 (19)0.0228 (14)0.0152 (14)0.0095 (14)
C9B0.0370 (15)0.0522 (17)0.0403 (16)0.0175 (13)0.0037 (12)0.0062 (13)
O1C0.100 (3)0.088 (2)0.076 (2)0.053 (2)0.0081 (18)0.0077 (17)
N1C0.0423 (13)0.0459 (14)0.0384 (13)0.0249 (11)0.0076 (10)0.0002 (10)
C1C0.0503 (17)0.0427 (16)0.0440 (17)0.0245 (14)0.0129 (13)0.0011 (13)
N2C0.0646 (18)0.0509 (16)0.0415 (15)0.0389 (15)0.0111 (13)0.0077 (12)
C2C0.0516 (17)0.0421 (16)0.0336 (15)0.0155 (14)0.0089 (13)0.0044 (12)
C3C0.0376 (14)0.0388 (14)0.0294 (13)0.0098 (12)0.0031 (11)0.0017 (11)
C4C0.0288 (12)0.0312 (13)0.0293 (13)0.0080 (10)0.0057 (10)0.0039 (10)
C5C0.0339 (13)0.0376 (14)0.0335 (14)0.0165 (11)0.0027 (11)0.0025 (11)
C6C0.0366 (14)0.0394 (14)0.0340 (14)0.0200 (12)0.0011 (11)0.0014 (11)
C7C0.0469 (16)0.0486 (16)0.0280 (13)0.0273 (14)0.0021 (11)0.0003 (12)
C8C0.0457 (16)0.0526 (17)0.0284 (14)0.0301 (14)0.0007 (11)0.0020 (12)
C9C0.0320 (13)0.0377 (14)0.0308 (13)0.0162 (11)0.0075 (10)0.0043 (10)
O1D0.0689 (17)0.0762 (17)0.0451 (14)0.0371 (14)0.0142 (12)0.0054 (12)
N1D0.0527 (15)0.0360 (13)0.0465 (15)0.0218 (12)0.0028 (12)0.0010 (11)
C1D0.063 (2)0.0353 (15)0.0463 (18)0.0186 (15)0.0040 (15)0.0015 (13)
N2D0.0618 (18)0.0619 (18)0.0456 (16)0.0371 (15)0.0022 (14)0.0095 (14)
C2D0.059 (2)0.0370 (16)0.051 (2)0.0014 (15)0.0083 (16)0.0096 (14)
C3D0.0393 (16)0.0454 (17)0.0465 (18)0.0003 (13)0.0104 (13)0.0045 (14)
C4D0.0417 (15)0.0325 (13)0.0272 (13)0.0090 (11)0.0067 (11)0.0053 (10)
C5D0.0418 (15)0.0444 (16)0.0304 (14)0.0158 (13)0.0077 (11)0.0048 (12)
C6D0.0599 (19)0.0409 (15)0.0275 (14)0.0243 (14)0.0018 (12)0.0003 (11)
C7D0.0499 (18)0.0427 (16)0.0451 (17)0.0187 (14)0.0152 (14)0.0087 (13)
C8D0.0423 (16)0.0412 (16)0.0470 (17)0.0173 (13)0.0113 (13)0.0039 (13)
C9D0.0434 (15)0.0312 (13)0.0334 (14)0.0161 (12)0.0028 (11)0.0038 (11)
Geometric parameters (Å, º) top
O1A—N2A1.422 (4)O1C—N2C1.474 (4)
O1A—H1OA0.8400O1C—H1C0.8400
N1A—C1A1.316 (4)N1C—C1C1.323 (4)
N1A—C9A1.368 (3)N1C—C9C1.366 (4)
C1A—C2A1.395 (5)C1C—C2C1.393 (4)
C1A—H1A0.9500C1C—H1OC0.9500
N2A—C6A1.393 (4)N2C—C6C1.397 (4)
N2A—H2NA0.78 (4)N2C—H2NC0.85 (4)
C2A—C3A1.369 (4)C2C—C3C1.365 (4)
C2A—H2A0.9500C2C—H2C0.9500
C3A—C4A1.411 (4)C3C—C4C1.403 (4)
C3A—H3A0.9500C3C—H3C0.9500
C4A—C9A1.417 (4)C4C—C5C1.412 (4)
C4A—C5A1.417 (4)C4C—C9C1.423 (4)
C5A—C6A1.378 (4)C5C—C6C1.370 (4)
C5A—H5A0.9500C5C—H5C0.9500
C6A—C7A1.411 (4)C6C—C7C1.421 (4)
C7A—C8A1.363 (4)C7C—C8C1.360 (4)
C7A—H7A0.9500C7C—H7C0.9500
C8A—C9A1.408 (4)C8C—C9C1.406 (4)
C8A—H8A0.9500C8C—H8C0.9500
O1B—N2B1.361 (4)O1D—N2D1.372 (4)
O1B—H1OB0.8400O1D—H1OD0.8400
N1B—C1B1.311 (5)N1D—C1D1.322 (4)
N1B—C9B1.368 (4)N1D—C9D1.371 (4)
C1B—C2B1.385 (7)C1D—C2D1.391 (5)
C1B—H1B0.9500C1D—H1D0.9500
N2B—C6B1.393 (4)N2D—C6D1.385 (4)
N2B—H2NB0.85 (4)N2D—H2ND0.88 (4)
C2B—C3B1.361 (6)C2D—C3D1.353 (5)
C2B—H2B0.9500C2D—H2D0.9500
C3B—C4B1.408 (5)C3D—C4D1.414 (4)
C3B—H3B0.9500C3D—H3D0.9500
C4B—C5B1.413 (4)C4D—C5D1.410 (4)
C4B—C9B1.417 (5)C4D—C9D1.418 (4)
C5B—C6B1.366 (4)C5D—C6D1.382 (4)
C5B—H5B0.9500C5D—H5D0.9500
C6B—C7B1.438 (5)C6D—C7D1.426 (5)
C7B—C8B1.353 (4)C7D—C8D1.356 (5)
C7B—H7B0.9500C7D—H7D0.9500
C8B—C9B1.422 (4)C8D—C9D1.415 (4)
C8B—H8B0.9500C8D—H8D0.9500
N2A—O1A—H1OA109.5N2C—O1C—H1C109.5
C1A—N1A—C9A118.5 (2)C1C—N1C—C9C117.2 (3)
N1A—C1A—C2A123.7 (3)N1C—C1C—C2C124.5 (3)
N1A—C1A—H1A118.2N1C—C1C—H1OC117.7
C2A—C1A—H1A118.2C2C—C1C—H1OC117.7
C6A—N2A—O1A111.7 (3)C6C—N2C—O1C108.0 (3)
C6A—N2A—H2NA110 (3)C6C—N2C—H2NC112 (3)
O1A—N2A—H2NA109 (3)O1C—N2C—H2NC99 (3)
C3A—C2A—C1A118.8 (3)C3C—C2C—C1C118.5 (3)
C3A—C2A—H2A120.6C3C—C2C—H2C120.8
C1A—C2A—H2A120.6C1C—C2C—H2C120.8
C2A—C3A—C4A119.9 (3)C2C—C3C—C4C120.3 (3)
C2A—C3A—H3A120.1C2C—C3C—H3C119.8
C4A—C3A—H3A120.1C4C—C3C—H3C119.8
C3A—C4A—C9A117.3 (2)C3C—C4C—C5C123.8 (3)
C3A—C4A—C5A123.2 (3)C3C—C4C—C9C116.8 (3)
C9A—C4A—C5A119.5 (2)C5C—C4C—C9C119.4 (2)
C6A—C5A—C4A120.1 (3)C6C—C5C—C4C120.9 (2)
C6A—C5A—H5A119.9C6C—C5C—H5C119.6
C4A—C5A—H5A119.9C4C—C5C—H5C119.6
C5A—C6A—N2A122.0 (3)C5C—C6C—N2C123.9 (3)
C5A—C6A—C7A119.7 (3)C5C—C6C—C7C119.1 (3)
N2A—C6A—C7A118.2 (3)N2C—C6C—C7C116.9 (3)
C8A—C7A—C6A121.0 (3)C8C—C7C—C6C121.0 (3)
C8A—C7A—H7A119.5C8C—C7C—H7C119.5
C6A—C7A—H7A119.5C6C—C7C—H7C119.5
C7A—C8A—C9A120.6 (3)C7C—C8C—C9C120.9 (3)
C7A—C8A—H8A119.7C7C—C8C—H8C119.5
C9A—C8A—H8A119.7C9C—C8C—H8C119.5
N1A—C9A—C8A119.2 (2)N1C—C9C—C8C118.8 (2)
N1A—C9A—C4A121.8 (2)N1C—C9C—C4C122.7 (2)
C8A—C9A—C4A119.0 (2)C8C—C9C—C4C118.6 (3)
N2B—O1B—H1OB109.5N2D—O1D—H1OD109.5
C1B—N1B—C9B117.1 (3)C1D—N1D—C9D117.7 (3)
N1B—C1B—C2B124.5 (4)N1D—C1D—C2D123.8 (3)
N1B—C1B—H1B117.7N1D—C1D—H1D118.1
C2B—C1B—H1B117.7C2D—C1D—H1D118.1
O1B—N2B—C6B111.6 (3)O1D—N2D—C6D112.9 (3)
O1B—N2B—H2NB104 (3)O1D—N2D—H2ND107 (3)
C6B—N2B—H2NB118 (3)C6D—N2D—H2ND115 (3)
C3B—C2B—C1B119.1 (4)C3D—C2D—C1D119.6 (3)
C3B—C2B—H2B120.4C3D—C2D—H2D120.2
C1B—C2B—H2B120.4C1D—C2D—H2D120.2
C2B—C3B—C4B119.8 (4)C2D—C3D—C4D119.6 (3)
C2B—C3B—H3B120.1C2D—C3D—H3D120.2
C4B—C3B—H3B120.1C4D—C3D—H3D120.2
C3B—C4B—C5B123.2 (3)C5D—C4D—C3D123.3 (3)
C3B—C4B—C9B116.6 (3)C5D—C4D—C9D119.5 (3)
C5B—C4B—C9B120.3 (3)C3D—C4D—C9D117.2 (3)
C6B—C5B—C4B119.6 (3)C6D—C5D—C4D120.1 (3)
C6B—C5B—H5B120.2C6D—C5D—H5D119.9
C4B—C5B—H5B120.2C4D—C5D—H5D119.9
C5B—C6B—N2B123.6 (3)C5D—C6D—N2D123.4 (3)
C5B—C6B—C7B120.0 (3)C5D—C6D—C7D119.8 (3)
N2B—C6B—C7B116.1 (3)N2D—C6D—C7D116.5 (3)
C8B—C7B—C6B120.9 (3)C8D—C7D—C6D120.8 (3)
C8B—C7B—H7B119.6C8D—C7D—H7D119.6
C6B—C7B—H7B119.6C6D—C7D—H7D119.6
C7B—C8B—C9B120.0 (3)C7D—C8D—C9D120.4 (3)
C7B—C8B—H8B120.0C7D—C8D—H8D119.8
C9B—C8B—H8B120.0C9D—C8D—H8D119.8
N1B—C9B—C4B122.8 (3)N1D—C9D—C8D118.5 (3)
N1B—C9B—C8B118.2 (3)N1D—C9D—C4D122.1 (3)
C4B—C9B—C8B118.9 (3)C8D—C9D—C4D119.4 (3)
C9A—N1A—C1A—C2A0.4 (4)C9C—N1C—C1C—C2C1.1 (5)
N1A—C1A—C2A—C3A0.4 (5)N1C—C1C—C2C—C3C0.2 (5)
C1A—C2A—C3A—C4A0.4 (5)C1C—C2C—C3C—C4C0.7 (4)
C2A—C3A—C4A—C9A0.2 (4)C2C—C3C—C4C—C5C178.6 (3)
C2A—C3A—C4A—C5A178.0 (3)C2C—C3C—C4C—C9C0.1 (4)
C3A—C4A—C5A—C6A179.6 (3)C3C—C4C—C5C—C6C179.5 (3)
C9A—C4A—C5A—C6A1.4 (4)C9C—C4C—C5C—C6C1.9 (4)
C4A—C5A—C6A—N2A176.9 (3)C4C—C5C—C6C—N2C179.5 (3)
C4A—C5A—C6A—C7A0.4 (4)C4C—C5C—C6C—C7C1.3 (4)
O1A—N2A—C6A—C5A39.0 (4)O1C—N2C—C6C—C5C40.2 (4)
O1A—N2A—C6A—C7A143.7 (3)O1C—N2C—C6C—C7C140.5 (3)
C5A—C6A—C7A—C8A1.1 (5)C5C—C6C—C7C—C8C3.8 (5)
N2A—C6A—C7A—C8A178.5 (3)N2C—C6C—C7C—C8C176.9 (3)
C6A—C7A—C8A—C9A1.6 (5)C6C—C7C—C8C—C9C3.1 (5)
C1A—N1A—C9A—C8A179.3 (3)C1C—N1C—C9C—C8C178.1 (3)
C1A—N1A—C9A—C4A0.2 (4)C1C—N1C—C9C—C4C2.0 (4)
C7A—C8A—C9A—N1A179.7 (3)C7C—C8C—C9C—N1C179.8 (3)
C7A—C8A—C9A—C4A0.6 (4)C7C—C8C—C9C—C4C0.1 (4)
C3A—C4A—C9A—N1A0.2 (4)C3C—C4C—C9C—N1C1.5 (4)
C5A—C4A—C9A—N1A178.2 (2)C5C—C4C—C9C—N1C177.3 (2)
C3A—C4A—C9A—C8A179.2 (3)C3C—C4C—C9C—C8C178.7 (2)
C5A—C4A—C9A—C8A0.9 (4)C5C—C4C—C9C—C8C2.6 (4)
C9B—N1B—C1B—C2B0.5 (9)C9D—N1D—C1D—C2D0.6 (5)
N1B—C1B—C2B—C3B0.4 (11)N1D—C1D—C2D—C3D0.6 (5)
C1B—C2B—C3B—C4B2.1 (9)C1D—C2D—C3D—C4D0.0 (5)
C2B—C3B—C4B—C5B177.3 (5)C2D—C3D—C4D—C5D177.5 (3)
C2B—C3B—C4B—C9B3.9 (7)C2D—C3D—C4D—C9D0.6 (4)
C3B—C4B—C5B—C6B176.0 (4)C3D—C4D—C5D—C6D176.1 (3)
C9B—C4B—C5B—C6B2.8 (5)C9D—C4D—C5D—C6D2.0 (4)
C4B—C5B—C6B—N2B175.7 (3)C4D—C5D—C6D—N2D170.0 (3)
C4B—C5B—C6B—C7B2.3 (5)C4D—C5D—C6D—C7D3.2 (4)
O1B—N2B—C6B—C5B31.3 (4)O1D—N2D—C6D—C5D30.3 (4)
O1B—N2B—C6B—C7B155.1 (3)O1D—N2D—C6D—C7D156.3 (3)
C5B—C6B—C7B—C8B5.0 (5)C5D—C6D—C7D—C8D1.9 (5)
N2B—C6B—C7B—C8B178.9 (3)N2D—C6D—C7D—C8D171.8 (3)
C6B—C7B—C8B—C9B2.6 (5)C6D—C7D—C8D—C9D0.7 (5)
C1B—N1B—C9B—C4B2.5 (6)C1D—N1D—C9D—C8D178.2 (3)
C1B—N1B—C9B—C8B175.3 (4)C1D—N1D—C9D—C4D0.1 (4)
C3B—C4B—C9B—N1B4.2 (5)C7D—C8D—C9D—N1D176.3 (3)
C5B—C4B—C9B—N1B176.9 (3)C7D—C8D—C9D—C4D1.9 (4)
C3B—C4B—C9B—C8B173.7 (4)C5D—C4D—C9D—N1D177.5 (3)
C5B—C4B—C9B—C8B5.2 (5)C3D—C4D—C9D—N1D0.7 (4)
C7B—C8B—C9B—N1B179.6 (3)C5D—C4D—C9D—C8D0.6 (4)
C7B—C8B—C9B—C4B2.5 (5)C3D—C4D—C9D—C8D178.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg5, Cg8 and Cg11 are the centroids of the N1A/C1A–C4A/C9A, C4A–C9A, C4B–C9B, C4C–C9C and C4D–C9D rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1B0.841.882.711 (5)170
N2A—H2NA···N2C0.78 (4)2.58 (4)3.351 (5)169 (4)
N2D—H2ND···N2A0.88 (4)2.35 (4)3.204 (4)165 (4)
O1B—H1OB···N1Ai0.841.872.689 (4)166
O1C—H1C···N1Dii0.841.822.628 (5)160
O1D—H1OD···N1Ciii0.841.932.764 (4)172
N2B—H2NB···O1Div0.85 (4)2.14 (4)2.935 (4)157 (4)
N2C—H2NC···O1Bii0.85 (4)2.12 (4)2.937 (4)159 (4)
C7C—H7C···O1Bii0.952.583.300 (4)133
C3A—H3A···Cg5v0.952.643.333 (3)130
C3B—H3B···Cg2vi0.952.593.265 (4)129
C3C—H3C···Cg11vii0.952.613.355 (3)136
C3D—H3D···Cg8viii0.952.853.436 (4)121
C7D—H7D···Cg80.952.993.664 (4)129
C8B—H8B···Cg1iv0.952.853.527 (4)129
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z+1; (viii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg5, Cg8 and Cg11 are the centroids of the N1A/C1A–C4A/C9A, C4A–C9A, C4B–C9B, C4C–C9C and C4D–C9D rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1B0.841.882.711 (5)170
N2A—H2NA···N2C0.78 (4)2.58 (4)3.351 (5)169 (4)
N2D—H2ND···N2A0.88 (4)2.35 (4)3.204 (4)165 (4)
O1B—H1OB···N1Ai0.841.872.689 (4)166
O1C—H1C···N1Dii0.841.822.628 (5)160
O1D—H1OD···N1Ciii0.841.932.764 (4)172
N2B—H2NB···O1Div0.85 (4)2.14 (4)2.935 (4)157 (4)
N2C—H2NC···O1Bii0.85 (4)2.12 (4)2.937 (4)159 (4)
C7C—H7C···O1Bii0.952.583.300 (4)133
C3A—H3A···Cg5v0.952.643.333 (3)130
C3B—H3B···Cg2vi0.952.593.265 (4)129
C3C—H3C···Cg11vii0.952.613.355 (3)136
C3D—H3D···Cg8viii0.952.853.436 (4)121
C7D—H7D···Cg80.952.993.664 (4)129
C8B—H8B···Cg1iv0.952.853.527 (4)129
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z+1; (viii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H8N2O
Mr160.17
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.3730 (15), 9.7117 (16), 18.937 (3)
α, β, γ (°)84.855 (2), 83.043 (2), 67.477 (2)
V3)1578.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2008)
Tmin, Tmax0.89, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
31957, 7120, 5311
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.224, 1.06
No. of reflections7120
No. of parameters454
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.70

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We are grateful to the National Institutes of Health (CA 100757) for partial support of this work.

References

First citationAgrawal, A. & Tratnyek, P. G. (1996). Environ. Sci. Technol. 30, 153–160.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT, TWINABS and CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, Y. & Hu, L. (2009). Med. Res. Rev. 29, 29–64.  Web of Science CrossRef PubMed Google Scholar
First citationDaniels, J. S. & Gates, K. S. (1996). J. Am. Chem. Soc. 118, 3380–3385.  CrossRef CAS Web of Science Google Scholar
First citationDenny, W. A. & Wilson, W. R. (1986). J. Med. Chem. 29, 879–887.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFitzsimmons, S. A., Workman, P. A., Grever, M., Paull, K., Camalier, R. & Lewis, A. D. J. (1996). J. Natl Cancer Inst. 88, 259–269.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJames, A. L., Perry, J. D., Jay, C., Monget, D., Rasburn, J. W. & Gould, F. K. (2001). Lett. Appl. Microbiol. 33, 403–408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJunnotula, V., Rajapakse, A., Arbillaga, L., de Cerain, A. L., Solano, B., Villar, R., Monge, A. & Gates, K. S. (2010). Bioorg. Med. Chem. 18, 3125–3132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJunnotula, V., Sarkar, U., Sinha, S. & Gates, K. S. (2009). J. Am. Chem. Soc. 131, 1015–1024.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatterson, A. V., Ferry, D. M., Edmunds, S. J., Gu, Y., Singleton, R. S., Patel, K. B., Pullen, S. M., Hicks, K. O., Syddall, S. P., Atwell, G. J., Yang, S., Denny, W. A. & Wilson, W. R. (2007). Clin. Cancer Res. 13, 3922–3932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPizzolatti, M. G. & Yunes, R. A. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 759–764.  CrossRef Web of Science Google Scholar
First citationRajapakse, A. & Gates, K. S. (2012). J. Org. Chem. 77, 3531–3537.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRajapakse, A., Linder, C., Morrison, R. D., Sarkar, U., Leigh, N. D., Barnes, C. L., Daniels, J. S. & Gates, K. S. (2013). Chem. Res. Toxicol. 26, 555–563.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRooseboom, M., Commandeur, J. N. M. & Vermeulen, N. P. E. (2004). Pharm. Rev. 56, 53–102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRubin, R. L., Uetrecht, J. P. & Jones, J. E. J. (1987). Pharmacol. Exp. Ther. 242, 833–841.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeggi, L. M., Pretto, L., Ochoa, E. J., Catania, V. A., Luquita, M. G., Taborda, D. R., Sánchez Pozzi, E. J., Ikushiro, S., Coleman, P. A., Roma, M. G. & Mottino, A. D. (2008). Life Sci. 83, 155–163.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWalton, M. I., Wolf, C. R. & Workman, P. (1989). Int. J. Radiat. Oncol. Biol. Phys. 16, 983–986.  CrossRef CAS PubMed Google Scholar
First citationWardman, P., Dennis, M. F., Everett, S. A., Patel, K. B., Stratford, M. R. L. & Tracy, M. (1995). Biochem. Soc. Trans. 61, 171–194.  CAS Google Scholar
First citationWen, B., Coe, K. J., Rademacher, P., Fitch, W. L., Monshouwer, M. & Nelson, S. D. (2008). Chem. Res. Toxicol. 21, 2393–2406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, W. R., Anderson, R. F. & Denny, W. A. (1989). J. Med. Chem. 32, 23–30.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWilson, W. R. & Hay, M. P. (2011). Nat. Rev. Cancer, 11, 393–410.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds