research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-aqua­(perchlorato-κO)bis­­(propane-1,3-di­amine-κ2N,N′)copper(II) perchlorate

aDepartment of Physics, Pachaiyappa's College for Men, Kanchipuram 631 501, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 October 2014; accepted 25 October 2014; online 31 October 2014)

In the title compound, [Cu(ClO4)(C3H10N2)2(H2O)]ClO4, the CuII atom has a distorted octa­hedral coordination sphere and is coordinated by the N atoms of two propane-1,3-di­amine ligands in the equatorial plane. The axial positions are occupied by a water O atom and an O atom of a disordered perchlorate anion [occupancy ratio 0.631 (9):0.369 (9)]. In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming sheets lying parallel to (001).

1. Chemical context

There have been numerous reports of bis­(propane-1,3-di­amine)­copper(II) complexes, essentially with the copper atom coordinated by the N atoms of the ligands in the equatorial plane of the copper octa­hedral coordination sphere and with two identical O-containing ligands in the axial positions, for example, trans-di­aqua­bis­(propane-1,3-di­amine-κ2N,N′)copper(II) di­thio­nate (Kim et al., 2003[Kim, Y., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m546-m548.]) and bis­[aqua­(1,3-di­amino­propane-κ2N,N′)]copper(II) difluoride (Emsley et al., 1988[Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1988). Inorg. Chim. Acta, 154, 17-20.]). In order to further develop the coordination chemistry of such copper complexes, we report herein on the synthesis and crystal structure of the title complex, which has two different ligands in the axial positions of the octa­hedral coordination sphere of the copper atom.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex is illustrated in Fig. 1[link]. The CuII atom has a distorted octa­hedral coordination sphere, reflecting the characteristic Jahn–Teller distortion. It is coordinated by the N atoms of two propane-1,3-di­amine ligands in the equatorial plane with Cu—N bond lengths varying between 2.003 (4)–2.023 (3) Å. The axial positions are occupied by the water O9 atom and by atom O7 of a disordered perchlorate anion [occupancy ratio 0.631 (9):0.369 (9)], with Cu—O bond lengths of 2.585 (6) and 2.680 (10) Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The minor components of the disordered coordinating perchlorate anion have been omitted for clarity.

3. Supra­molecular features

In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds forming sheets lying parallel to (001); see Table 1[link] and Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9B⋯O3i 0.90 (2) 2.38 (11) 2.917 (9) 118 (9)
N1—H1C⋯O1 0.90 2.22 3.040 (7) 151
N1—H1D⋯O1ii 0.90 2.69 3.511 (8) 151
N1—H1D⋯O9 0.90 2.41 2.927 (8) 117
N2—H2C⋯O5iii 0.90 2.58 3.443 (12) 162
N2—H2C⋯O8iii 0.90 2.42 3.183 (10) 143
N2—H2C⋯O5′iii 0.90 2.39 3.23 (3) 156
N2—H2D⋯O3iii 0.90 2.70 3.449 (11) 141
N3—H3C⋯O6iv 0.90 2.15 3.014 (9) 160
N3—H3C⋯O7′iv 0.90 2.36 3.246 (17) 169
N3—H3D⋯O3 0.90 2.28 3.137 (8) 160
N4—H4C⋯O2iii 0.90 2.35 3.127 (6) 144
N4—H4D⋯O4i 0.90 2.45 3.223 (7) 145
C4—H4A⋯O5′v 0.97 2.47 3.264 (14) 139
C5—H5B⋯O4i 0.97 2.63 3.368 (7) 133
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) -x, -y, -z.
[Figure 2]
Figure 2
A view along the a axis of the crystal structure of the title compound. O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link] for details; the minor components of the disordered coordinating perchlorate anion and the C-bound H atoms have been omitted for clarity)

4. Synthesis and crystallization

The complex was prepared by mixing copper(II) perchlorate hexa­hydrate with 1,3-di­amino­propane in a (1:2) molar ratio. Cu(ClO4)2·6H2O (3.7 g, 1 M) was dissolved in 15 ml of warm water. After an hour, about 10 ml of an ethanol solution of 1,3-di­amino­propane (1.48 g, 2M) was added dropwise with continuous stirring. This solution was then filtered to remove any impurities and the solution was kept over P2O5 in a desiccator. Finally, violet–purple-coloured crystals suitable for X-ray diffraction analysis were harvested and washed repeatedly with cold water (yield 70%).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water H atoms were located in a difference Fourier map and refined with a distance restraint, O—H = 0.90 (2) Å, and with Uiso(H) = 1.5Ueq(O). The N -and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.90 and C—H = 0.97 Å, and with Uiso(H) = 1.2Ueq(N,C). The disordered coordinating perchlorate anion, involving atom Cl2, was refined with an occupancy ratio of 0.631 (9):0.369 (9).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(ClO4)(C3H10N2)2(H2O)]ClO4
Mr 428.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.8563 (4), 14.2936 (6), 14.8769 (7)
β (°) 100.022 (5)
V3) 1645.11 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.70
Crystal size (mm) 0.30 × 0.30 × 0.25
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with an Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.607, 0.654
No. of measured, independent and observed [I > 2σ(I)] reflections 7573, 2900, 2353
Rint 0.032
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.06
No. of reflections 2900
No. of parameters 242
No. of restraints 109
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.42
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

There have been numerous reports of bis­(propane-1,3-di­amine)­copper(II) complexes, essentially with the copper atom coordinated by the N atoms of the ligands in the equatorial plane of the copper o­cta­hedral coordination sphere and with two identical O-containing ligands in the axial positions, for example, trans-di­aqua­bis­(propane-1,3-di­amine-κ2N,N')copper(II) di­thio­nate (Kim et al., 2003) and bis­[aqua­(1,3-di­amino­propane-κ2N,N')]copper(II) difluoride (Emsley et al., 1988). In order to further develop the coordination chemistry of such copper complexes, we report herein on the synthesis and crystal structure of the title complex, which has two different ligands in the axial positions of the o­cta­hedral coordination sphere of the copper atom.

The molecular structure of the title complex is illustrated in Fig. 1. The CuII atom has a distorted o­cta­hedral coordination sphere. It is coordinated by the N atoms of two propane-1,3-di­amine ligands in the equatorial plane with Cu—N bond lengths varying between 2.003 (4)–2.023 (3) Å. The axial positions are occupied by the water O9 atom and by atom O7 of the disordered perchlorate anion [occupancy ratio 0.631 (9):369 (9)], with Cu—O bond lengths of 2.585 (6) and 2.680 (10) Å, respectively.

Supra­molecular features top

In the crystal, the various components are linked via O—H..O, N—H···O and C—H···O hydrogen bonds forming sheets lying parallel to (001); see Table 1 and Fig. 2.

Synthesis and crystallization top

The complex was prepared by mixing copper(II) perchlorate hexahydrate with 1,3-di­amino­propane in a (1:2) molar ratio. Cu(ClO4)2·6H2O (3.7 g, 1 M) was dissolved in 15 ml of warm water. After an hour, about 10 ml of an ethanol solution of 1,3-di­amino­propane (1.48 g, 2M) was added dropwise with continuous stirring. This solution was then filtered to remove any impurities and the solution was kept over P2O5 in a desiccator. Finally, violet–purple-coloured crystals suitable for X-ray diffraction analysis were harvested and washed repeatedly with cold water (yield 70%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The water H atoms were refined with a distance restraint, O—H = 0.90 (2) Å, and with Uiso(H) = 1.5Ueq(O). The N -and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.90 and C—H = 0.97 Å, and with Uiso(H) = 1.2Ueq(N,C). The disordered coordinating perchlorate anion, involving atom Cl2, was refined with an occupancy ratio of 0.631 (9):369 (9).

Related literature top

For related copper(II) bis(propane-1,3-diamine) complexes, see: Kim et al. (2003); Emsley et al. (1988).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The minor components of the coordinated perchlorate anion have been omitted for clarity.

A view along the a axis of the crystal packing of the title compound. O—H···O and N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; the minor components of the coordinated perchlorate anion and the C-bound H atoms have been omitted for clarity)
trans-Aqua(perchlorato-κO)bis(propane-1,3-diamine-κ2N,N')copper(II) perchlorate top
Crystal data top
[Cu(ClO4)(C3H10N2)2(H2O)]ClO4F(000) = 884
Mr = 428.72Dx = 1.731 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2353 reflections
a = 7.8563 (4) Åθ = 3.8–25.0°
b = 14.2936 (6) ŵ = 1.70 mm1
c = 14.8769 (7) ÅT = 293 K
β = 100.022 (5)°Block, violet-purple
V = 1645.11 (13) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Oxford diffraction Xcalibur
diffractometer with an Eos detector
2900 independent reflections
Radiation source: fine-focus sealed tube2353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 25.0°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.607, Tmax = 0.654k = 1616
7573 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0667P)2 + 1.2858P]
where P = (Fo2 + 2Fc2)/3
2900 reflections(Δ/σ)max = 0.002
242 parametersΔρmax = 0.60 e Å3
109 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(ClO4)(C3H10N2)2(H2O)]ClO4V = 1645.11 (13) Å3
Mr = 428.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8563 (4) ŵ = 1.70 mm1
b = 14.2936 (6) ÅT = 293 K
c = 14.8769 (7) Å0.30 × 0.30 × 0.25 mm
β = 100.022 (5)°
Data collection top
Oxford diffraction Xcalibur
diffractometer with an Eos detector
2900 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2353 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.654Rint = 0.032
7573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046109 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.60 e Å3
2900 reflectionsΔρmin = 0.42 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2060 (10)0.0648 (5)0.4655 (4)0.0879 (19)
H1A0.28410.05990.52340.105*
H1B0.12310.01420.46300.105*
C20.1130 (10)0.1523 (5)0.4648 (4)0.099 (2)
H2A0.05170.15080.51600.119*
H2B0.19850.20170.47710.119*
C30.0098 (8)0.1800 (5)0.3854 (4)0.0846 (17)
H3A0.05060.24230.39650.101*
H3B0.10840.13830.38020.101*
C40.1631 (8)0.0875 (3)0.0573 (3)0.0667 (14)
H4A0.16410.12590.00370.080*
H4B0.04890.06020.05240.080*
C50.2934 (7)0.0105 (3)0.0589 (3)0.0659 (13)
H5A0.27580.01970.00040.079*
H5B0.40830.03760.06930.079*
C60.2841 (8)0.0610 (3)0.1296 (3)0.0700 (14)
H6A0.16710.08510.12180.084*
H6B0.35970.11260.12080.084*
N10.3041 (7)0.0504 (4)0.3943 (3)0.0860 (15)
H1C0.32850.01110.39400.103*
H1D0.40540.08030.41130.103*
N20.0484 (6)0.1812 (3)0.2978 (3)0.0705 (12)
H2C0.09510.23800.29250.085*
H2D0.04710.17800.25460.085*
N30.3333 (6)0.0259 (3)0.2235 (3)0.0678 (11)
H3C0.44730.01360.23250.081*
H3D0.31800.07300.26140.081*
N40.1967 (6)0.1474 (2)0.1393 (2)0.0573 (10)
H4C0.11170.19020.13420.069*
H4D0.29580.17860.13820.069*
O10.3452 (8)0.1512 (3)0.4593 (5)0.149 (2)
O20.1810 (6)0.2818 (4)0.4266 (4)0.1161 (16)
O30.3230 (12)0.2194 (6)0.3219 (5)0.185 (3)
O40.4749 (7)0.2926 (4)0.4506 (5)0.156 (3)
Cl10.33528 (15)0.23745 (7)0.41570 (8)0.0557 (3)
Cl20.18163 (15)0.06425 (9)0.24310 (7)0.0576 (3)
Cu10.21563 (6)0.08711 (3)0.26368 (3)0.0411 (2)
O50.2890 (12)0.1162 (7)0.1754 (6)0.102 (3)0.631 (9)
O60.2845 (9)0.0126 (8)0.2958 (6)0.109 (3)0.631 (9)
O70.0828 (12)0.0013 (7)0.2023 (6)0.133 (4)0.631 (9)
O80.0665 (16)0.1226 (7)0.3013 (6)0.142 (4)0.631 (9)
O5'0.188 (3)0.1082 (17)0.1585 (9)0.156 (9)0.369 (9)
O6'0.0084 (12)0.0497 (11)0.2830 (12)0.117 (5)0.369 (9)
O7'0.2628 (19)0.0227 (8)0.2243 (14)0.131 (6)0.369 (9)
O8'0.258 (2)0.1212 (13)0.2983 (10)0.138 (6)0.369 (9)
O90.4814 (7)0.1951 (5)0.3062 (4)0.133 (2)
H9B0.557 (10)0.173 (8)0.272 (6)0.200*
H9A0.536 (11)0.222 (7)0.357 (4)0.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.121 (5)0.097 (4)0.048 (3)0.019 (4)0.022 (3)0.011 (3)
C20.141 (6)0.105 (5)0.058 (3)0.035 (5)0.032 (4)0.006 (3)
C30.081 (4)0.101 (4)0.076 (4)0.024 (3)0.026 (3)0.019 (3)
C40.092 (4)0.062 (3)0.045 (2)0.005 (3)0.009 (3)0.003 (2)
C50.073 (3)0.067 (3)0.064 (3)0.004 (3)0.028 (3)0.013 (2)
C60.081 (4)0.054 (3)0.076 (3)0.015 (3)0.017 (3)0.014 (2)
N10.115 (4)0.086 (3)0.056 (2)0.043 (3)0.013 (3)0.019 (2)
N20.088 (3)0.066 (3)0.063 (2)0.036 (2)0.028 (2)0.0098 (19)
N30.078 (3)0.060 (2)0.064 (2)0.031 (2)0.010 (2)0.0014 (19)
N40.080 (3)0.045 (2)0.049 (2)0.0049 (19)0.0173 (19)0.0063 (15)
O10.138 (5)0.072 (3)0.221 (6)0.001 (3)0.014 (4)0.046 (4)
O20.078 (3)0.114 (3)0.163 (5)0.024 (3)0.039 (3)0.001 (3)
O30.245 (9)0.197 (7)0.139 (5)0.046 (6)0.107 (6)0.062 (5)
O40.080 (3)0.107 (4)0.276 (8)0.042 (3)0.021 (4)0.059 (5)
Cl10.0524 (6)0.0451 (6)0.0733 (7)0.0054 (5)0.0212 (6)0.0074 (5)
Cl20.0526 (6)0.0603 (7)0.0599 (7)0.0013 (5)0.0092 (5)0.0059 (5)
Cu10.0435 (3)0.0393 (3)0.0415 (3)0.0075 (2)0.0096 (2)0.00435 (19)
O50.104 (6)0.099 (5)0.097 (6)0.017 (5)0.002 (5)0.030 (5)
O60.069 (4)0.162 (9)0.098 (5)0.007 (5)0.019 (4)0.049 (6)
O70.109 (7)0.167 (8)0.127 (7)0.064 (6)0.037 (6)0.023 (6)
O80.185 (10)0.101 (6)0.117 (6)0.043 (7)0.040 (7)0.016 (5)
O5'0.23 (2)0.172 (15)0.059 (8)0.010 (18)0.020 (12)0.023 (9)
O6'0.045 (6)0.115 (11)0.184 (14)0.002 (7)0.002 (7)0.008 (10)
O7'0.108 (11)0.064 (7)0.203 (16)0.002 (7)0.022 (12)0.012 (9)
O8'0.128 (12)0.182 (15)0.109 (10)0.019 (12)0.036 (9)0.044 (10)
O90.118 (4)0.150 (5)0.133 (5)0.054 (4)0.024 (4)0.030 (4)
Geometric parameters (Å, º) top
C1—N11.429 (7)N2—H2C0.9000
C1—C21.447 (8)N2—H2D0.9000
C1—H1A0.9700N3—Cu12.003 (4)
C1—H1B0.9700N3—H3C0.9000
C2—C31.445 (9)N3—H3D0.9000
C2—H2A0.9700N4—Cu12.023 (3)
C2—H2B0.9700N4—H4C0.9000
C3—N21.454 (6)N4—H4D0.9000
C3—H3A0.9700O1—Cl11.388 (5)
C3—H3B0.9700O2—Cl11.402 (4)
C4—N41.476 (6)O3—Cl11.406 (6)
C4—C51.500 (7)O4—Cl11.377 (5)
C4—H4A0.9700Cl2—O8'1.368 (11)
C4—H4B0.9700Cl2—O71.395 (7)
C5—C61.478 (7)Cl2—O5'1.399 (12)
C5—H5A0.9700Cl2—O6'1.402 (9)
C5—H5B0.9700Cl2—O7'1.403 (10)
C6—N31.471 (6)Cl2—O51.408 (7)
C6—H6A0.9700Cl2—O81.411 (7)
C6—H6B0.9700Cl2—O61.425 (6)
N1—Cu12.015 (4)O9—H9B0.90 (2)
N1—H1C0.9000O9—H9A0.89 (2)
N1—H1D0.9000Cu1—092.585 (6)
N2—Cu12.006 (4)Cu1—O72.680 (1)
N1—C1—C2117.2 (5)C6—N3—H3D107.3
N1—C1—H1A108.0Cu1—N3—H3D107.3
C2—C1—H1A108.0H3C—N3—H3D106.9
N1—C1—H1B108.0C4—N4—Cu1118.9 (3)
C2—C1—H1B108.0C4—N4—H4C107.6
H1A—C1—H1B107.3Cu1—N4—H4C107.6
C3—C2—C1120.5 (5)C4—N4—H4D107.6
C3—C2—H2A107.2Cu1—N4—H4D107.6
C1—C2—H2A107.2H4C—N4—H4D107.0
C3—C2—H2B107.2O4—Cl1—O1110.8 (4)
C1—C2—H2B107.2O4—Cl1—O2110.2 (3)
H2A—C2—H2B106.8O1—Cl1—O2109.1 (4)
C2—C3—N2117.8 (5)O4—Cl1—O3113.1 (5)
C2—C3—H3A107.9O1—Cl1—O3106.8 (5)
N2—C3—H3A107.9O2—Cl1—O3106.6 (5)
C2—C3—H3B107.9O8'—Cl2—O7169.0 (9)
N2—C3—H3B107.9O8'—Cl2—O5'108.7 (11)
H3A—C3—H3B107.2O7—Cl2—O5'80.5 (10)
N4—C4—C5112.9 (4)O8'—Cl2—O6'109.2 (10)
N4—C4—H4A109.0O7—Cl2—O6'61.0 (7)
C5—C4—H4A109.0O5'—Cl2—O6'109.2 (10)
N4—C4—H4B109.0O8'—Cl2—O7'114.5 (10)
C5—C4—H4B109.0O7—Cl2—O7'67.0 (8)
H4A—C4—H4B107.8O5'—Cl2—O7'105.9 (13)
C6—C5—C4113.7 (4)O6'—Cl2—O7'109.1 (8)
C6—C5—H5A108.8O8'—Cl2—O581.0 (9)
C4—C5—H5A108.8O7—Cl2—O5109.8 (6)
C6—C5—H5B108.8O5'—Cl2—O536.4 (9)
C4—C5—H5B108.8O6'—Cl2—O5142.9 (7)
H5A—C5—H5B107.7O7'—Cl2—O597.5 (8)
N3—C6—C5113.7 (4)O8'—Cl2—O865.3 (8)
N3—C6—H6A108.8O7—Cl2—O8107.6 (6)
C5—C6—H6A108.8O5'—Cl2—O8101.9 (11)
N3—C6—H6B108.8O6'—Cl2—O850.0 (7)
C5—C6—H6B108.8O7'—Cl2—O8150.1 (8)
H6A—C6—H6B107.7O5—Cl2—O8111.6 (6)
C1—N1—Cu1122.5 (4)O8'—Cl2—O668.1 (8)
C1—N1—H1C106.7O7—Cl2—O6108.5 (6)
Cu1—N1—H1C106.7O5'—Cl2—O6142.2 (11)
C1—N1—H1D106.7O6'—Cl2—O6106.9 (7)
Cu1—N1—H1D106.7O7'—Cl2—O650.9 (8)
H1C—N1—H1D106.6O5—Cl2—O6109.9 (5)
C3—N2—Cu1122.8 (3)O8—Cl2—O6109.5 (6)
C3—N2—H2C106.6N3—Cu1—N2166.5 (2)
Cu1—N2—H2C106.6N3—Cu1—N188.76 (17)
C3—N2—H2D106.6N2—Cu1—N193.53 (17)
Cu1—N2—H2D106.6N3—Cu1—N491.99 (15)
H2C—N2—H2D106.6N2—Cu1—N489.94 (15)
C6—N3—Cu1120.0 (3)N1—Cu1—N4161.9 (2)
C6—N3—H3C107.3H9B—O9—H9A111 (3)
Cu1—N3—H3C107.3
N1—C1—C2—C356.0 (10)C6—N3—Cu1—N435.4 (4)
C1—C2—C3—N253.1 (10)C3—N2—Cu1—N379.8 (9)
N4—C4—C5—C667.7 (6)C3—N2—Cu1—N119.6 (5)
C4—C5—C6—N366.7 (6)C3—N2—Cu1—N4178.1 (5)
C2—C1—N1—Cu141.1 (9)C1—N1—Cu1—N3144.4 (5)
C2—C3—N2—Cu135.8 (8)C1—N1—Cu1—N222.4 (5)
C5—C6—N3—Cu154.2 (6)C1—N1—Cu1—N4123.0 (6)
C5—C4—N4—Cu155.5 (5)C4—N4—Cu1—N336.2 (4)
C6—N3—Cu1—N262.7 (8)C4—N4—Cu1—N2130.4 (4)
C6—N3—Cu1—N1162.7 (4)C4—N4—Cu1—N1128.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O3i0.90 (2)2.38 (11)2.917 (9)118 (9)
N1—H1C···O10.902.223.040 (7)151
N1—H1D···O1ii0.902.693.511 (8)151
N1—H1D···O90.902.412.927 (8)117
N2—H2C···O5iii0.902.583.443 (12)162
N2—H2C···O8iii0.902.423.183 (10)143
N2—H2C···O5iii0.902.393.23 (3)156
N2—H2D···O3iii0.902.703.449 (11)141
N3—H3C···O6iv0.902.153.014 (9)160
N3—H3C···O7iv0.902.363.246 (17)169
N3—H3D···O30.902.283.137 (8)160
N4—H4C···O2iii0.902.353.127 (6)144
N4—H4D···O4i0.902.453.223 (7)145
C4—H4A···O5v0.972.473.264 (14)139
C5—H5B···O4i0.972.633.368 (7)133
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O3i0.90 (2)2.38 (11)2.917 (9)118 (9)
N1—H1C···O10.902.223.040 (7)151
N1—H1D···O1ii0.902.693.511 (8)151
N1—H1D···O90.902.412.927 (8)117
N2—H2C···O5iii0.902.583.443 (12)162
N2—H2C···O8iii0.902.423.183 (10)143
N2—H2C···O5'iii0.902.393.23 (3)156
N2—H2D···O3iii0.902.703.449 (11)141
N3—H3C···O6iv0.902.153.014 (9)160
N3—H3C···O7'iv0.902.363.246 (17)169
N3—H3D···O30.902.283.137 (8)160
N4—H4C···O2iii0.902.353.127 (6)144
N4—H4D···O4i0.902.453.223 (7)145
C4—H4A···O5'v0.972.473.264 (14)139
C5—H5B···O4i0.972.633.368 (7)133
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)(C3H10N2)2(H2O)]ClO4
Mr428.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8563 (4), 14.2936 (6), 14.8769 (7)
β (°) 100.022 (5)
V3)1645.11 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerOxford diffraction Xcalibur
diffractometer with an Eos detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.607, 0.654
No. of measured, independent and
observed [I > 2σ(I)] reflections
7573, 2900, 2353
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.06
No. of reflections2900
No. of parameters242
No. of restraints109
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

JG and ASP are grateful to the CSIR, New Delhi [Lr: No. 01 (2570)/12/EMR-II/3.4.2012] for financial support through a major research project. The authors thank the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

References

First citationEmsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1988). Inorg. Chim. Acta, 154, 17–20.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, Y., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m546–m548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds