research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[(5-amino-1H-1,2,4-triazol-3-yl-κN4)acetato-κO]di­aqua­nickel(II) dihydrate

aSouth–Russia State Technical University Prosveschenya, 132, Novocherkassk, Rostov Region, 346428, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: chern13@yandex.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 September 2014; accepted 26 September 2014; online 4 October 2014)

The title compound, [Ni(C4H5N4O2)2(H2O)2]·2H2O, represents the first transition metal complex of the novel chelating triazole ligand, 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (ATAA), to be structurally characterized. In the mol­ecule of the title complex, the nickel(II) cation is located on an inversion centre and is coordinated by two water mol­ecules in axial positions and two O and two N atoms from two trans-oriented chelating anions of the deprotonated ATAA ligand, forming a slightly distorted octa­hedron. The trans angles of the octa­hedron are all 180° due to the inversion symmetry of the mol­ecule. The cis-angles are in the range 87.25 (8)–92.75 (8)°. The six-membered chelate ring adopts a slightly twisted boat conformation with puckering parameters Q = 0.542 (2) Å, Θ = 88.5 (2) and φ = 15.4 (3)°. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O hydrogen bonds between the amino group and the chelating carboxyl­ate O atom of two trans-oriented ligands. In the crystal, the complex mol­ecules and lattice water mol­ecules are linked into a three-dimensional framework by an extensive network of N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds.

1. Chemical context

C-amino-1,2,4-triazoles are employed as polydentate ligands for the synthesis of coordination compounds with various metals that demonstrate useful spectroscopic, magnetic, biological and catalytic properties (Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]; Liu et al., 2011[Liu, K., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 8475-8490.]; Gao et al., 2013[Gao, J.-Y., Xiong, X.-H., Chen, C.-J., Xie, W.-P., Ran, X.-R. & Yue, S.-T. (2013). Z. Anorg. Allg. Chem. 639, 582-586.]; Hernández-Gil et al., 2014[Hernández-Gil, J., Ferrer, S., Castiñeiras, A., Liu-González, M., Lloret, F., Ribes, Á., Coga, L., Bernecker, A. & Mareque-Rivas, J. C. (2014). Inorg. Chem. 53, 578-593.]). Generally, amino­triazoles coordinate metals by either pyridine-type endocyclic nitro­gen atoms or by the amino group (Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]; Liu et al., 2011[Liu, K., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 8475-8490.]). Furthermore, amino­triazoles containing substituents with favorably oriented atoms bearing unshared electron pairs (N, S, O etc.) can act as chelating polydentate ligands (Biagini-Cingi et al., 1994[Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F. & Haasnoot, J. G. (1994). Inorg. Chim. Acta, 227, 181-184.]; Prins et al., 1996[Prins, R., Biagini-Cingi, M., Drillon, M., de Graaff, R. A. G., Haasnoot, J., Manotti-Lanfredi, A.-M., Rabu, P., Reedijk, J. & Ugozzoli, F. (1996). Inorg. Chim. Acta, 248, 35-44.]; Ferrer et al., 2004[Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436-1446.], 2012[Ferrer, S., Lloret, F., Pardo, E., Clemente-Juan, J. M., Liu-González, M. & García-Granda, S. (2012). Inorg. Chem. 51, 985-1001.]). 5-Amino-1H-1,2,4-tri­azole-3-carb­oxy­lic acid (ATCA, Fig. 1[link]) was found to be a promising chelating ligand for which complexes with various metal cations have been reported recently (Chen et al., 2011[Chen, Y.-C., Xu, J.-J., Wang, K.-B. & Wang, Y. (2011). Chin. J. Struct. Chem. 30, 799-804.]; Sun et al., 2011[Sun, Y.-G., Xiong, G., Guo, M.-Y., Ding, F., Wang, L., Gao, E.-J., Zhu, M.-C. & Verpoort, F. (2011). Z. Anorg. Allg. Chem. 637, 293-300.]; Wang et al., 2011[Wang, J., Li, W.-Z., Wang, J.-G. & Xiao, H.-P. (2011). Z. Kristallogr. New Cryst. Struct. 226, 163-164.]; Hernández-Gil et al., 2012[Hernández-Gil, J., Ferrer, S., Castiñeiras, A. & Lloret, F. (2012). Inorg. Chem. 51, 9809-9819.]; Tseng et al., 2014[Tseng, T.-W., Luo, T.-T. & Lu, K.-H. (2014). CrystEngComm, 16, 5516-5519.]). In these complexes, metal cations are chelated by the anions of ATCA owing to the formation of coordination bonds with nitro­gen atoms of the triazole ring and the oxygen atom of the deprotonated carb­oxy­lic group.

[Scheme 1]
[Figure 1]
Figure 1
Structural formulas of 5-amino-1H-1,2,4-triazole-3-carb­oxy­lic acid (ATCA) and 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (ATAA).

In a continuation of our work on the synthesis and reactivity of amino­triazole carb­oxy­lic acids (Chernyshev et al., 2006[Chernyshev, V. M., Chernysheva, A. V. & Taranushich, V. A. (2006). Russ. J. Appl. Chem. 79, 783-786.], 2009[Chernyshev, V. M., Chernysheva, A. V. & Taranushich, V. A. (2009). Russ. J. Appl. Chem. 82, 276-281.], 2010[Chernyshev, V. M., Chernysheva, A. V. & Starikova, Z. A. (2010). Heterocycles, 81, 2291-2311.]), we have focused our attention on another chelating ligand, namely 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (ATAA, Fig. 1[link]), which can be considered as a homologue of ATCA. To the best of our knowledge, ATAA or its derivatives have not been studied previously for the synthesis of coordination compounds. Herein, we report the synthesis and crystal structure of an NiII complex of ATAA, the title compound [Ni(C4H5N4O2)2(H2O)2]·2H2O (1).

2. Structural commentary

In the mol­ecule of the title complex (1), the NiII cation is six-coordinated by two bidentate chelating ligands, anions of ATAA, and by two water mol­ecules, forming a slightly distorted octa­hedron (Fig. 2[link]). The trans-angles of the octa­hedron are all 180° due to the inversion symmetry of the complete mol­ecule. The cis-angles are in the range 87.25 (8)–92.75 (8)°. The third water mol­ecule is not involved in coordination. The anions of ATAA coordinate the NiII cation through the nitro­gen atom N1 of the triazole ring and the oxygen atom O53 of the carboxyl­ate group (Fig. 2[link]), similarly to the complexes of ATCA with various metal cations (Chen et al., 2011[Chen, Y.-C., Xu, J.-J., Wang, K.-B. & Wang, Y. (2011). Chin. J. Struct. Chem. 30, 799-804.]; Sun et al., 2011[Sun, Y.-G., Xiong, G., Guo, M.-Y., Ding, F., Wang, L., Gao, E.-J., Zhu, M.-C. & Verpoort, F. (2011). Z. Anorg. Allg. Chem. 637, 293-300.]; Wang et al., 2011[Wang, J., Li, W.-Z., Wang, J.-G. & Xiao, H.-P. (2011). Z. Kristallogr. New Cryst. Struct. 226, 163-164.]; Hernández-Gil et al., 2012[Hernández-Gil, J., Ferrer, S., Castiñeiras, A. & Lloret, F. (2012). Inorg. Chem. 51, 9809-9819.]). The six-membered chelate ring adopts a slightly twisted boat conformation with puckering parameters of Q = 0.542 (2) Å, Θ = 88.5 (2), φ = 15.4 (3)°. The Ni—N1 bond length is 2.051 (2) Å, and the Ni—O1 and Ni—O53 bond lengths are 2.083 (2) and 2.059 (2) Å, respectively, within the normal ranges for other reported NiII complexes (Lenstra et al., 1989[Lenstra, A. T. H., Slot, H. J. B., Beurskens, P. T., Haasnoot, J. G. & Reedijk, J. (1989). Rec. Trav. Chim. Pays-Bas, 108, 133-138.]; Virovets et al., 2000[Virovets, A. V., Bushuev, M. B. & Lavrenova, L. G. (2000). J. Struct. Chem. 41, 717-720.]; Bushuev et al., 2002[Bushuev, M. B., Virovets, A. V., Garcia, Y., Gieck, C., Sheludyakova, L. A., Ikorskii, V. N., Tremel, W., Gütlich, P. & Lavrenova, L. G. (2002). Polyhedron, 21, 797-804.]; Drozdzewski et al., 2003[Drożdżewski, P., Pawlak, B. & Głowiak, T. (2003). Transition Met. Chem. 28, 727-731.]; Fan et al., 2010[Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.]; Zheng et al., 2011[Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.]; Jin et al., 2011[Jin, G.-H., Li, X., Hu, C. & Hu, L. (2011). Acta Cryst. E67, m988.]). The amino­triazole fragment N1/C2/N3/N4/C5/N21 is planar (maximum deviation = 0.021 (3) Å for C2), its bond lengths and angles being analogous to complexes of C-amino-1,2,4-triazoles with transition metals (Ferrer et al., 2004[Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436-1446.]; Siddiqui et al., 2011[Siddiqui, K. A., Mehrotra, G. K., Narvi, S. S. & Butcher, R. J. (2011). Inorg. Chem. Commun. 14, 814-817.]; Tabatabaee et al., 2011[Tabatabaee, M., Kukovec, B.-M. & Kazeroonizadeh, M. (2011). Polyhedron, 30, 1114-1119.]). The bonds C2—N3 [1.330 (4) Å] and C5—N4 [1.304 (3) Å] are shorter than the bonds C2—N1 [1.342 (3) Å] and C5—N1 [1.365 (3) Å]. The mol­ecular conformation is stabilized by intra­molecular N21—H21B⋯O53 hydrogen bonds (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21A⋯O2i 0.83 (2) 2.04 (2) 2.876 (3) 176 (3)
N21—H21B⋯O53ii 0.83 (2) 2.19 (2) 2.941 (3) 151 (3)
N3—H3⋯O54iii 0.83 (3) 2.10 (3) 2.885 (3) 156 (3)
O1—H1A⋯O2iv 0.82 (2) 1.92 (2) 2.739 (3) 176 (3)
O1—H1B⋯O54v 0.82 (2) 1.96 (2) 2.780 (3) 173 (4)
O2—H2A⋯N4vi 0.83 (2) 2.09 (2) 2.903 (3) 164 (3)
O2—H2B⋯O53vii 0.83 (2) 1.98 (2) 2.811 (3) 176 (3)
Symmetry codes: (i) x, y, z-1; (ii) -x, -y, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x-1, -y, -z; (vi) x+1, y, z+1; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Intra­molecular N—H⋯O hydrogen bonds are shown as dashed lines. Equivalent atoms are generated by symmetry code −x, −y, −z.

3. Supra­molecular features

In the crystal, mol­ecules of the complex and lattice water mol­ecules are linked into a three–dimensional framework by extensive N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds (Table 1[link], Fig. 3[link]).

[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

4. Database survey

More than twenty structures of chelate complexes of 3-substituted 5-amino-1,2,4-triazoles, in which N, O or S atoms of the substituent in the position 3 of the triazole ring play the role of a donor atom, were found in the Cambridge Structural Database (Version 5.35, November 2013 with 2 updates; Thomas et al., 2010[Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362-366.]). The database reveals a total of seven structures of coordination compounds of 5-amino-1H-1,2,4-triazole-3-carb­oxy­lic acid (ATCA) with various metals (Chen et al., 2011[Chen, Y.-C., Xu, J.-J., Wang, K.-B. & Wang, Y. (2011). Chin. J. Struct. Chem. 30, 799-804.]; Sun et al., 2011[Sun, Y.-G., Xiong, G., Guo, M.-Y., Ding, F., Wang, L., Gao, E.-J., Zhu, M.-C. & Verpoort, F. (2011). Z. Anorg. Allg. Chem. 637, 293-300.]; Wang et al., 2011[Wang, J., Li, W.-Z., Wang, J.-G. & Xiao, H.-P. (2011). Z. Kristallogr. New Cryst. Struct. 226, 163-164.]; Hernández-Gil et al., 2012[Hernández-Gil, J., Ferrer, S., Castiñeiras, A. & Lloret, F. (2012). Inorg. Chem. 51, 9809-9819.]; Tseng et al., 2014[Tseng, T.-W., Luo, T.-T. & Lu, K.-H. (2014). CrystEngComm, 16, 5516-5519.]; Siddiqui et al., 2011[Siddiqui, K. A., Mehrotra, G. K., Narvi, S. S. & Butcher, R. J. (2011). Inorg. Chem. Commun. 14, 814-817.]), six of which are chelate complexes. Coordination compounds of metals with the ATAA ligands or its derivatives were not found in the literature.

5. Synthesis and crystallization

All attempts to prepare crystals of complex (1) suitable for X-ray investigation by mixing solutions of ATAA or its sodium salt with solutions of NiII salts were unsuccessful and only microcrystalline precipitates of the sparingly soluble complex were obtained. Crystals of acceptable quality were prepared by slow hydrolysis of ethyl 2-(5-amino-1H-1,2,4-triazol-3-yl)acetate (2) in an aqueous solution of nickel nitrate (Fig. 4[link]). A solution of 0.65 g (3.8 mmol) of compound (2) in water (10 ml) was added to a solution of 0.55 g, (1.9 mmol) of Ni(NO3)2·6H2O in water (5 ml). After standing at room temperature for two weeks, the formed crystals were collected by filtration yielding the target compound (1).

[Figure 4]
Figure 4
Reaction scheme showing the synthesis of the title compound (1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in calculated positions with C—H = 0.97 Å for the CH2 group and refined as riding, with Uiso(H) = 1.2Ueq(C). The N,O-bound H atoms that are involved in hydrogen bonds were found from difference Fourier maps. Their distances to the parent atoms were refined to be equal, with a common Uiso(H) value for pairs of related H atoms.

Table 2
Experimental details

Crystal data
Chemical formula  
Mr 412.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 7.6270 (17), 7.2603 (16), 13.580 (3)
β (°) 91.91 (2)
V3) 751.6 (3)
Z 2
Radiation type Ag Kα, λ = 0.56085 Å
μ (mm−1) 0.72
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.945, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 1706, 1640, 1215
Rint 0.021
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 1.02
No. of reflections 1640
No. of parameters 140
No. of restraints 3
Δρmax, Δρmin (e Å−3) 0.34, −0.31
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

C-amino-1,2,4-triazoles are employed as polydentate ligands for the synthesis of coordination compounds with various metals that demonstrate useful spectroscopic, magnetic, biological and catalytic properties (Aromí et al., 2011; Liu et al., 2011; Gao et al., 2013; Hernández-Gil et al., 2014). Generally, amino­triazoles coordinate metals by either pyridine-type endocyclic nitro­gen atoms or by the amino group (Aromí et al., 2011; Liu et al., 2011). Furthermore, amino­triazoles containing substituents with favorably oriented atoms bearing unshared electron pairs (N, S, O etc.) can act as chelating polydentate ligands (Biagini-Cingi et al., 1994; Prins et al., 1996; Ferrer et al., 2004, 2012). 5-Amino-1H-1,2,4-triazole-3-carb­oxy­lic acid (ATCA, Fig. 1) was found to be a promising chelating ligand for which complexes with various metal cations have been reported recently (Chen et al., 2011; Sun et al., 2011; Wang et al., 2011; Hernández-Gil et al., 2012; Tseng et al., 2014). In these complexes, metal cations are chelated by the anions of ATCA owing to the formation of coordination bonds with nitro­gen atoms of the triazole ring and the oxygen atom of the deprotonated carb­oxy­lic group.

In a continuation our work on the synthesis and reactivity of amino­triazole carb­oxy­lic acids (Chernyshev et al., 2006, 2009, 2010), we have focused our attention on another chelating ligand, namely 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (ATAA, Fig. 1), which can be considered as a homologue of ATCA. To the best of our knowledge, ATAA or its derivatives have not been studied previously for the synthesis of coordination compounds. Herein, we report the synthesis and crystal structure of an NiII complex of ATAA, the title compound [Ni(C4H5N4O2)2(H2O)2]·2H2O (1) (Fig. 2).

Structural commentary top

In the molecule of the title complex (1), the NiII cation is six-coordinated by two bidentate chelating ligands, anions of ATAA, and by two water molecules, forming a slightly distorted o­cta­hedron (Fig. 2). The trans-angles of the o­cta­hedron are all 180° due to the inversion symmetry of the complete molecule. The cis-angles are in the range 87.25 (8)–92.75 (8)°. The third water molecule is not involved in coordination. The anions of ATAA coordinate the NiII cation through the nitro­gen atom N1 of the triazole ring and the oxygen atom O53 of the carboxyl­ate group (Fig. 2), similarly to the complexes of ATCA with various metal cations (Chen et al., 2011; Sun et al., 2011; Wang et al., 2011; Hernández-Gil et al., 2012). The six-membered chelate ring adopts a slightly twisted boat conformation with puckering parameters of Q = 0.542 (2) Å, Θ = 88.5 (2), ϕ = 15.4 (3)°. The Ni—N1 bond length is 2.051 (2) Å, and the Ni—O1 and Ni—O53 bond lengths are 2.083 (2) and 2.059 (2) Å, respectively, within the normal ranges for other reported NiII complexes (Lenstra et al., 1989; Virovets et al., 2000; Bushuev et al., 2002; Drozdzewski et al., 2003; Fan et al., 2010; Zheng et al., 2011; Jin et al., 2011). The amino­triazole fragment N1/C2/N3/N4/C5/N21 is planar (maximum deviation = 0.021 (3) Å for C2), its bond lengths and angles being analogous to complexes of C-amino-1,2,4-triazoles with transition metals (Ferrer et al., 2004; Siddiqui et al., 2011; Tabatabaee et al., 2011). The bonds C2—N3 [1.330 (4) Å] and C5—N4 [1.304 (3) Å] are shorter than the bonds C2—N1 [1.342 (3) Å] and C5—N1 [1.365 (3) Å]. The molecular conformation is stabilized by intra­molecular N21—H21B···O53 hydrogen bonds (Fig. 2, Table 1).

Supra­molecular features top

In the crystal, molecules of the complex and lattice water molecules are linked into a three–dimensional framework by extensive N—H···O, O—H···O and O—H···N hydrogen bonds (Table 1, Fig. 3).

Database survey top

More than twenty structures of chelate complexes of 3-substituted 5-amino-1,2,4-triazoles, in which N, O or S atoms of the substituent in the position 3 of the triazole ring play the role of a donor atom, were found in the Cambridge Structural Database (Version 5.35, November 2013 with 2 updates; Thomas et al., 2010). The database reveals a total of seven structures of coordination compounds of 5-amino-1H-1,2,4-triazole-3-carb­oxy­lic acid (ATCA) with various metals (Chen et al., 2011; Sun et al., 2011; Wang et al., 2011; Hernández-Gil et al., 2012; Tseng et al., 2014; Siddiqui et al., 2011), six of which are chelate complexes. Coordination compounds of metals with the ATAA ligands or its derivatives were not found in the literature.

Synthesis and crystallization top

All attempts to prepare crystals of complex (1) suitable for X-ray investigation by mixing solutions of ATAA or its sodium salt with solutions of NiII salts were unsuccessful and only microcrystalline precipitates of the sparingly soluble complex were obtained. Crystals of acceptable quality were prepared by slow hydrolysis of ethyl 2-(5-amino-1H-1,2,4-triazol-3-yl)acetate (2) in an aqueous solution of nickel nitrate (Fig. 4). A solution of 0.65 g (3.8 mmol) of compound (2) in water (10 ml) was added to a solution of 0.55 g, (1.9 mmol) of Ni(NO3)2·6H2O in water (5 ml). After standing at room temperature for two weeks the formed crystals were collected by filtration yielding the target compound (1).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were placed in calculated positions with C—H = 0.97 Å for the CH2 group and refined as riding, with Uiso(H) = 1.2Ueq(C). The N,O-bound H atoms that are involved in hydrogen bonds were found from difference Fourier maps. Their distances to the parent atoms were refined to be equal, with a common Uiso(H) value for pairs of related H atoms.

Related literature top

For related literature, see: Aromí et al. (2011); Biagini–Cingi, Manotti–Lanfredi, Ugozzoli & Haasnoot (1994); Bushuev et al. (2002); Chen, –C, Xu, –J, Wang, –B & Wang (2011); Chernyshev et al. (2006, 2009, 2010); Drozdzewski et al. (2003); Fan, –Z, Li, –J, Song, –D, Miao, –L, Hu & –W (2010); Ferrer et al. (2004, 2012); Gao, –Y, Xiong, –H, Chen, –J, Xie, –P, Ran, –R, Yue & –T (2013); Hernández–Gil, Ferrer, Castiñeiras & Lloret (2012); Hernández–Gil, Ferrer, Castiñeiras, Liu–González, Lloret, Ribes, Čoga, Bernecker & Mareque–Rivas (2014); Jin, –H, Li, Hu & Hu (2011); Lenstra et al. (1989); Liu et al. (2011); Prins et al. (1996); Siddiqui et al. (2011); Sun, –G, Xiong, Guo, –Y, Ding, Wang, Gao, –J, Zhu, –C & Verpoort (2011); Tabatabaee et al. (2011); Thomas et al. (2010); Tseng, –W, Luo, –T, Lu & –H (2014); Virovets et al. (2000); Wang et al. (2011); Zheng et al. (2011).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Structural formulas of 5-amino-1H-1,2,4-triazole-3-carboxylic acid (ATCA) and 2-(5-amino-1H-1,2,4-triazol-3-yl)acetic acid (ATAA).

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Intramolecular N—H···O hydrogen bonds are shown as dashed lines.

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Reaction scheme showing the synthesis of the title compound (1).
Bis[(5-amino-1H-1,2,4-triazol-3-yl-κN4)acetato-κO]diaquanickel(II) dihydrate top
Crystal data top
F(000) = 428
Mr = 412.99Dx = 1.825 Mg m3
Monoclinic, P21/nAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.6270 (17) Åθ = 10.8–12.9°
b = 7.2603 (16) ŵ = 0.72 mm1
c = 13.580 (3) ÅT = 295 K
β = 91.91 (2)°Prism, light green
V = 751.6 (3) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1215 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 21.0°, θmin = 2.4°
non–profiled ω–scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.945, Tmax = 0.958l = 017
1706 measured reflections1 standard reflections every 60 min
1640 independent reflections intensity decay: 1%
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.035Secondary atom site location: difference Fourier map
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.467P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1640 reflectionsΔρmax = 0.34 e Å3
140 parametersΔρmin = 0.31 e Å3
Crystal data top
V = 751.6 (3) Å3
Mr = 412.99Z = 2
Monoclinic, P21/nAg Kα radiation, λ = 0.56085 Å
a = 7.6270 (17) ŵ = 0.72 mm1
b = 7.2603 (16) ÅT = 295 K
c = 13.580 (3) Å0.20 × 0.20 × 0.20 mm
β = 91.91 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1215 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.945, Tmax = 0.9581 standard reflections every 60 min
1706 measured reflections intensity decay: 1%
1640 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035140 parameters
wR(F2) = 0.0773 restraints
S = 1.02Δρmax = 0.34 e Å3
1640 reflectionsΔρmin = 0.31 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.00000.00000.01840 (14)
N10.0590 (3)0.0113 (4)0.14834 (14)0.0215 (5)
C20.0459 (3)0.0087 (5)0.22579 (18)0.0237 (5)
N210.2095 (3)0.0555 (4)0.22436 (19)0.0380 (8)
H21A0.278 (3)0.036 (5)0.2696 (17)0.040 (7)*
H21B0.248 (4)0.090 (5)0.1692 (15)0.040 (7)*
N30.0433 (3)0.0713 (4)0.30469 (18)0.0307 (6)
H30.010 (4)0.083 (4)0.362 (2)0.029 (9)*
N40.2124 (3)0.1187 (4)0.28023 (17)0.0289 (6)
C50.2135 (4)0.0798 (4)0.18651 (19)0.0218 (6)
C510.3727 (3)0.1003 (4)0.12754 (19)0.0242 (6)
H51A0.42000.02150.11600.029*
H51B0.45970.16780.16680.029*
C520.3496 (3)0.1962 (4)0.02933 (19)0.0206 (6)
O530.2044 (2)0.1806 (3)0.01848 (14)0.0248 (5)
O540.4765 (3)0.2802 (3)0.00309 (17)0.0335 (5)
O10.1634 (3)0.2263 (3)0.01911 (18)0.0327 (5)
H1A0.129 (4)0.313 (3)0.053 (2)0.048 (8)*
H1B0.271 (2)0.238 (5)0.017 (3)0.048 (8)*
O20.4528 (3)0.0268 (3)0.62437 (15)0.0320 (5)
H2A0.556 (3)0.054 (5)0.641 (2)0.039 (7)*
H2B0.404 (4)0.110 (4)0.591 (2)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0162 (2)0.0239 (3)0.0150 (2)0.0020 (2)0.00011 (16)0.0011 (3)
N10.0180 (10)0.0313 (13)0.0150 (9)0.0003 (12)0.0003 (8)0.0021 (12)
C20.0253 (13)0.0265 (14)0.0193 (12)0.0005 (14)0.0020 (10)0.0020 (15)
N210.0282 (14)0.063 (2)0.0236 (13)0.0098 (13)0.0102 (10)0.0131 (13)
N30.0322 (14)0.0449 (16)0.0152 (12)0.0033 (12)0.0051 (10)0.0053 (11)
N40.0275 (13)0.0400 (16)0.0190 (12)0.0058 (12)0.0017 (9)0.0048 (11)
C50.0225 (13)0.0246 (14)0.0181 (13)0.0026 (12)0.0009 (11)0.0006 (11)
C510.0161 (13)0.0340 (17)0.0224 (14)0.0006 (12)0.0015 (11)0.0017 (13)
C520.0202 (13)0.0221 (14)0.0196 (13)0.0002 (11)0.0032 (10)0.0040 (11)
O530.0208 (10)0.0322 (11)0.0210 (10)0.0049 (9)0.0042 (8)0.0041 (9)
O540.0238 (11)0.0486 (13)0.0282 (10)0.0106 (10)0.0032 (9)0.0058 (12)
O10.0202 (10)0.0327 (13)0.0448 (14)0.0046 (10)0.0041 (10)0.0108 (11)
O20.0309 (11)0.0371 (14)0.0280 (11)0.0022 (11)0.0007 (9)0.0026 (11)
Geometric parameters (Å, º) top
Ni—N12.051 (2)N3—H30.83 (3)
Ni—N1i2.051 (2)N4—C51.304 (3)
Ni—O532.0590 (19)C5—C511.484 (4)
Ni—O53i2.0590 (19)C51—C521.509 (4)
Ni—O12.083 (2)C51—H51A0.9700
Ni—O1i2.084 (2)C51—H51B0.9700
N1—C21.342 (3)C52—O541.238 (3)
N1—C51.365 (3)C52—O531.270 (3)
C2—N31.330 (4)O1—H1A0.822 (19)
C2—N211.332 (4)O1—H1B0.822 (19)
N21—H21A0.834 (19)O2—H2A0.83 (2)
N21—H21B0.834 (19)O2—H2B0.83 (2)
N3—N41.386 (3)
N1—Ni—N1i180.0H21A—N21—H21B120 (3)
N1—Ni—O5387.25 (8)C2—N3—N4110.3 (2)
N1i—Ni—O5392.75 (8)C2—N3—H3129 (2)
N1—Ni—O53i92.75 (8)N4—N3—H3121 (2)
N1i—Ni—O53i87.25 (8)C5—N4—N3102.5 (2)
O53—Ni—O53i180.00 (13)N4—C5—N1114.6 (2)
N1—Ni—O192.36 (9)N4—C5—C51122.5 (2)
N1i—Ni—O187.63 (9)N1—C5—C51122.9 (2)
O53—Ni—O191.63 (9)C5—C51—C52116.7 (2)
O53i—Ni—O188.37 (9)C5—C51—H51A108.1
N1—Ni—O1i87.63 (9)C52—C51—H51A108.1
N1i—Ni—O1i92.37 (9)C5—C51—H51B108.1
O53—Ni—O1i88.37 (9)C52—C51—H51B108.1
O53i—Ni—O1i91.63 (9)H51A—C51—H51B107.3
O1—Ni—O1i180.0O54—C52—O53122.8 (3)
C2—N1—C5103.7 (2)O54—C52—C51118.2 (2)
C2—N1—Ni130.69 (17)O53—C52—C51119.0 (2)
C5—N1—Ni123.09 (17)C52—O53—Ni130.20 (18)
N3—C2—N21125.8 (2)Ni—O1—H1A120 (2)
N3—C2—N1108.9 (2)Ni—O1—H1B132 (3)
N21—C2—N1125.2 (2)H1A—O1—H1B104 (3)
C2—N21—H21A123 (2)H2A—O2—H2B112 (3)
C2—N21—H21B115 (2)
C5—N1—C2—N30.3 (3)Ni—N1—C5—N4163.8 (2)
Ni—N1—C2—N3162.2 (2)C2—N1—C5—C51177.4 (3)
C5—N1—C2—N21177.1 (3)Ni—N1—C5—C5118.9 (4)
Ni—N1—C2—N2121.0 (5)N4—C5—C51—C52133.3 (3)
N21—C2—N3—N4177.1 (3)N1—C5—C51—C5249.6 (4)
N1—C2—N3—N40.4 (4)C5—C51—C52—O54151.7 (3)
C2—N3—N4—C50.2 (3)C5—C51—C52—O5331.5 (4)
N3—N4—C5—N10.0 (3)O54—C52—O53—Ni162.5 (2)
N3—N4—C5—C51177.2 (3)C51—C52—O53—Ni14.2 (4)
C2—N1—C5—N40.2 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O2ii0.83 (2)2.04 (2)2.876 (3)176 (3)
N21—H21B···O53i0.83 (2)2.19 (2)2.941 (3)151 (3)
N3—H3···O54iii0.83 (3)2.10 (3)2.885 (3)156 (3)
O1—H1A···O2iv0.82 (2)1.92 (2)2.739 (3)176 (3)
O1—H1B···O54v0.82 (2)1.96 (2)2.780 (3)173 (4)
O2—H2A···N4vi0.83 (2)2.09 (2)2.903 (3)164 (3)
O2—H2B···O53vii0.83 (2)1.98 (2)2.811 (3)176 (3)
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z1/2; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O2i0.834 (19)2.04 (2)2.876 (3)176 (3)
N21—H21B···O53ii0.834 (19)2.19 (2)2.941 (3)151 (3)
N3—H3···O54iii0.83 (3)2.10 (3)2.885 (3)156 (3)
O1—H1A···O2iv0.822 (19)1.919 (19)2.739 (3)176 (3)
O1—H1B···O54v0.822 (19)1.96 (2)2.780 (3)173 (4)
O2—H2A···N4vi0.83 (2)2.09 (2)2.903 (3)164 (3)
O2—H2B···O53vii0.83 (2)1.98 (2)2.811 (3)176 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z1/2; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula
Mr412.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.6270 (17), 7.2603 (16), 13.580 (3)
β (°) 91.91 (2)
V3)751.6 (3)
Z2
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.72
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.945, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
1706, 1640, 1215
Rint0.021
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 1.02
No. of reflections1640
No. of parameters140
No. of restraints3
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported financially by the Ministry of Education and Science of the Russian Federation (project No. 2945 of State Order No. 2014/143).

References

First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationBiagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F. & Haasnoot, J. G. (1994). Inorg. Chim. Acta, 227, 181–184.  CAS Google Scholar
First citationBushuev, M. B., Virovets, A. V., Garcia, Y., Gieck, C., Sheludyakova, L. A., Ikorskii, V. N., Tremel, W., Gütlich, P. & Lavrenova, L. G. (2002). Polyhedron, 21, 797–804.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y.-C., Xu, J.-J., Wang, K.-B. & Wang, Y. (2011). Chin. J. Struct. Chem. 30, 799–804.  CAS Google Scholar
First citationChernyshev, V. M., Chernysheva, A. V. & Starikova, Z. A. (2010). Heterocycles, 81, 2291–2311.  Web of Science CSD CrossRef CAS Google Scholar
First citationChernyshev, V. M., Chernysheva, A. V. & Taranushich, V. A. (2006). Russ. J. Appl. Chem. 79, 783–786.  Web of Science CrossRef CAS Google Scholar
First citationChernyshev, V. M., Chernysheva, A. V. & Taranushich, V. A. (2009). Russ. J. Appl. Chem. 82, 276–281.  Web of Science CrossRef CAS Google Scholar
First citationDrożdżewski, P., Pawlak, B. & Głowiak, T. (2003). Transition Met. Chem. 28, 727–731.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436–1446.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFerrer, S., Lloret, F., Pardo, E., Clemente-Juan, J. M., Liu-González, M. & García-Granda, S. (2012). Inorg. Chem. 51, 985–1001.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGao, J.-Y., Xiong, X.-H., Chen, C.-J., Xie, W.-P., Ran, X.-R. & Yue, S.-T. (2013). Z. Anorg. Allg. Chem. 639, 582–586.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHernández-Gil, J., Ferrer, S., Castiñeiras, A., Liu-González, M., Lloret, F., Ribes, Á., Coga, L., Bernecker, A. & Mareque-Rivas, J. C. (2014). Inorg. Chem. 53, 578–593.  Web of Science PubMed Google Scholar
First citationHernández-Gil, J., Ferrer, S., Castiñeiras, A. & Lloret, F. (2012). Inorg. Chem. 51, 9809–9819.  Web of Science PubMed Google Scholar
First citationJin, G.-H., Li, X., Hu, C. & Hu, L. (2011). Acta Cryst. E67, m988.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLenstra, A. T. H., Slot, H. J. B., Beurskens, P. T., Haasnoot, J. G. & Reedijk, J. (1989). Rec. Trav. Chim. Pays-Bas, 108, 133–138.  CrossRef CAS Google Scholar
First citationLiu, K., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 8475–8490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPrins, R., Biagini-Cingi, M., Drillon, M., de Graaff, R. A. G., Haasnoot, J., Manotti-Lanfredi, A.-M., Rabu, P., Reedijk, J. & Ugozzoli, F. (1996). Inorg. Chim. Acta, 248, 35–44.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, K. A., Mehrotra, G. K., Narvi, S. S. & Butcher, R. J. (2011). Inorg. Chem. Commun. 14, 814–817.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, Y.-G., Xiong, G., Guo, M.-Y., Ding, F., Wang, L., Gao, E.-J., Zhu, M.-C. & Verpoort, F. (2011). Z. Anorg. Allg. Chem. 637, 293–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Kukovec, B.-M. & Kazeroonizadeh, M. (2011). Polyhedron, 30, 1114–1119.  Web of Science CSD CrossRef CAS Google Scholar
First citationThomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362–366.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTseng, T.-W., Luo, T.-T. & Lu, K.-H. (2014). CrystEngComm, 16, 5516–5519.  Web of Science CSD CrossRef CAS Google Scholar
First citationVirovets, A. V., Bushuev, M. B. & Lavrenova, L. G. (2000). J. Struct. Chem. 41, 717–720.  Web of Science CrossRef CAS Google Scholar
First citationWang, J., Li, W.-Z., Wang, J.-G. & Xiao, H.-P. (2011). Z. Kristallogr. New Cryst. Struct. 226, 163–164.  CAS Google Scholar
First citationZheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds