metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m376-m377

Crystal structure of poly[[{μ2-1,4-bis­[(1H-imid­azol-1-yl)methyl]benzene}[μ6-5-(4-carboxylato­phen­oxy)isophthalato]-μ3-hydroxido-dicobalt(II)] 0.25-hydrate]

aDepartment of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin Province, People's Republic of China, bDepartment of Vascular Surgery, The China–Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China, cSt Erik's Eye Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112-82, Stockholm, Sweden, and dDepartment of Gynaecology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin Province, People's Republic of China
*Correspondence e-mail: sundajun2014@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 July 2014; accepted 17 October 2014; online 29 October 2014)

The title coordination polymer, {[Co2(C15H7O7)(OH)(C14H14N4)]·0.25H2O}n, was synthesized under hydro­thermal conditions. The asymmetric unit contains two Co2+ ions, one L3− anion originating from 5-(4-carb­oxy­phen­oxy)isophthalic acid (H3L), one OH ligand, one 1,4-bis­[(1H-imidazol-l-yl)meth­yl]benzene (bix) ligand and one disordered lattice water mol­ecule (occupancy 0.25). The two Co2+ ions have different environments. One has an octa­hedral O4N2 coordin­ation sphere, defined by four O atoms from three carboxyl­ate groups and one OH ligand, and two N atoms from two symmetry-related bix ligands. The other has a trigonal-bipyramidal O5 coordination sphere resulting from three carboxyl­ate groups and two OH ligands. The dihedral angles between the two benzene rings in the L3− ligand and between the benzene ring and the two imidazole rings in the bix ligand are 67.05 (15), 75.27 (17) and 82.05 (17)°, respectively. Four neighbouring Co2+ ions are linked by six carboxyl­ate groups and two μ3-OH ligands, forming a butterfly-shaped secondary building unit (SBU). These SBUs are connected by L3− anions into layers parallel to (1-10). Adjacent layers are cross-linked by the bix ligands, forming a three-dimensional framework that has a bimodal (3,8)-connected tfz-d topology. The disordered lattice water mol­ecule is located in the voids of the framework and has O⋯O and O⋯N contacts of 2.81 (2) and 2.95 (2) Å, suggesting medium-strength hydrogen bonds. The title compound may be a good candidate for artificial eye lenses.

1. Related literature

For general background to the properties and applications of compounds with metal-organic framework structures (MOFs), see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Farrusseng et al. (2009[Farrusseng, D., Aguado, S. & Pinel, C. (2009). Angew. Chem. Int. Ed. 48, 7502-7513.]); Iremonger et al. (2013[Iremonger, S. S., Vaidhyanathan, R., Mah, R. K. & Shimizu, G. K. H. (2013). Inorg. Chem. 52, 4124-4126.]); Kreno et al. (2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]); Kurmoo (2009[Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.]); Song et al. (2013[Song, X.-Z., Song, S.-Y., Zhao, S.-N., Hao, Z.-M., Zhu, M., Meng, X. & Zhang, H.-J. (2013). Dalton Trans. 42, 8183-8187.]); Su et al. (2012[Su, S., Chen, W., Qin, C., Song, S., Guo, Z., Li, G., Song, X., Zhu, M., Wang, S., Hao, Z. & Zhang, H. (2012). Cryst. Growth Des. 12, 1808-1815.]); Wong et al. (2006[Wong, K.-L., Law, G.-L., Yang, Y.-Y. & Wong, W.-T. (2006). Adv. Mater. 18, 1051-1054.]). For topological analysis of crystal structures, see: Blatov et al. (2010[Blatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44-48.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co2(C15H7O7)(OH)(C14H14N4)]·0.25H2O

  • Mr = 676.87

  • Triclinic, [P \overline 1]

  • a = 10.7381 (6) Å

  • b = 10.7477 (6) Å

  • c = 13.5585 (12) Å

  • α = 95.596 (1)°

  • β = 91.497 (1)°

  • γ = 118.728 (1)°

  • V = 1360.85 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 173 K

  • 0.19 × 0.16 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 0.831

  • 7626 measured reflections

  • 5314 independent reflections

  • 4359 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 1.04

  • 5314 reflections

  • 396 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

A mixture of cobalt acetate tetra­hydrate (0.0249 g, 0.1 mmol), 5-(4-carb­oxy­phen­oxy)­isophthalic acid (H3L, 0.0151 g, 0.05 mmol), 1,4-bis­[(1H-imidazol-l-yl)methyl]­benzene (bix) (0.0118 g, 0.05 mmol), water (6 ml) and NaOH (aq, 0.1 molar, 2 ml) was placed in a 20 ml PTFE-lined stainless steel vessel under autogenous pressure, heated at a 413 K for 5 days, and allowed to cool down to room temperature during 30 h. The obtained crystals were collected, washed with water and ethanol, and dried under ambient conditions with a yield of 17% based on cobalt acetate.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 Å (aromatic) and 0.98 Å (methyl­ene), and with Uiso(H) = 1.2Ueq(C). The H atom of the hy­droxy group was located from a difference Fourier map and was refined with a distance restraint of 0.85 (2) Å. Additional electron density was found that was assigned to a lattice water molecule. Refinement of its occupancy revealed a considerable under-occupation that was fixed at 0.25 for the final refinement. H atoms of this molecule were not considered in the final model.

Related literature top

For general background to the properties and applications of compounds with metal-organic framework structures (MOFs), see: Batten & Robson (1998); Farrusseng et al. (2009); Iremonger et al. (2013); Kreno et al. (2012); Kurmoo (2009); Song et al. (2013); Su et al. (2012); Wong et al. (2006). For topological analysis of crystal structures, see: Blatov et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The extended asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The disordered lattice water molecule has been omitted for clarity. [Symmetry codes: i) 2 - x, 2 - y, 1 - z; ii) 2 - x, 1 - y, 1 - z; iii) -1 + x, -1 + y, z; iv) 2 - x, 2 - y, -z; v) 1 - x, 1 - y, z.]

The tetranuclear SBU in the structure of the title compound. [Symmetry code: A) 1 - x,1 - y,-z.]

View of the layered network formed by the SBUs and the L3- anions.
Poly[[{µ2-1,4-bis[(1H-imidazol-1-yl)methyl]benzene}[µ6-5-(4-carboxylatophenoxy)isophthalato]-µ3-hydroxido-dicobalt(II)] 0.25-hydrate] top
Crystal data top
[Co2(C15H7O7)(OH)(C14H14N4)]·0.25H2OV = 1360.85 (16) Å3
Mr = 676.87Z = 2
Triclinic, P1F(000) = 688
Hall symbol: -P 1Dx = 1.651 Mg m3
a = 10.7381 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7477 (6) ŵ = 1.28 mm1
c = 13.5585 (12) ÅT = 173 K
α = 95.596 (1)°Block, red
β = 91.497 (1)°0.19 × 0.16 × 0.15 mm
γ = 118.728 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5314 independent reflections
Radiation source: fine-focus sealed tube4359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 137
Tmin = 0.793, Tmax = 0.831k = 1213
7626 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.038P)2 + 0.1129P]
where P = (Fo2 + 2Fc2)/3
5314 reflections(Δ/σ)max = 0.001
396 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
[Co2(C15H7O7)(OH)(C14H14N4)]·0.25H2Oγ = 118.728 (1)°
Mr = 676.87V = 1360.85 (16) Å3
Triclinic, P1Z = 2
a = 10.7381 (6) ÅMo Kα radiation
b = 10.7477 (6) ŵ = 1.28 mm1
c = 13.5585 (12) ÅT = 173 K
α = 95.596 (1)°0.19 × 0.16 × 0.15 mm
β = 91.497 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
4359 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.831Rint = 0.024
7626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
5314 reflectionsΔρmin = 0.37 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C41.2218 (3)0.9155 (3)0.33134 (18)0.0184 (6)
C51.3041 (3)1.0414 (3)0.29083 (18)0.0174 (6)
H51.39041.11450.32550.021*
C61.2583 (3)1.0586 (3)0.19865 (18)0.0142 (5)
C71.1319 (3)0.9514 (3)0.14908 (18)0.0149 (5)
H71.09970.96450.08700.018*
C81.3462 (3)1.1946 (3)0.15375 (18)0.0159 (5)
C91.2867 (3)0.9886 (3)0.50570 (18)0.0189 (6)
C101.2320 (3)1.0822 (3)0.5104 (2)0.0260 (6)
H101.17581.08280.45530.031*
C111.2605 (3)1.1752 (3)0.5968 (2)0.0235 (6)
H111.22481.24090.59980.028*
C121.3400 (3)1.1742 (3)0.67892 (19)0.0191 (6)
C131.3897 (3)1.0762 (3)0.67393 (19)0.0217 (6)
H131.44131.07200.73030.026*
C141.3646 (3)0.9841 (3)0.58730 (19)0.0217 (6)
H141.40050.91860.58390.026*
C151.3742 (3)1.2825 (3)0.76871 (19)0.0186 (6)
C160.8332 (3)0.2942 (3)0.1162 (2)0.0271 (7)
H160.91600.38560.12450.033*
C170.6168 (3)0.1286 (3)0.0961 (2)0.0338 (7)
H170.51570.08030.08780.041*
C180.6975 (3)0.0639 (3)0.0971 (2)0.0339 (7)
H180.66450.03610.08970.041*
C190.9626 (3)0.1515 (3)0.1249 (2)0.0323 (7)
H19A1.00800.15860.06160.039*
H19B0.93340.05540.14440.039*
C201.0678 (3)0.2645 (3)0.2043 (2)0.0287 (7)
C211.1660 (3)0.3964 (4)0.1793 (2)0.0356 (8)
H211.17180.41140.11130.043*
C221.2558 (3)0.5068 (4)0.2509 (2)0.0343 (8)
H221.32030.59750.23210.041*
C231.2520 (3)0.4855 (3)0.3500 (2)0.0281 (7)
C241.1572 (3)0.3524 (3)0.3759 (2)0.0342 (8)
H241.15570.33600.44350.041*
C251.0645 (3)0.2427 (3)0.3038 (2)0.0345 (7)
H250.99860.15260.32260.041*
C261.3528 (3)0.6094 (3)0.4265 (2)0.0342 (8)
H26A1.44520.61020.43240.041*
H26B1.37010.70020.40290.041*
C271.3559 (3)0.5860 (3)0.6085 (2)0.0255 (6)
H271.44090.57940.61270.031*
C281.1671 (3)0.5928 (3)0.6463 (2)0.0288 (7)
H281.09270.59130.68350.035*
C291.1776 (3)0.6075 (3)0.5482 (2)0.0315 (7)
H291.11410.61900.50470.038*
N31.2798 (2)0.5803 (2)0.68379 (16)0.0221 (5)
N41.2985 (3)0.6023 (3)0.52460 (17)0.0277 (6)
O31.30271 (18)1.19794 (18)0.06670 (12)0.0196 (4)
O41.45267 (18)1.29275 (18)0.20484 (13)0.0215 (4)
O51.2654 (2)0.89221 (18)0.42257 (12)0.0223 (4)
O61.4105 (2)1.25737 (19)0.85136 (13)0.0226 (4)
O71.3637 (2)1.39052 (19)0.75613 (13)0.0248 (4)
O80.58483 (19)0.45012 (18)0.02893 (13)0.0166 (4)
O1W1.333 (2)0.746 (2)0.1092 (16)0.165 (8)*0.25
H8O0.632 (3)0.422 (3)0.0057 (19)0.030 (9)*
C10.9122 (3)0.7102 (3)0.13668 (18)0.0178 (6)
C21.0516 (3)0.8247 (3)0.18914 (18)0.0164 (5)
C31.0979 (3)0.8066 (3)0.28083 (19)0.0186 (6)
H31.04450.72000.30850.022*
N10.7019 (2)0.2740 (2)0.10884 (17)0.0235 (5)
N20.8355 (2)0.1701 (2)0.11079 (16)0.0225 (5)
O10.86795 (18)0.58516 (18)0.15727 (14)0.0230 (4)
O20.84879 (19)0.74906 (19)0.07745 (13)0.0236 (4)
Co10.65561 (4)0.43648 (3)0.16976 (2)0.01604 (10)
Co20.63498 (4)0.65449 (3)0.02558 (2)0.01564 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0237 (14)0.0168 (13)0.0139 (13)0.0096 (12)0.0039 (11)0.0018 (11)
C50.0176 (13)0.0149 (13)0.0162 (13)0.0058 (11)0.0041 (11)0.0010 (10)
C60.0146 (13)0.0114 (12)0.0153 (13)0.0053 (10)0.0013 (10)0.0016 (10)
C70.0168 (13)0.0147 (13)0.0134 (12)0.0080 (11)0.0032 (10)0.0016 (10)
C80.0151 (13)0.0157 (13)0.0169 (13)0.0077 (11)0.0019 (11)0.0019 (11)
C90.0240 (14)0.0160 (13)0.0120 (13)0.0065 (12)0.0025 (11)0.0009 (10)
C100.0348 (17)0.0297 (16)0.0174 (14)0.0195 (14)0.0073 (12)0.0004 (12)
C110.0288 (16)0.0224 (15)0.0230 (14)0.0159 (13)0.0035 (12)0.0021 (12)
C120.0225 (14)0.0146 (13)0.0156 (13)0.0054 (11)0.0009 (11)0.0024 (11)
C130.0248 (15)0.0229 (15)0.0165 (13)0.0111 (12)0.0050 (11)0.0027 (11)
C140.0299 (16)0.0211 (14)0.0171 (14)0.0155 (13)0.0063 (12)0.0006 (11)
C150.0163 (13)0.0167 (14)0.0185 (14)0.0045 (11)0.0002 (11)0.0035 (11)
C160.0248 (16)0.0171 (14)0.0359 (17)0.0082 (13)0.0020 (13)0.0008 (13)
C170.0245 (16)0.0193 (15)0.051 (2)0.0075 (13)0.0014 (14)0.0042 (14)
C180.0354 (18)0.0161 (15)0.047 (2)0.0097 (14)0.0055 (15)0.0023 (14)
C190.0388 (18)0.0387 (18)0.0306 (17)0.0297 (16)0.0061 (14)0.0051 (14)
C200.0317 (17)0.0363 (18)0.0267 (16)0.0252 (15)0.0032 (13)0.0060 (13)
C210.0322 (18)0.060 (2)0.0190 (15)0.0266 (17)0.0005 (13)0.0028 (15)
C220.0253 (17)0.044 (2)0.0289 (17)0.0129 (15)0.0007 (13)0.0078 (15)
C230.0265 (16)0.0365 (18)0.0230 (15)0.0165 (14)0.0007 (12)0.0045 (13)
C240.046 (2)0.0370 (18)0.0225 (16)0.0226 (16)0.0071 (14)0.0034 (14)
C250.044 (2)0.0308 (17)0.0320 (17)0.0221 (16)0.0051 (15)0.0015 (14)
C260.0279 (17)0.0392 (19)0.0248 (16)0.0075 (15)0.0015 (13)0.0070 (14)
C270.0231 (15)0.0245 (15)0.0243 (15)0.0087 (13)0.0089 (12)0.0015 (12)
C280.0274 (16)0.0282 (16)0.0300 (16)0.0126 (14)0.0033 (13)0.0064 (13)
C290.0261 (16)0.0342 (18)0.0313 (17)0.0121 (14)0.0063 (13)0.0083 (14)
N30.0227 (13)0.0186 (12)0.0223 (12)0.0084 (10)0.0047 (10)0.0019 (10)
N40.0277 (14)0.0245 (13)0.0230 (13)0.0066 (11)0.0042 (10)0.0035 (10)
O30.0197 (10)0.0154 (9)0.0169 (9)0.0028 (8)0.0040 (8)0.0057 (8)
O40.0186 (10)0.0165 (10)0.0182 (9)0.0000 (8)0.0043 (8)0.0018 (8)
O50.0359 (12)0.0168 (10)0.0123 (9)0.0119 (9)0.0070 (8)0.0007 (7)
O60.0324 (11)0.0194 (10)0.0159 (9)0.0133 (9)0.0044 (8)0.0009 (8)
O70.0352 (12)0.0159 (10)0.0236 (10)0.0131 (9)0.0012 (9)0.0006 (8)
O80.0170 (10)0.0111 (9)0.0185 (9)0.0046 (8)0.0016 (8)0.0006 (7)
C10.0170 (13)0.0163 (14)0.0152 (13)0.0042 (11)0.0010 (11)0.0027 (11)
C20.0172 (13)0.0141 (13)0.0160 (13)0.0062 (11)0.0000 (11)0.0018 (10)
C30.0218 (14)0.0137 (13)0.0182 (13)0.0069 (11)0.0001 (11)0.0033 (11)
N10.0225 (12)0.0168 (12)0.0292 (13)0.0086 (10)0.0038 (10)0.0005 (10)
N20.0278 (13)0.0208 (12)0.0219 (12)0.0155 (11)0.0028 (10)0.0028 (10)
O10.0160 (10)0.0139 (9)0.0337 (11)0.0030 (8)0.0038 (8)0.0049 (8)
O20.0169 (10)0.0174 (10)0.0257 (10)0.0009 (8)0.0063 (8)0.0079 (8)
Co10.01564 (19)0.01004 (18)0.01836 (19)0.00323 (15)0.00388 (14)0.00201 (14)
Co20.01722 (19)0.01009 (18)0.01444 (18)0.00264 (15)0.00307 (14)0.00217 (14)
Geometric parameters (Å, º) top
C4—C31.381 (4)C22—C231.383 (4)
C4—C51.391 (3)C22—H220.9500
C4—O51.398 (3)C23—C241.386 (4)
C5—C61.393 (3)C23—C261.519 (4)
C5—H50.9500C24—C251.390 (4)
C6—C71.386 (3)C24—H240.9500
C6—C81.508 (3)C25—H250.9500
C7—C21.390 (3)C26—N41.460 (4)
C7—H70.9500C26—H26A0.9900
C8—O41.248 (3)C26—H26B0.9900
C8—O31.268 (3)C27—N31.312 (4)
C9—C101.385 (4)C27—N41.346 (3)
C9—C141.388 (3)C27—H270.9500
C9—O51.388 (3)C28—C291.357 (4)
C10—C111.386 (4)C28—N31.371 (3)
C10—H100.9500C28—H280.9500
C11—C121.390 (3)C29—N41.370 (4)
C11—H110.9500C29—H290.9500
C12—C131.388 (4)N3—Co1i2.139 (2)
C12—C151.504 (4)O3—Co2ii1.9848 (16)
C13—C141.390 (4)O4—Co1iii2.0791 (17)
C13—H130.9500O6—Co2iv2.0247 (18)
C14—H140.9500O7—Co1iv2.1279 (19)
C15—O71.246 (3)O8—Co22.0000 (17)
C15—O61.272 (3)O8—Co12.0811 (17)
C16—N11.318 (4)O8—Co2v2.1395 (18)
C16—N21.341 (3)O8—H8O0.839 (17)
C16—H160.9500C1—O11.256 (3)
C17—C181.347 (4)C1—O21.262 (3)
C17—N11.369 (4)C1—C21.505 (3)
C17—H170.9500C2—C31.392 (3)
C18—N21.360 (4)C3—H30.9500
C18—H180.9500N1—Co12.134 (2)
C19—N21.482 (3)O1—Co12.0860 (17)
C19—C201.508 (4)O2—Co22.0813 (18)
C19—H19A0.9900Co1—O4vi2.0791 (17)
C19—H19B0.9900Co1—O7iv2.1279 (19)
C20—C211.383 (4)Co1—N3i2.139 (2)
C20—C251.390 (4)Co2—O3ii1.9848 (16)
C21—C221.381 (4)Co2—O6iv2.0247 (18)
C21—H210.9500Co2—O8v2.1395 (18)
C3—C4—C5121.2 (2)N4—C26—H26B108.9
C3—C4—O5117.7 (2)C23—C26—H26B108.9
C5—C4—O5120.9 (2)H26A—C26—H26B107.8
C4—C5—C6119.0 (2)N3—C27—N4111.6 (3)
C4—C5—H5120.5N3—C27—H27124.2
C6—C5—H5120.5N4—C27—H27124.2
C7—C6—C5119.9 (2)C29—C28—N3109.8 (3)
C7—C6—C8120.4 (2)C29—C28—H28125.1
C5—C6—C8119.7 (2)N3—C28—H28125.1
C6—C7—C2120.7 (2)C28—C29—N4106.0 (3)
C6—C7—H7119.6C28—C29—H29127.0
C2—C7—H7119.6N4—C29—H29127.0
O4—C8—O3126.2 (2)C27—N3—C28105.6 (2)
O4—C8—C6118.0 (2)C27—N3—Co1i121.73 (19)
O3—C8—C6115.9 (2)C28—N3—Co1i132.6 (2)
C10—C9—C14120.6 (2)C27—N4—C29107.0 (2)
C10—C9—O5123.5 (2)C27—N4—C26126.5 (3)
C14—C9—O5115.8 (2)C29—N4—C26126.5 (2)
C9—C10—C11119.0 (2)C8—O3—Co2ii134.31 (16)
C9—C10—H10120.5C8—O4—Co1iii132.65 (17)
C11—C10—H10120.5C9—O5—C4118.20 (19)
C10—C11—C12121.4 (3)C15—O6—Co2iv115.77 (17)
C10—C11—H11119.3C15—O7—Co1iv144.04 (18)
C12—C11—H11119.3Co2—O8—Co1106.75 (8)
C13—C12—C11118.7 (2)Co2—O8—Co2v100.27 (8)
C13—C12—C15122.1 (2)Co1—O8—Co2v123.61 (8)
C11—C12—C15119.2 (2)Co2—O8—H8O116 (2)
C12—C13—C14120.7 (2)Co1—O8—H8O99 (2)
C12—C13—H13119.7Co2v—O8—H8O112 (2)
C14—C13—H13119.7O1—C1—O2125.9 (2)
C9—C14—C13119.5 (3)O1—C1—C2117.1 (2)
C9—C14—H14120.2O2—C1—C2117.0 (2)
C13—C14—H14120.2C7—C2—C3119.5 (2)
O7—C15—O6124.9 (2)C7—C2—C1120.6 (2)
O7—C15—C12116.9 (2)C3—C2—C1119.8 (2)
O6—C15—C12118.2 (2)C4—C3—C2119.6 (2)
N1—C16—N2111.8 (2)C4—C3—H3120.2
N1—C16—H16124.1C2—C3—H3120.2
N2—C16—H16124.1C16—N1—C17104.8 (2)
C18—C17—N1110.1 (3)C16—N1—Co1120.66 (19)
C18—C17—H17125.0C17—N1—Co1129.3 (2)
N1—C17—H17125.0C16—N2—C18106.8 (2)
C17—C18—N2106.5 (2)C16—N2—C19126.8 (2)
C17—C18—H18126.8C18—N2—C19126.2 (2)
N2—C18—H18126.8C1—O1—Co1125.59 (17)
N2—C19—C20110.2 (2)C1—O2—Co2130.90 (16)
N2—C19—H19A109.6O4vi—Co1—O893.75 (7)
C20—C19—H19A109.6O4vi—Co1—O1171.43 (7)
N2—C19—H19B109.6O8—Co1—O194.52 (7)
C20—C19—H19B109.6O4vi—Co1—O7iv90.30 (7)
H19A—C19—H19B108.1O8—Co1—O7iv95.87 (7)
C21—C20—C25118.4 (3)O1—Co1—O7iv86.61 (7)
C21—C20—C19119.7 (3)O4vi—Co1—N194.34 (8)
C25—C20—C19121.7 (3)O8—Co1—N190.45 (8)
C22—C21—C20121.5 (3)O1—Co1—N187.85 (8)
C22—C21—H21119.2O7iv—Co1—N1171.91 (8)
C20—C21—H21119.2O4vi—Co1—N3i84.20 (8)
C21—C22—C23120.0 (3)O8—Co1—N3i177.78 (8)
C21—C22—H22120.0O1—Co1—N3i87.50 (8)
C23—C22—H22120.0O7iv—Co1—N3i83.32 (8)
C22—C23—C24119.1 (3)N1—Co1—N3i90.55 (9)
C22—C23—C26118.5 (3)O3ii—Co2—O8140.83 (8)
C24—C23—C26122.5 (3)O3ii—Co2—O6iv104.88 (7)
C23—C24—C25120.7 (3)O8—Co2—O6iv113.82 (7)
C23—C24—H24119.7O3ii—Co2—O286.27 (7)
C25—C24—H24119.7O8—Co2—O298.24 (7)
C20—C25—C24120.2 (3)O6iv—Co2—O291.54 (8)
C20—C25—H25119.9O3ii—Co2—O8v94.91 (7)
C24—C25—H25119.9O8—Co2—O8v79.73 (8)
N4—C26—C23113.2 (2)O6iv—Co2—O8v89.87 (7)
N4—C26—H26A108.9O2—Co2—O8v177.87 (7)
C23—C26—H26A108.9
C3—C4—C5—C61.6 (4)C6—C7—C2—C31.0 (4)
O5—C4—C5—C6178.5 (2)C6—C7—C2—C1178.1 (2)
C4—C5—C6—C70.3 (4)O1—C1—C2—C7158.0 (2)
C4—C5—C6—C8179.9 (2)O2—C1—C2—C723.4 (4)
C5—C6—C7—C21.6 (4)O1—C1—C2—C324.9 (4)
C8—C6—C7—C2178.8 (2)O2—C1—C2—C3153.7 (2)
C7—C6—C8—O4174.1 (2)C5—C4—C3—C22.2 (4)
C5—C6—C8—O45.5 (4)O5—C4—C3—C2179.2 (2)
C7—C6—C8—O35.3 (4)C7—C2—C3—C40.9 (4)
C5—C6—C8—O3175.1 (2)C1—C2—C3—C4176.3 (2)
C14—C9—C10—C112.3 (4)N2—C16—N1—C171.2 (3)
O5—C9—C10—C11179.5 (2)N2—C16—N1—Co1155.63 (18)
C9—C10—C11—C121.3 (4)C18—C17—N1—C160.7 (4)
C10—C11—C12—C130.9 (4)C18—C17—N1—Co1153.4 (2)
C10—C11—C12—C15176.8 (3)N1—C16—N2—C181.2 (3)
C11—C12—C13—C142.2 (4)N1—C16—N2—C19174.3 (3)
C15—C12—C13—C14175.4 (2)C17—C18—N2—C160.8 (3)
C10—C9—C14—C131.0 (4)C17—C18—N2—C19174.8 (3)
O5—C9—C14—C13179.4 (2)C20—C19—N2—C1636.0 (4)
C12—C13—C14—C91.3 (4)C20—C19—N2—C18138.8 (3)
C13—C12—C15—O7158.7 (3)O2—C1—O1—Co136.0 (4)
C11—C12—C15—O718.9 (4)C2—C1—O1—Co1142.50 (19)
C13—C12—C15—O621.7 (4)O1—C1—O2—Co221.4 (4)
C11—C12—C15—O6160.7 (2)C2—C1—O2—Co2157.07 (18)
N1—C17—C18—N20.1 (4)Co2—O8—Co1—O4vi119.02 (9)
N2—C19—C20—C2186.0 (3)Co2v—O8—Co1—O4vi3.95 (11)
N2—C19—C20—C2590.5 (3)Co2—O8—Co1—O158.72 (9)
C25—C20—C21—C222.4 (5)Co2v—O8—Co1—O1173.79 (10)
C19—C20—C21—C22174.3 (3)Co2—O8—Co1—O7iv28.33 (9)
C20—C21—C22—C232.0 (5)Co2v—O8—Co1—O7iv86.74 (11)
C21—C22—C23—C240.1 (5)Co2—O8—Co1—N1146.60 (9)
C21—C22—C23—C26179.8 (3)Co2v—O8—Co1—N198.33 (11)
C22—C23—C24—C251.8 (5)Co2—O8—Co1—N3i97 (2)
C26—C23—C24—C25178.5 (3)Co2v—O8—Co1—N3i18 (2)
C21—C20—C25—C240.7 (5)C1—O1—Co1—O4vi109.8 (5)
C19—C20—C25—C24175.9 (3)C1—O1—Co1—O854.9 (2)
C23—C24—C25—C201.4 (5)C1—O1—Co1—O7iv40.8 (2)
C22—C23—C26—N4152.3 (3)C1—O1—Co1—N1145.2 (2)
C24—C23—C26—N428.0 (4)C1—O1—Co1—N3i124.2 (2)
N3—C28—C29—N40.7 (3)C16—N1—Co1—O4vi147.6 (2)
N4—C27—N3—C280.3 (3)C17—N1—Co1—O4vi2.9 (3)
N4—C27—N3—Co1i177.40 (17)C16—N1—Co1—O8118.6 (2)
C29—C28—N3—C270.6 (3)C17—N1—Co1—O890.9 (3)
C29—C28—N3—Co1i176.76 (19)C16—N1—Co1—O124.1 (2)
N3—C27—N4—C290.1 (3)C17—N1—Co1—O1174.6 (3)
N3—C27—N4—C26178.5 (3)C16—N1—Co1—O7iv22.8 (7)
C28—C29—N4—C270.4 (3)C17—N1—Co1—O7iv127.7 (5)
C28—C29—N4—C26178.1 (3)C16—N1—Co1—N3i63.4 (2)
C23—C26—N4—C27115.6 (3)C17—N1—Co1—N3i87.1 (3)
C23—C26—N4—C2962.6 (4)Co1—O8—Co2—O3ii144.91 (9)
O4—C8—O3—Co2ii3.0 (4)Co2v—O8—Co2—O3ii85.14 (12)
C6—C8—O3—Co2ii176.27 (17)Co1—O8—Co2—O6iv44.69 (10)
O3—C8—O4—Co1iii39.8 (4)Co2v—O8—Co2—O6iv85.26 (9)
C6—C8—O4—Co1iii140.96 (19)Co1—O8—Co2—O250.69 (9)
C10—C9—O5—C418.1 (4)Co2v—O8—Co2—O2179.37 (7)
C14—C9—O5—C4163.6 (2)Co1—O8—Co2—O8v129.95 (12)
C3—C4—O5—C9123.9 (3)Co2v—O8—Co2—O8v0.0
C5—C4—O5—C959.1 (3)C1—O2—Co2—O3ii171.8 (2)
O7—C15—O6—Co2iv27.6 (3)C1—O2—Co2—O831.0 (2)
C12—C15—O6—Co2iv151.95 (18)C1—O2—Co2—O6iv83.4 (2)
O6—C15—O7—Co1iv17.9 (5)C1—O2—Co2—O8v48 (2)
C12—C15—O7—Co1iv161.6 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z; (iii) x+1, y+1, z; (iv) x+2, y+2, z+1; (v) x+1, y+1, z; (vi) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Co2(C15H7O7)(OH)(C14H14N4)]·0.25H2O
Mr676.87
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.7381 (6), 10.7477 (6), 13.5585 (12)
α, β, γ (°)95.596 (1), 91.497 (1), 118.728 (1)
V3)1360.85 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.19 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.793, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
7626, 5314, 4359
Rint0.024
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.04
No. of reflections5314
No. of parameters396
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.37

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2010), publCIF (Westrip, 2010).

 

Acknowledgements

The authors acknowledge the financial aid provided by the Natural Science Foundation of Jilin Province (201015168) and a project of the National Development and Reform Commission of Jilin Province.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBlatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrusseng, D., Aguado, S. & Pinel, C. (2009). Angew. Chem. Int. Ed. 48, 7502–7513.  Web of Science CrossRef CAS Google Scholar
First citationIremonger, S. S., Vaidhyanathan, R., Mah, R. K. & Shimizu, G. K. H. (2013). Inorg. Chem. 52, 4124–4126.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-Z., Song, S.-Y., Zhao, S.-N., Hao, Z.-M., Zhu, M., Meng, X. & Zhang, H.-J. (2013). Dalton Trans. 42, 8183–8187.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSu, S., Chen, W., Qin, C., Song, S., Guo, Z., Li, G., Song, X., Zhu, M., Wang, S., Hao, Z. & Zhang, H. (2012). Cryst. Growth Des. 12, 1808–1815.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K.-L., Law, G.-L., Yang, Y.-Y. & Wong, W.-T. (2006). Adv. Mater. 18, 1051–1054.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m376-m377
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds