metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m365-m366

Crystal structure of bis­­(μ-2,3,4,5-tetra­fluoro­benzoato-κ2O:O′)bis­­[(1,10-phen­anthroline-κ2N:N′)(2,3,4,5-tetra­fluoro­benzoato-κO)copper(II)] dihydrate

aBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: klsz79@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 September 2014; accepted 7 October 2014; online 11 October 2014)

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2]·2H2O, the CuII ion has a square-pyramidal coordination sphere. The basal plane consists of two N atoms [Cu—N = 2.008 (3) and 2.032 (3) Å] from the phenanthroline ligand, and of two carboxyl­ate O atoms [Cu—O = 1.942 (3) and 1.948 (3) Å] from two 2,3,4,5-tetra­fluoro­benzoate anions. Another 2,3,4,5-tetra­fluoro­benzoate anion provides the apical carboxyl­ate O atom [Cu—O = 2.262 (3) Å] and bridges two CuII ions into a binuclear centrosymmetric dimer. Intra­molecular ππ inter­actions between one of the tetra­fluoro­benzene rings and the middle of the phenenanthroline rings [3.617 (3) Å] stabilize the mol­ecular configuration. O—H⋯O hydrogen bonds between the lattice water mol­ecules and the unbound carboxyl­ate O atoms of the metal complexes leads to the formation of a chain structure parallel to [100].

1. Related literature

For metal complexes with phenanthroline ligands and their derivatives, see: Liu et al. (2006[Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030-m2032.]); Kaizer et al. (2006[Kaizer, J., Csay, T., Speier, G., Réglier, M. & Giorgi, M. (2006). Inorg. Chem. Commun. 9, 1037-1039.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2(C7HF4O2)4(C12H8N2)2]·2H2O

  • Mr = 1295.84

  • Monoclinic, P 21 /c

  • a = 7.1880 (8) Å

  • b = 22.611 (2) Å

  • c = 15.2343 (15) Å

  • β = 103.446 (2)°

  • V = 2408.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 298 K

  • 0.34 × 0.29 × 0.26 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.779

  • 12157 measured reflections

  • 4246 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.049

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.01

  • 4246 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3 0.85 2.08 2.918 (5) 168
O5—H5B⋯O4i 0.85 1.95 2.785 (5) 168
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallisation top

The reaction was carried out under solvothermal conditions. 2,3,4,5-tetra­fluoro­benzoic acid (0.388 g, 1 mmol), cupric acetate (0.199 g, 1 mmol) and phenanthroline (0.180 g, 2 mmol) were added into an air-tight vessel together with ethanol and water in a volume ratio of 1:2. The vessel was heated at 393 K for three days and was then cooled down to room temperature with a rate of 10 Kh-. The resulting blue solution was filtered and the filtrate was left for sevaral days giving blue block-shaped crystals. Yield: 81%. Elemental analysis (performed with a Perkin Elmer Model 2400 Series II): calc. for C26H12CuF8N2O5: C 48.26, H 1.61, N 4.40; found: C 48.20, H 1.87, N 4.32.

Refinement top

H atoms of the phenanthroline ring and the anion were placed geometrically (C—H = 0.93 Å) and refined with Uiso(H) = 1.2Ueq(C). H atoms of the water molecule were found from a Fourier difference map and refined with a fixed O—H distance of 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Related literature top

For metal complexes with phenanthroline ligands and their derivatives, see: Liu et al. (2006); Kaizer et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The non-labelled atoms are generated by symmetry code –x + 1, –y + 1, –z + 2.

The packing of the molecular entities of the title compound. O—H···O hydrogen-bonding interactions are indicated by dashed lines.
Bis(µ-2,3,4,5-tetrafluorobenzoato-κ2O:O')bis[(1,10-phenanthroline-κ2N:N')(2,3,4,5-tetrafluorobenzoato-κO)copper(II)] dihydrate top
Crystal data top
[Cu2(C7HF4O2)4(C12H8N2)2]·2H2OF(000) = 1292
Mr = 1295.84Dx = 1.787 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2862 reflections
a = 7.1880 (8) Åθ = 2.3–25.3°
b = 22.611 (2) ŵ = 1.01 mm1
c = 15.2343 (15) ÅT = 298 K
β = 103.446 (2)°Block, blue
V = 2408.1 (4) Å30.34 × 0.29 × 0.26 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
4246 independent reflections
Radiation source: fine-focus sealed tube2683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 78
Tmin = 0.725, Tmax = 0.779k = 2526
12157 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.043P)2 + 2.2045P]
where P = (Fo2 + 2Fc2)/3
4246 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2(C7HF4O2)4(C12H8N2)2]·2H2OV = 2408.1 (4) Å3
Mr = 1295.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.1880 (8) ŵ = 1.01 mm1
b = 22.611 (2) ÅT = 298 K
c = 15.2343 (15) Å0.34 × 0.29 × 0.26 mm
β = 103.446 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4246 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2683 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.779Rint = 0.049
12157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.42 e Å3
4246 reflectionsΔρmin = 0.48 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26351 (7)0.42966 (2)0.96727 (3)0.03433 (17)
F10.1254 (4)0.56914 (13)0.76852 (17)0.0710 (8)
F20.0108 (5)0.67144 (15)0.6908 (2)0.0943 (11)
F30.0237 (5)0.76847 (14)0.7904 (3)0.0997 (12)
F40.1064 (5)0.76414 (13)0.9711 (2)0.0947 (11)
F50.2468 (5)0.37774 (16)0.6457 (2)0.0933 (11)
F60.2536 (6)0.39045 (19)0.4738 (2)0.1363 (17)
F70.0539 (8)0.43382 (19)0.4210 (2)0.1446 (19)
F80.3701 (7)0.4633 (2)0.5452 (3)0.1405 (17)
N10.2919 (5)0.43593 (14)1.1012 (2)0.0332 (8)
N20.3007 (5)0.34263 (15)0.9999 (2)0.0369 (8)
O10.1742 (4)0.50970 (13)0.93618 (18)0.0414 (7)
O20.4181 (4)0.56062 (12)1.01997 (18)0.0405 (7)
O30.2454 (4)0.41553 (13)0.83942 (18)0.0444 (8)
O40.0627 (4)0.39979 (14)0.8205 (2)0.0528 (8)
O50.5762 (5)0.35119 (16)0.8084 (3)0.0868 (13)
H5A0.49040.37420.81890.104*
H5B0.67950.37060.81400.104*
C10.2693 (6)0.55631 (18)0.9608 (3)0.0350 (10)
C20.1864 (5)0.61257 (18)0.9132 (3)0.0370 (10)
C30.1176 (6)0.6160 (2)0.8215 (3)0.0465 (12)
C40.0502 (7)0.6682 (2)0.7804 (4)0.0586 (14)
C50.0448 (7)0.7175 (2)0.8309 (4)0.0636 (15)
C60.1115 (7)0.7149 (2)0.9221 (4)0.0594 (14)
C70.1842 (6)0.6634 (2)0.9644 (3)0.0466 (11)
H70.23150.66251.02660.056*
C80.0790 (7)0.40866 (18)0.7915 (3)0.0377 (10)
C90.0673 (7)0.41365 (19)0.6907 (3)0.0443 (11)
C100.0898 (8)0.3995 (2)0.6260 (3)0.0610 (14)
C110.0961 (11)0.4054 (3)0.5346 (4)0.080 (2)
C120.0596 (13)0.4274 (3)0.5097 (4)0.090 (2)
C130.2181 (11)0.4413 (3)0.5731 (4)0.0830 (19)
C140.2248 (8)0.4351 (2)0.6621 (3)0.0648 (15)
H140.33560.44520.70450.078*
C150.2727 (6)0.48237 (19)1.1508 (3)0.0403 (10)
H150.22190.51701.12200.048*
C160.3258 (6)0.4814 (2)1.2446 (3)0.0492 (12)
H160.31020.51491.27740.059*
C170.4000 (7)0.4316 (2)1.2880 (3)0.0522 (12)
H170.43800.43101.35070.063*
C180.4194 (6)0.3809 (2)1.2385 (3)0.0427 (11)
C190.3594 (5)0.38506 (18)1.1446 (3)0.0341 (10)
C200.3611 (6)0.33451 (18)1.0892 (3)0.0360 (10)
C210.4190 (6)0.2798 (2)1.1298 (3)0.0471 (12)
C220.4042 (7)0.2311 (2)1.0711 (4)0.0628 (15)
H220.44010.19361.09380.075*
C230.3376 (8)0.2392 (2)0.9815 (4)0.0663 (15)
H230.32390.20690.94270.080*
C240.2888 (7)0.2959 (2)0.9466 (3)0.0523 (13)
H240.24720.30090.88450.063*
C250.4879 (7)0.3249 (2)1.2765 (3)0.0589 (14)
H250.53460.32201.33860.071*
C260.4871 (7)0.2767 (2)1.2254 (3)0.0592 (14)
H260.53120.24091.25250.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0356 (3)0.0364 (3)0.0293 (3)0.0019 (2)0.0041 (2)0.0010 (2)
F10.095 (2)0.063 (2)0.0478 (16)0.0002 (17)0.0018 (15)0.0055 (15)
F20.113 (3)0.091 (3)0.066 (2)0.003 (2)0.0062 (19)0.0388 (18)
F30.095 (3)0.055 (2)0.140 (3)0.0138 (18)0.009 (2)0.045 (2)
F40.114 (3)0.048 (2)0.126 (3)0.0141 (19)0.038 (2)0.0052 (19)
F50.071 (2)0.116 (3)0.077 (2)0.016 (2)0.0150 (18)0.025 (2)
F60.158 (4)0.136 (4)0.070 (2)0.022 (3)0.063 (2)0.034 (2)
F70.255 (6)0.141 (4)0.0347 (18)0.034 (4)0.027 (3)0.005 (2)
F80.178 (4)0.178 (4)0.087 (3)0.033 (4)0.073 (3)0.023 (3)
N10.037 (2)0.031 (2)0.0311 (17)0.0036 (16)0.0072 (15)0.0034 (15)
N20.034 (2)0.036 (2)0.041 (2)0.0038 (16)0.0092 (17)0.0027 (16)
O10.0372 (17)0.0368 (18)0.0440 (17)0.0052 (14)0.0033 (14)0.0069 (14)
O20.0276 (16)0.0471 (19)0.0430 (16)0.0006 (14)0.0003 (14)0.0011 (13)
O30.0356 (18)0.063 (2)0.0315 (15)0.0012 (15)0.0023 (14)0.0011 (14)
O40.042 (2)0.063 (2)0.053 (2)0.0077 (17)0.0102 (16)0.0065 (16)
O50.061 (2)0.072 (3)0.137 (4)0.018 (2)0.042 (2)0.044 (2)
C10.028 (2)0.042 (3)0.037 (2)0.004 (2)0.0105 (19)0.004 (2)
C20.025 (2)0.037 (3)0.048 (3)0.0019 (19)0.005 (2)0.007 (2)
C30.041 (3)0.045 (3)0.052 (3)0.006 (2)0.007 (2)0.008 (2)
C40.048 (3)0.060 (4)0.064 (3)0.002 (3)0.005 (3)0.027 (3)
C50.049 (3)0.048 (3)0.093 (4)0.007 (3)0.014 (3)0.029 (3)
C60.050 (3)0.035 (3)0.097 (4)0.002 (2)0.023 (3)0.001 (3)
C70.040 (3)0.042 (3)0.058 (3)0.000 (2)0.012 (2)0.002 (2)
C80.041 (3)0.033 (2)0.037 (2)0.003 (2)0.004 (2)0.0046 (19)
C90.053 (3)0.040 (3)0.036 (2)0.006 (2)0.003 (2)0.006 (2)
C100.064 (4)0.052 (3)0.057 (3)0.002 (3)0.007 (3)0.013 (3)
C110.110 (6)0.066 (4)0.042 (3)0.020 (4)0.031 (4)0.014 (3)
C120.154 (7)0.072 (5)0.035 (3)0.024 (5)0.006 (4)0.001 (3)
C130.116 (6)0.079 (5)0.059 (4)0.000 (4)0.031 (4)0.011 (3)
C140.087 (4)0.071 (4)0.037 (3)0.002 (3)0.016 (3)0.009 (3)
C150.039 (3)0.038 (3)0.046 (3)0.002 (2)0.014 (2)0.003 (2)
C160.054 (3)0.059 (3)0.037 (3)0.001 (3)0.015 (2)0.011 (2)
C170.051 (3)0.074 (4)0.032 (2)0.005 (3)0.009 (2)0.003 (3)
C180.037 (3)0.049 (3)0.041 (3)0.003 (2)0.008 (2)0.010 (2)
C190.027 (2)0.041 (3)0.034 (2)0.0019 (19)0.0068 (18)0.0064 (19)
C200.028 (2)0.038 (3)0.043 (3)0.0009 (19)0.0113 (19)0.007 (2)
C210.041 (3)0.037 (3)0.066 (3)0.002 (2)0.018 (2)0.011 (2)
C220.063 (4)0.035 (3)0.093 (4)0.003 (3)0.024 (3)0.011 (3)
C230.078 (4)0.039 (3)0.088 (4)0.007 (3)0.031 (3)0.013 (3)
C240.063 (3)0.045 (3)0.051 (3)0.010 (2)0.016 (3)0.008 (2)
C250.058 (3)0.067 (4)0.050 (3)0.003 (3)0.008 (3)0.024 (3)
C260.060 (3)0.050 (3)0.067 (4)0.010 (3)0.015 (3)0.033 (3)
Geometric parameters (Å, º) top
Cu1—O11.942 (3)C6—C71.374 (6)
Cu1—O31.948 (3)C7—H70.9300
Cu1—N12.008 (3)C8—C91.523 (6)
Cu1—N22.032 (3)C9—C101.353 (6)
Cu1—O2i2.262 (3)C9—C141.392 (7)
F1—C31.341 (5)C10—C111.389 (8)
F2—C41.336 (6)C11—C121.357 (9)
F3—C51.346 (5)C12—C131.348 (9)
F4—C61.345 (6)C13—C141.352 (7)
F5—C101.327 (6)C14—H140.9300
F6—C111.329 (6)C15—C161.391 (6)
F7—C121.349 (6)C15—H150.9300
F8—C131.356 (7)C16—C171.351 (6)
N1—C151.319 (5)C16—H160.9300
N1—C191.359 (5)C17—C181.396 (6)
N2—C241.323 (5)C17—H170.9300
N2—C201.340 (5)C18—C191.398 (5)
O1—C11.265 (5)C18—C251.430 (6)
O2—C11.232 (5)C19—C201.423 (6)
O2—Cu1i2.262 (3)C20—C211.402 (6)
O3—C81.257 (5)C21—C221.407 (6)
O4—C81.218 (5)C21—C261.427 (6)
O5—H5A0.8500C22—C231.350 (7)
O5—H5B0.8499C22—H220.9300
C1—C21.516 (5)C23—C241.402 (7)
C2—C31.371 (6)C23—H230.9300
C2—C71.391 (6)C24—H240.9300
C3—C41.369 (6)C25—C261.339 (7)
C4—C51.361 (7)C25—H250.9300
C5—C61.362 (7)C26—H260.9300
O1—Cu1—O388.14 (12)C9—C10—C11122.3 (6)
O1—Cu1—N197.58 (13)F6—C11—C12121.5 (6)
O3—Cu1—N1174.29 (13)F6—C11—C10119.8 (7)
O1—Cu1—N2168.38 (13)C12—C11—C10118.6 (6)
O3—Cu1—N293.47 (13)C13—C12—F7121.1 (8)
N1—Cu1—N280.97 (13)C13—C12—C11119.9 (6)
O1—Cu1—O2i101.59 (11)F7—C12—C11119.0 (7)
O3—Cu1—O2i86.16 (11)C12—C13—C14121.5 (7)
N1—Cu1—O2i92.52 (12)C12—C13—F8117.9 (6)
N2—Cu1—O2i90.01 (12)C14—C13—F8120.6 (6)
C15—N1—C19117.9 (3)C13—C14—C9120.5 (6)
C15—N1—Cu1129.7 (3)C13—C14—H14119.7
C19—N1—Cu1112.0 (3)C9—C14—H14119.7
C24—N2—C20118.2 (4)N1—C15—C16122.3 (4)
C24—N2—Cu1129.5 (3)N1—C15—H15118.8
C20—N2—Cu1112.0 (3)C16—C15—H15118.8
C1—O1—Cu1125.4 (3)C17—C16—C15119.9 (4)
C1—O2—Cu1i139.4 (3)C17—C16—H16120.0
C8—O3—Cu1115.7 (3)C15—C16—H16120.0
H5A—O5—H5B108.7C16—C17—C18119.8 (4)
O2—C1—O1126.9 (4)C16—C17—H17120.1
O2—C1—C2117.5 (4)C18—C17—H17120.1
O1—C1—C2115.6 (4)C17—C18—C19116.8 (4)
C3—C2—C7118.4 (4)C17—C18—C25125.2 (4)
C3—C2—C1122.9 (4)C19—C18—C25118.0 (4)
C7—C2—C1118.7 (4)N1—C19—C18123.0 (4)
F1—C3—C4117.7 (4)N1—C19—C20116.3 (3)
F1—C3—C2120.8 (4)C18—C19—C20120.7 (4)
C4—C3—C2121.3 (5)N2—C20—C21124.1 (4)
F2—C4—C5119.1 (5)N2—C20—C19116.5 (4)
F2—C4—C3120.8 (5)C21—C20—C19119.3 (4)
C5—C4—C3120.1 (5)C20—C21—C22116.0 (4)
F3—C5—C4119.9 (5)C20—C21—C26119.3 (4)
F3—C5—C6120.6 (5)C22—C21—C26124.6 (5)
C4—C5—C6119.5 (5)C23—C22—C21119.6 (5)
F4—C6—C5118.9 (5)C23—C22—H22120.2
F4—C6—C7119.9 (5)C21—C22—H22120.2
C5—C6—C7121.2 (5)C22—C23—C24120.3 (5)
C6—C7—C2119.4 (5)C22—C23—H23119.8
C6—C7—H7120.3C24—C23—H23119.8
C2—C7—H7120.3N2—C24—C23121.6 (5)
O4—C8—O3124.9 (4)N2—C24—H24119.2
O4—C8—C9121.6 (4)C23—C24—H24119.2
O3—C8—C9113.5 (4)C26—C25—C18122.1 (5)
C10—C9—C14117.1 (5)C26—C25—H25118.9
C10—C9—C8123.9 (5)C18—C25—H25118.9
C14—C9—C8118.9 (4)C25—C26—C21120.5 (4)
F5—C10—C9122.2 (5)C25—C26—H26119.8
F5—C10—C11115.5 (5)C21—C26—H26119.8
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O30.852.082.918 (5)168
O5—H5B···O4ii0.851.952.785 (5)168
Symmetry code: (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O30.852.082.918 (5)168.4
O5—H5B···O4i0.851.952.785 (5)168.3
Symmetry code: (i) x+1, y, z.
 

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaizer, J., Csay, T., Speier, G., Réglier, M. & Giorgi, M. (2006). Inorg. Chem. Commun. 9, 1037–1039.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030–m2032.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m365-m366
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds