metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m361-m362

Crystal structure of bis­­{2-[bis­­(2-hy­dr­oxy­eth­yl)amino]­ethanol-κ3O,N,O′}zinc terephthalate

aDepartment of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China, bDepartment of Orthopedics, The China–Japan Union Hospital of Jilin University Changchun, Changchun 130033, People's Republic of China, cDepartment of Vascular Surgery, The China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, and dSt Erik's Eye Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden
*Correspondence e-mail: drsundj@163.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 27 September 2014; accepted 2 October 2014; online 11 October 2014)

In the title salt, [Zn(C6H15NO3)2](C8H4O4), the ZnII cation, located on a centre of inversion, is coordinated by four O atoms and two N atoms from two tridentate 2-[bis­(2-hy­droxy­eth­yl)amino]­ethanol (BHEA) ligands, giving rise to a slightly distorted octa­hedral geometry. The terephthalate dianion, located about a centre of inversion, is not coordinated to ZnII but is connected through O—H⋯O contacts with [Zn(BHEA)2]2+ cations, leading to a three-dimensional crystal structure.

1. Related literature

For background and a related structure, see: Hamamci et al. (2002[Hamamci, S., Yilmaz, V. T. & Thöne, C. (2002). Acta Cryst. E58, m369-m371.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn(C6H15NO3)2](C8H4O4)

  • Mr = 527.86

  • Triclinic, [P \overline 1]

  • a = 7.963 (5) Å

  • b = 8.823 (5) Å

  • c = 9.198 (5) Å

  • α = 89.315 (5)°

  • β = 72.421 (5)°

  • γ = 66.208 (5)°

  • V = 559.2 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.23 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.803

  • 3145 measured reflections

  • 2189 independent reflections

  • 2165 reflections with I > 2σ(I)

  • Rint = 0.012

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.10

  • 2189 reflections

  • 160 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 (2) 1.82 (2) 2.632 (2) 177 (2)
O2—H2⋯O4ii 0.83 (2) 1.74 (2) 2.564 (2) 178 (2)
O3—H3⋯O5iii 0.87 (2) 2.13 (2) 2.942 (3) 155 (2)
Symmetry codes: (i) -x+2, -y-1, -z; (ii) x-1, y+1, z; (iii) -x+2, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Preparation top

The synthesis was performed under hydro­thermal conditions. A mixture of Zn(CH3COO)2.2(H2O), (0.2 mmol, 0.044 g), 2-[bis­(2-hy­droxy­ethyl)­amino]­ethanol (0.4 mmol, 0.062 g), sodium terephthalate (0.2 mmol, 0.042 g) and H2O (20 mL) in a 30 mL stainless steel reactor with a Teflon liner was heated from 293 to 433 K in 2 h and then held at a constant temperature of 433 K for 72 h, after which the mixture was cooled to 298 K. Colourless crystals of the title compound were recovered from the reaction.

Refinement top

All C-bound H atoms were positioned with idealized geometry (0.93–0.97 Å) and refined isotropically with Uiso(H) = 1.2 Ueq(C) using a riding model. The hy­droxy H-atoms were located in a different Fourier map and were refined with an O—H distance restrained to 0.85 (2) Å and with Uiso(H) = 1.5 Ueq(O).

Related literature top

For background and related structures, see: Hökelek & Necefouglu (1996); Necefoglu et al. (2002); Li et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
A view of the ions in the title salt. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms in the cation are related by 1-x, -y, -z, and those in the dianion by 1-x, -1-y, 1-z.

A view of the crystal structure of the title salt. Hydrogen bonds are shown as dashed lines.
Bis{2-[bis(2-hydroxyethyl)amino]ethanol-κ3O,N,O'}zinc terephthalate top
Crystal data top
[Zn(C6H15NO3)2](C8H4O4)Z = 1
Mr = 527.86F(000) = 278
Triclinic, P1Dx = 1.567 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.963 (5) ÅCell parameters from 2165 reflections
b = 8.823 (5) Åθ = 1.7–22.8°
c = 9.198 (5) ŵ = 1.16 mm1
α = 89.315 (5)°T = 293 K
β = 72.421 (5)°Block, colourless
γ = 66.208 (5)°0.26 × 0.24 × 0.23 mm
V = 559.2 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2189 independent reflections
Radiation source: fine-focus sealed tube2165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 26.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 98
Tmin = 0.725, Tmax = 0.803k = 1010
3145 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.3177P]
where P = (Fo2 + 2Fc2)/3
2189 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.45 e Å3
3 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Zn(C6H15NO3)2](C8H4O4)γ = 66.208 (5)°
Mr = 527.86V = 559.2 (6) Å3
Triclinic, P1Z = 1
a = 7.963 (5) ÅMo Kα radiation
b = 8.823 (5) ŵ = 1.16 mm1
c = 9.198 (5) ÅT = 293 K
α = 89.315 (5)°0.26 × 0.24 × 0.23 mm
β = 72.421 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2189 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2165 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.803Rint = 0.012
3145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.45 e Å3
2189 reflectionsΔρmin = 0.51 e Å3
160 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6774 (3)0.3639 (2)0.0601 (2)0.0370 (5)
H1A0.77470.46640.12480.044*
H1B0.55970.37960.01380.044*
C20.7484 (3)0.3279 (2)0.0655 (2)0.0331 (4)
H2A0.74750.40870.13780.040*
H2B0.88140.34170.01990.040*
C30.3010 (3)0.1603 (3)0.2345 (2)0.0363 (5)
H3A0.33740.27590.19980.044*
H3B0.18320.12280.32240.044*
C40.4611 (3)0.1470 (3)0.2818 (2)0.0325 (4)
H4A0.40910.04170.34620.039*
H4B0.50570.23610.34260.039*
C50.7460 (3)0.0863 (3)0.2013 (3)0.0371 (5)
H5A0.67410.03410.22080.044*
H5B0.86480.11070.11680.044*
C60.8006 (4)0.1462 (3)0.3430 (3)0.0463 (5)
H6A0.85790.07930.37450.056*
H6B0.68510.13290.42680.056*
C70.9062 (2)0.7092 (2)0.3337 (2)0.0260 (4)
C80.6957 (2)0.5992 (2)0.4202 (2)0.0228 (3)
C90.5509 (3)0.6072 (2)0.3698 (2)0.0253 (4)
H90.58460.67890.28230.030*
C100.6436 (3)0.4910 (2)0.5508 (2)0.0250 (4)
H100.73920.48440.58520.030*
N10.6286 (2)0.15730 (18)0.14967 (17)0.0229 (3)
O10.63918 (19)0.23022 (16)0.15252 (15)0.0273 (3)
O20.26592 (18)0.06108 (17)0.11409 (15)0.0283 (3)
O30.9319 (3)0.3128 (2)0.3114 (2)0.0553 (5)
O40.9393 (2)0.8061 (2)0.21957 (18)0.0411 (4)
O51.03466 (19)0.69733 (19)0.37935 (16)0.0357 (3)
Zn10.50000.00000.00000.01988 (10)
H10.738 (3)0.249 (3)0.224 (2)0.030*
H20.160 (3)0.020 (2)0.150 (3)0.030*
H30.954 (3)0.343 (3)0.397 (2)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0491 (12)0.0214 (9)0.0346 (10)0.0125 (9)0.0086 (9)0.0021 (8)
C20.0334 (10)0.0202 (9)0.0327 (10)0.0003 (7)0.0084 (8)0.0034 (7)
C30.0277 (9)0.0398 (11)0.0383 (11)0.0150 (9)0.0056 (8)0.0149 (9)
C40.0298 (9)0.0384 (10)0.0218 (9)0.0095 (8)0.0049 (7)0.0076 (8)
C50.0427 (11)0.0357 (11)0.0466 (12)0.0202 (9)0.0284 (10)0.0128 (9)
C60.0430 (12)0.0505 (14)0.0519 (14)0.0171 (11)0.0281 (11)0.0066 (11)
C70.0202 (8)0.0259 (9)0.0237 (8)0.0041 (7)0.0038 (7)0.0040 (7)
C80.0184 (8)0.0208 (8)0.0238 (8)0.0053 (6)0.0038 (6)0.0041 (6)
C90.0231 (8)0.0249 (9)0.0233 (8)0.0071 (7)0.0055 (7)0.0011 (6)
C100.0205 (8)0.0271 (9)0.0263 (9)0.0084 (7)0.0082 (7)0.0027 (7)
N10.0215 (7)0.0215 (7)0.0236 (7)0.0066 (6)0.0078 (6)0.0031 (6)
O10.0249 (6)0.0268 (6)0.0237 (6)0.0075 (5)0.0038 (5)0.0028 (5)
O20.0189 (6)0.0293 (7)0.0303 (7)0.0059 (5)0.0050 (5)0.0047 (5)
O30.0529 (10)0.0576 (11)0.0483 (10)0.0096 (9)0.0261 (9)0.0130 (8)
O40.0226 (7)0.0423 (8)0.0432 (8)0.0025 (6)0.0049 (6)0.0157 (7)
O50.0188 (6)0.0481 (9)0.0311 (7)0.0068 (6)0.0056 (5)0.0038 (6)
Zn10.01853 (15)0.01801 (15)0.01999 (15)0.00478 (11)0.00604 (10)0.00264 (10)
Geometric parameters (Å, º) top
C1—O11.431 (2)C6—H6B0.9700
C1—C21.518 (3)C7—O41.255 (2)
C1—H1A0.9700C7—O51.257 (2)
C1—H1B0.9700C7—C81.511 (2)
C2—N11.483 (2)C8—C101.390 (3)
C2—H2A0.9700C8—C91.393 (3)
C2—H2B0.9700C9—C10i1.390 (3)
C3—O21.427 (2)C9—H90.9300
C3—C41.511 (3)C10—C9i1.390 (3)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700N1—Zn12.1282 (16)
C4—N11.480 (2)O1—Zn12.1529 (16)
C4—H4A0.9700O1—H10.815 (16)
C4—H4B0.9700O2—Zn12.1169 (16)
C5—N11.496 (2)O2—H20.825 (16)
C5—C61.519 (3)O3—H30.870 (16)
C5—H5A0.9700Zn1—O2ii2.1169 (16)
C5—H5B0.9700Zn1—N1ii2.1282 (16)
C6—O31.388 (3)Zn1—O1ii2.1529 (16)
C6—H6A0.9700
O1—C1—C2111.27 (16)O5—C7—C8118.64 (16)
O1—C1—H1A109.4C10—C8—C9119.17 (16)
C2—C1—H1A109.4C10—C8—C7121.09 (16)
O1—C1—H1B109.4C9—C8—C7119.74 (16)
C2—C1—H1B109.4C10i—C9—C8120.58 (17)
H1A—C1—H1B108.0C10i—C9—H9119.7
N1—C2—C1112.93 (16)C8—C9—H9119.7
N1—C2—H2A109.0C9i—C10—C8120.26 (17)
C1—C2—H2A109.0C9i—C10—H10119.9
N1—C2—H2B109.0C8—C10—H10119.9
C1—C2—H2B109.0C4—N1—C2113.25 (15)
H2A—C2—H2B107.8C4—N1—C5109.91 (16)
O2—C3—C4110.59 (16)C2—N1—C5112.28 (16)
O2—C3—H3A109.5C4—N1—Zn1104.11 (11)
C4—C3—H3A109.5C2—N1—Zn1108.27 (12)
O2—C3—H3B109.5C5—N1—Zn1108.59 (12)
C4—C3—H3B109.5C1—O1—Zn1107.34 (11)
H3A—C3—H3B108.1C1—O1—H1108.2 (17)
N1—C4—C3113.26 (16)Zn1—O1—H1120.1 (16)
N1—C4—H4A108.9C3—O2—Zn1112.52 (11)
C3—C4—H4A108.9C3—O2—H2108.0 (16)
N1—C4—H4B108.9Zn1—O2—H2114.6 (16)
C3—C4—H4B108.9C6—O3—H3106.6 (15)
H4A—C4—H4B107.7O2ii—Zn1—O2180.00 (4)
N1—C5—C6117.31 (18)O2ii—Zn1—N1ii81.99 (7)
N1—C5—H5A108.0O2—Zn1—N1ii98.01 (7)
C6—C5—H5A108.0O2ii—Zn1—N198.01 (7)
N1—C5—H5B108.0O2—Zn1—N181.99 (7)
C6—C5—H5B108.0N1ii—Zn1—N1180.0
H5A—C5—H5B107.2O2ii—Zn1—O1ii90.41 (6)
O3—C6—C5110.1 (2)O2—Zn1—O1ii89.59 (6)
O3—C6—H6A109.6N1ii—Zn1—O1ii82.73 (7)
C5—C6—H6A109.6N1—Zn1—O1ii97.27 (7)
O3—C6—H6B109.6O2ii—Zn1—O189.59 (6)
C5—C6—H6B109.6O2—Zn1—O190.41 (6)
H6A—C6—H6B108.2N1ii—Zn1—O197.27 (7)
O4—C7—O5124.72 (16)N1—Zn1—O182.73 (7)
O4—C7—C8116.64 (16)O1ii—Zn1—O1180.00 (12)
O1—C1—C2—N147.2 (2)C3—O2—Zn1—N14.13 (13)
O2—C3—C4—N143.7 (2)C3—O2—Zn1—O1ii93.26 (13)
N1—C5—C6—O368.3 (3)C3—O2—Zn1—O186.74 (13)
O4—C7—C8—C10178.15 (17)C4—N1—Zn1—O2ii154.45 (12)
O5—C7—C8—C102.2 (3)C2—N1—Zn1—O2ii84.78 (12)
O4—C7—C8—C91.1 (3)C5—N1—Zn1—O2ii37.38 (13)
O5—C7—C8—C9178.52 (17)C4—N1—Zn1—O225.55 (12)
C10—C8—C9—C10i0.3 (3)C2—N1—Zn1—O295.22 (12)
C7—C8—C9—C10i179.03 (16)C5—N1—Zn1—O2142.62 (13)
C9—C8—C10—C9i0.3 (3)C4—N1—Zn1—N1ii80 (100)
C7—C8—C10—C9i179.02 (16)C2—N1—Zn1—N1ii41 (100)
C3—C4—N1—C272.9 (2)C5—N1—Zn1—N1ii163 (100)
C3—C4—N1—C5160.62 (17)C4—N1—Zn1—O1ii63.01 (12)
C3—C4—N1—Zn144.47 (18)C2—N1—Zn1—O1ii176.22 (12)
C1—C2—N1—C487.9 (2)C5—N1—Zn1—O1ii54.06 (13)
C1—C2—N1—C5146.89 (18)C4—N1—Zn1—O1116.99 (12)
C1—C2—N1—Zn127.01 (19)C2—N1—Zn1—O13.78 (12)
C6—C5—N1—C448.9 (2)C5—N1—Zn1—O1125.94 (13)
C6—C5—N1—C278.1 (2)C1—O1—Zn1—O2ii118.61 (13)
C6—C5—N1—Zn1162.17 (16)C1—O1—Zn1—O261.39 (13)
C2—C1—O1—Zn140.83 (19)C1—O1—Zn1—N1ii159.52 (12)
C4—C3—O2—Zn118.7 (2)C1—O1—Zn1—N120.48 (12)
C3—O2—Zn1—O2ii116 (100)C1—O1—Zn1—O1ii79 (100)
C3—O2—Zn1—N1ii175.87 (13)
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5iii0.82 (2)1.82 (2)2.632 (2)177 (2)
O2—H2···O4iv0.83 (2)1.74 (2)2.564 (2)178 (2)
O3—H3···O5v0.87 (2)2.13 (2)2.942 (3)155 (2)
Symmetry codes: (iii) x+2, y1, z; (iv) x1, y+1, z; (v) x+2, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.815 (16)1.818 (17)2.632 (2)177 (2)
O2—H2···O4ii0.825 (16)1.740 (16)2.564 (2)178 (2)
O3—H3···O5iii0.870 (16)2.129 (18)2.942 (3)155 (2)
Symmetry codes: (i) x+2, y1, z; (ii) x1, y+1, z; (iii) x+2, y1, z+1.
 

Acknowledgements

The project is supported by the Inter­national Scientific and Technological Cooperation Foundation of Jilin Province (20120722).

References

First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamamci, S., Yilmaz, V. T. & Thöne, C. (2002). Acta Cryst. E58, m369–m371.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m361-m362
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds