organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1191-o1192

Crystal structure of N,N-di­ethyl­benzene-1,4-diaminium dinitrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, bScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria
*Correspondence e-mail: g.smith@qut.edu.au, setifi_zouaoui@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 October 2014; accepted 19 October 2014; online 24 October 2014)

In the structure of the title mol­ecular salt, C10H18N22+·2NO3, the dinitrate salt of 4-(N,N-di­ethyl­amino)­aniline, the two ethyl groups lie almost perpendicular to the plane of the benzene ring [the ring-to-ethyl C—C—N—C torsion angles are −59.5 (2) and 67.5 (3)°]. The aminium groups of the cation form inter-species N—H⋯O hydrogen bonds with the nitro O-atom acceptors of both anions, giving rise to chain substructures lying along c. The chains are linked via further N—H⋯O hydrogen bonds, forming two-dimensional networks lying parallel to (010). These sheets are linked by C—H⋯O hydrogen bonds, forming a three-dimensional structure.

1. Related literature

For the structures of metal complex structures with dicationic 4-[N,N-di­ethyl­amino)­aniline or 4-[N,N-di­ethyl­amino)-2-methyl­aniline species as counter-ions, see: Dobrzycki & Woźniak (2008[Dobrzycki, L. & Woźniak, K. (2008). CrystEngComm, 10, 577-589.]); Bringley et al. (2005[Bringley, J. F., Rajeswaran, M., Olson, L. P. & Liebert, N. M. (2005). J. Solid State Chem. 178, 3074-3089.]). For the structure of similar dicationic benzene-1,4-diaminium species, see: Chandrasekaran (1969[Chandrasekaran, R. (1969). Acta Cryst. B25, 369-374.]); Anderson et al. (2006[Anderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138-2140.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H18N22+·2NO3

  • Mr = 290.28

  • Orthorhombic, F d d 2

  • a = 38.821 (5) Å

  • b = 20.900 (5) Å

  • c = 7.172 (5) Å

  • V = 5819 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.18 × 0.09 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.988

  • 7645 measured reflections

  • 3156 independent reflections

  • 2522 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.03

  • 3156 reflections

  • 193 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5 0.90 (2) 1.84 (2) 2.731 (3) 178 (2)
N1—H1B⋯O5i 0.89 (2) 1.92 (2) 2.803 (3) 175 (2)
N1—H1C⋯O3ii 0.89 (2) 1.99 (2) 2.855 (3) 165 (2)
N2—H21⋯O1 0.87 (2) 2.08 (2) 2.930 (3) 167 (2)
N2—H21⋯O2 0.87 (2) 2.60 (2) 3.198 (3) 127 (2)
C2—H2⋯O2iii 0.93 2.47 3.216 (4) 137
C3—H3⋯O1 0.93 2.46 3.236 (4) 141
C5—H5⋯O3iv 0.93 2.57 3.467 (4) 161
C8—H8A⋯O3iv 0.97 2.59 3.552 (4) 173
Symmetry codes: (i) [-x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{3\over 4}}]; (iii) [-x+{\script{5\over 4}}, y+{\script{1\over 4}}, z+{\script{1\over 4}}]; (iv) [-x+{\script{5\over 4}}, y-{\script{1\over 4}}, z+{\script{3\over 4}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In the Cambridge Structural Database (CSD, V5.35, last update May 2014; Allen, 2002), only one structure with the title dicationic species 4-(N,N-diethylamino)aniline (DEAA2+) as a counter-ion is found, in the complex (DEAA2+)2 [PbCl6]4- hydrate (Dobrzycki & Woźniak, 2008). Complexes with the analogous 4-(N,N-diethylamino)-2-methylaniline dication as a counter-ion are also known, e.g. with [CuCl4]2- (Dobrzycki & Woźniak, 2008) and with [Ag2Br6]4- and [Ag2I6]4- (Bringley et al., 2005).

In the title compound, Fig. 1, the two ethyl groups lie almost perpendicular to the plane of the benzene ring [C5—C4—N2—C7/C8 torsion angles are 67.5 (3) and -59.5 (2)°], respectively, which is similar to the conformation assumed by these groups in the structures of the analogous dications in all of the prevously mentioned complex structures.

In the crystal of the title salt, all the aminium groups of the cation form inter-species N—H···O hydrogen bonds with the nitro O-atoms of both anions (Table 1), which includes an asymmetric three-centre R21(4) association with the tertiary aminium group (N2) and O1 and O2 (Table 1). One-dimensional chains are formed along c (Fig. 2) and are further extended into a two-dimensional network lying parallel to (010). Weak C—H···O hydrogen-bonding associations are also present in an overall three-dimensional structure (Fig. 3), in which nitrate O-atoms O4 and O6 are not involved in any interactions.

Related literature top

For the structures of metal complex structures with dicationic 4-[N,N-diethylamino)aniline or 4-[N,N-diethylamino)-2-methylaniline species as counter-ions, see: Dobrzycki & Woźniak (2008); Bringley et al. (2005). For the structure of similar dicationic benzene-1,4-diaminium species, see: Chandrasekaran (1969); Anderson et al. (2006).

Experimental top

The title compound was synthesized from a mixture of Ni(NO3)2. 6H2O (291 mg, 1 mmol) and 4-(N,N-diethylamino)aniline sulfate (262 mg, 1 mmol) in methanol (40 ml). The resulting solution was stirred for 30 min at room temperature. After 10 d, single crystals suitable for X-ray diffraction were collected by filtration, washed with water and dried in air (yield 35%).

Refinement top

N-bound H atoms were located from a difference Fourier map and included in the refinement with restraints [N—H = 0.88 (2) Å] and allowed to ride with Uiso(H) = 1.2Ueq(N). Other H-atoms were placed in calculated positions [C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl)] and allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(C) (aromatic and methylene) or 1.5Ueq(C) (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

A partial extension of the cation–anion chain substructure in the title salt in the unit cell viewed along a. Non-associative H-atoms are omitted and formal hydrogen-bonding associations are shown as dashed lines (see Table 1 for details; for symmetry codes see Table 1).

The crystal packing of the title salt viewed along c, illustrating the three-dimensional structure. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
N,N-Diethylbenzene-1,4-diaminium dinitrate top
Crystal data top
C10H18N22+·2NO3F(000) = 2464
Mr = 290.28Dx = 1.325 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 6123 reflections
a = 38.821 (5) Åθ = 2.4–30.4°
b = 20.900 (5) ŵ = 0.11 mm1
c = 7.172 (5) ÅT = 293 K
V = 5819 (4) Å3Plate, brown
Z = 160.30 × 0.18 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3156 independent reflections
Radiation source: fine-focus sealed tube2522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω–2θ scansθmax = 27.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 5042
Tmin = 0.950, Tmax = 0.988k = 2126
7645 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0471P)2 + 2.0648P]
where P = (Fo2 + 2Fc2)/3
3156 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.17 e Å3
5 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H18N22+·2NO3V = 5819 (4) Å3
Mr = 290.28Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 38.821 (5) ŵ = 0.11 mm1
b = 20.900 (5) ÅT = 293 K
c = 7.172 (5) Å0.30 × 0.18 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3156 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2522 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.988Rint = 0.046
7645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0435 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
3156 reflectionsΔρmin = 0.19 e Å3
193 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.49457 (4)0.17907 (9)0.4684 (3)0.0325 (5)
N20.59991 (4)0.03665 (8)0.1133 (3)0.0347 (5)
C10.52168 (4)0.14297 (9)0.3774 (3)0.0279 (5)
C20.54483 (5)0.17368 (10)0.2631 (3)0.0326 (6)
C30.57043 (5)0.13844 (10)0.1755 (3)0.0334 (6)
C40.57233 (4)0.07369 (9)0.2053 (3)0.0298 (6)
C50.54930 (5)0.04263 (10)0.3202 (3)0.0438 (7)
C60.52374 (5)0.07787 (10)0.4069 (3)0.0427 (7)
C70.58608 (6)0.00904 (11)0.0298 (4)0.0496 (8)
C80.62331 (6)0.00310 (12)0.2507 (4)0.0482 (8)
C90.56544 (8)0.02374 (14)0.1775 (4)0.0669 (10)
C100.63942 (7)0.04803 (16)0.3874 (5)0.0715 (10)
O10.63464 (4)0.13421 (8)0.1120 (3)0.0636 (6)
O20.66914 (4)0.05414 (9)0.1229 (3)0.0650 (7)
O30.68100 (4)0.13959 (8)0.2769 (2)0.0463 (5)
N40.66175 (4)0.10900 (9)0.1699 (2)0.0370 (5)
O40.47981 (6)0.10514 (10)0.8776 (4)0.1004 (10)
O50.50571 (4)0.19404 (7)0.8419 (2)0.0464 (5)
O60.47157 (5)0.18295 (13)1.0743 (3)0.0839 (8)
N30.48499 (5)0.15919 (11)0.9348 (3)0.0503 (7)
H1A0.4986 (5)0.1832 (10)0.591 (2)0.0390*
H1B0.4959 (5)0.2192 (8)0.428 (3)0.0390*
H1C0.4749 (4)0.1587 (10)0.448 (3)0.0390*
H20.543300.217600.244800.0390*
H30.586200.158500.097100.0400*
H50.550900.001300.339200.0530*
H60.508000.057700.485000.0510*
H7A0.605200.031400.087800.0600*
H7B0.571700.040600.031800.0600*
H8A0.610100.028800.318100.0580*
H8B0.641400.018900.182700.0580*
H9A0.557000.007400.264700.1010*
H9B0.579700.054100.241600.1010*
H9C0.546300.045600.121100.1010*
H10A0.654000.024500.470700.1070*
H10B0.621700.069200.457600.1070*
H10C0.652800.079300.321700.1070*
H210.6122 (5)0.0669 (9)0.063 (3)0.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0309 (8)0.0341 (10)0.0325 (9)0.0016 (7)0.0053 (7)0.0021 (8)
N20.0328 (8)0.0319 (9)0.0393 (10)0.0006 (7)0.0112 (8)0.0013 (8)
C10.0254 (8)0.0315 (10)0.0269 (10)0.0005 (7)0.0000 (7)0.0008 (9)
C20.0324 (9)0.0246 (10)0.0407 (11)0.0032 (8)0.0056 (9)0.0027 (8)
C30.0310 (9)0.0332 (10)0.0360 (11)0.0076 (8)0.0083 (8)0.0025 (9)
C40.0285 (9)0.0274 (10)0.0336 (10)0.0003 (8)0.0060 (8)0.0021 (9)
C50.0471 (12)0.0260 (11)0.0582 (14)0.0007 (9)0.0193 (11)0.0061 (10)
C60.0411 (11)0.0346 (12)0.0523 (14)0.0042 (9)0.0210 (10)0.0096 (11)
C70.0531 (12)0.0396 (13)0.0562 (15)0.0013 (10)0.0095 (12)0.0171 (12)
C80.0400 (11)0.0537 (15)0.0510 (13)0.0125 (10)0.0069 (11)0.0077 (12)
C90.0802 (17)0.068 (2)0.0525 (15)0.0061 (15)0.0071 (15)0.0158 (16)
C100.0478 (13)0.099 (2)0.0676 (18)0.0045 (14)0.0118 (14)0.0000 (18)
O10.0462 (9)0.0616 (11)0.0829 (13)0.0066 (8)0.0289 (10)0.0033 (11)
O20.0620 (10)0.0481 (10)0.0850 (14)0.0088 (8)0.0077 (11)0.0312 (11)
O30.0395 (8)0.0460 (9)0.0534 (10)0.0014 (7)0.0143 (7)0.0140 (8)
N40.0318 (8)0.0412 (10)0.0380 (10)0.0007 (8)0.0055 (8)0.0010 (9)
O40.1129 (17)0.0573 (13)0.131 (2)0.0358 (12)0.0083 (18)0.0035 (16)
O50.0603 (9)0.0431 (9)0.0359 (8)0.0042 (7)0.0010 (8)0.0006 (8)
O60.0538 (10)0.156 (2)0.0418 (10)0.0075 (12)0.0096 (9)0.0029 (14)
N30.0427 (10)0.0652 (14)0.0429 (11)0.0016 (10)0.0053 (9)0.0083 (11)
Geometric parameters (Å, º) top
O1—N41.248 (2)C4—C51.378 (3)
O2—N41.229 (3)C5—C61.383 (3)
O3—N41.247 (2)C7—C91.495 (4)
O4—N31.219 (3)C8—C101.495 (4)
O5—N31.273 (3)C2—H20.9300
O6—N31.233 (3)C3—H30.9300
N1—C11.450 (3)C5—H50.9300
N2—C41.477 (3)C6—H60.9300
N2—C81.513 (3)C7—H7A0.9700
N2—C71.501 (3)C7—H7B0.9700
N1—H1B0.889 (17)C8—H8A0.9700
N1—H1C0.886 (17)C8—H8B0.9700
N1—H1A0.897 (15)C9—H9B0.9600
N2—H210.87 (2)C9—H9A0.9600
C1—C21.375 (3)C9—H9C0.9600
C1—C61.379 (3)C10—H10C0.9600
C2—C31.387 (3)C10—H10A0.9600
C3—C41.372 (3)C10—H10B0.9600
C4—N2—C7112.31 (15)C1—C2—H2120.00
C4—N2—C8112.79 (19)C3—C2—H2120.00
C7—N2—C8111.43 (17)C4—C3—H3120.00
H1A—N1—H1B102.6 (19)C2—C3—H3120.00
H1A—N1—H1C111.0 (19)C4—C5—H5121.00
H1B—N1—H1C116.7 (18)C6—C5—H5120.00
C1—N1—H1B107.6 (13)C5—C6—H6120.00
C1—N1—H1C107.5 (13)C1—C6—H6120.00
C1—N1—H1A111.4 (13)C9—C7—H7A109.00
C4—N2—H21101.6 (13)N2—C7—H7A109.00
C7—N2—H21112.0 (14)N2—C7—H7B109.00
C8—N2—H21106.1 (13)C9—C7—H7B109.00
O2—N4—O3120.47 (17)H7A—C7—H7B108.00
O1—N4—O3119.57 (18)N2—C8—H8B109.00
O1—N4—O2119.96 (17)N2—C8—H8A109.00
O4—N3—O5117.3 (2)C10—C8—H8B109.00
O5—N3—O6117.5 (2)H8A—C8—H8B108.00
O4—N3—O6125.2 (2)C10—C8—H8A109.00
C2—C1—C6120.92 (18)H9A—C9—H9B109.00
N1—C1—C6119.10 (17)H9A—C9—H9C109.00
N1—C1—C2119.98 (17)C7—C9—H9A110.00
C1—C2—C3119.36 (19)C7—C9—H9B109.00
C2—C3—C4119.44 (19)C7—C9—H9C110.00
N2—C4—C3119.10 (17)H9B—C9—H9C109.00
C3—C4—C5121.52 (18)H10B—C10—H10C109.00
N2—C4—C5119.37 (17)C8—C10—H10A109.00
C4—C5—C6118.90 (19)C8—C10—H10B109.00
C1—C6—C5119.86 (19)C8—C10—H10C109.00
N2—C7—C9112.6 (2)H10A—C10—H10B109.00
N2—C8—C10112.8 (2)H10A—C10—H10C110.00
C7—N2—C4—C3113.1 (2)C6—C1—C2—C30.5 (3)
C7—N2—C4—C567.5 (3)N1—C1—C6—C5179.57 (19)
C8—N2—C4—C3120.0 (2)C2—C1—C6—C50.3 (3)
C8—N2—C4—C559.5 (2)C1—C2—C3—C40.4 (3)
C4—N2—C7—C957.5 (3)C2—C3—C4—N2179.28 (19)
C8—N2—C7—C9174.8 (2)C2—C3—C4—C50.2 (3)
C4—N2—C8—C1056.5 (3)N2—C4—C5—C6179.47 (19)
C7—N2—C8—C10176.1 (2)C3—C4—C5—C60.0 (3)
N1—C1—C2—C3179.37 (19)C4—C5—C6—C10.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.90 (2)1.84 (2)2.731 (3)178 (2)
N1—H1B···O5i0.89 (2)1.92 (2)2.803 (3)175 (2)
N1—H1C···O3ii0.89 (2)1.99 (2)2.855 (3)165 (2)
N2—H21···O10.87 (2)2.08 (2)2.930 (3)167 (2)
N2—H21···O20.87 (2)2.60 (2)3.198 (3)127 (2)
C2—H2···O2iii0.932.473.216 (4)137
C3—H3···O10.932.463.236 (4)141
C5—H5···O3iv0.932.573.467 (4)161
C8—H8A···O3iv0.972.593.552 (4)173
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1/4, y+1/4, z+3/4; (iii) x+5/4, y+1/4, z+1/4; (iv) x+5/4, y1/4, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.897 (15)1.835 (15)2.731 (3)177.9 (16)
N1—H1B···O5i0.889 (17)1.917 (17)2.803 (3)174.8 (19)
N1—H1C···O3ii0.886 (17)1.989 (17)2.855 (3)165 (2)
N2—H21···O10.87 (2)2.08 (2)2.930 (3)167 (2)
N2—H21···O20.87 (2)2.60 (2)3.198 (3)127.3 (15)
C2—H2···O2iii0.932.473.216 (4)137
C3—H3···O10.932.463.236 (4)141
C5—H5···O3iv0.932.573.467 (4)161
C8—H8A···O3iv0.972.593.552 (4)173
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1/4, y+1/4, z+3/4; (iii) x+5/4, y+1/4, z+1/4; (iv) x+5/4, y1/4, z+3/4.
 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research and the Algerian Director­ate General for Scientific Research for financial support. They also acknowledge the support of URCHEMS and Queensland University of Technology.

References

First citationAnderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138–2140.  Web of Science CSD CrossRef Google Scholar
First citationBringley, J. F., Rajeswaran, M., Olson, L. P. & Liebert, N. M. (2005). J. Solid State Chem. 178, 3074–3089.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekaran, R. (1969). Acta Cryst. B25, 369–374.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationDobrzycki, L. & Woźniak, K. (2008). CrystEngComm, 10, 577–589.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1191-o1192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds