metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m367-m368

Crystal structure of tri­aqua­(1,10-phen­anthroline-κ2N,N′)(2,4,5-tri­fluoro-3-meth­­oxy­benzoato-κO1)cobalt(II) 2,4,5-tri­fluoro-3-meth­­oxy­benzoate

aBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing,100083, People's Republic of China
*Correspondence e-mail: klsz79@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 September 2014; accepted 7 October 2014; online 11 October 2014)

The title salt, [Co(C8H4F3O3)(C12H8N2)(H2O)3](C8H4F3O3), was obtained under solvothermal conditions by the reaction of 2,4,5-tri­fluoro-3-meth­oxy­benzoic acid with CoCl2 in the presence of 1,10-phenanthroline (phen). The CoII ion is octa­hedrally coordinated by two N atoms [Co—N = 2.165 (2) and 2.129 (2) Å] from the phen ligand, by one carboxyl­ate O atom [Co—O = 2.107 (1) Å] and by three O atoms from water mol­ecules [Co—O = 2.093 (1), 2.102 (1) and 2.114 (1) Å]. The equatorial positions of the slightly distorted octa­hedron are occupied by the N atoms, the carboxyl­ate O and one water O atom. An intra- and inter­molecular O—H⋯O hydrogen-bonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].

1. Related literature

For complexes of CoII, see: Wang et al. (2008[Wang, M., Ma, C. B., Wang, H. S., Chen, C. N. & Liu, Q. T. (2008). J. Mol. Struct. 873, 94-100.]); Li et al. (2014[Li, X., Li, J., Li, M. K. & Fei, Z. (2014). J. Mol. Struct. 1059, 294-298.]). For metal cations chelated by phenanthroline or its derivatives, see: Liu et al. (2006[Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030-m2032.]); Kaizer et al. (2006[Kaizer, J., Csay, T., Speier, G., Réglier, M. & Giorgi, M. (2006). Inorg. Chem. Commun. 9, 1037-1039.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C8H4F3O3)(C12H8N2)(H2O)3](C8H4F3O3)

  • Mr = 703.41

  • Monoclinic, P 21 /c

  • a = 17.177 (3) Å

  • b = 7.0429 (14) Å

  • c = 26.543 (4) Å

  • β = 116.942 (9)°

  • V = 2862.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 273 K

  • 0.31 × 0.24 × 0.22 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.862

  • 14578 measured reflections

  • 5074 independent reflections

  • 4221 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.05

  • 5074 reflections

  • 417 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1 0.85 1.78 2.604 (2) 163
O4—H4B⋯O8i 0.85 1.89 2.729 (2) 169
O5—H5A⋯O8ii 0.85 1.94 2.791 (2) 176
O5—H5B⋯O6iii 0.85 2.15 2.976 (2) 165
O6—H6A⋯O1iv 0.85 1.90 2.738 (2) 167
O6—H6B⋯O7ii 0.85 1.77 2.623 (2) 176
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For complexes of CoII, see: Wang et al. (2008); Li et al. (2014). For metal cations chelated by phenanthroline or its derivatives, see: Liu et al. (2006); Kaizer et al. (2006).

Experimental top

The reaction was carried out under solvothermal conditions. 2,4,5-Trifluoro-3-methoxyl benzoic acid (0.220 g, 1 mmol), CoCl2 (0.130 g, 1 mmol) and phenanthroline (0.156 g, 1 mmol) were added to an airtight vessel together with methanol and water in a ratio of 1:2 (v/v). The vessel was heated at 393 K for three days and was then cooled down to room temperature with a rate of 10 Kh-1. The resulting blue solution was filtered. The filtrate was placed for several days yielding blue block-shaped crystals in a yield of 78%. Elemental analysis: calc. for C28H22CoF6N2O9: C 47.81, H 3.15, N 3.98; found: C 47.50, H 3.47, N 3.62. The elemental analyses were performed with a Perkin-Elmer model 2400 series II.

Refinement top

The water H atoms could be located in difference Fourier maps and were refined with a distance O–H of 0.85 Å, the aromatic H atoms were placed in calculated positions. The Uiso(H) values were set at 1.2Ueq(C) for the aromatic H atoms, and 1.5Ueq(O) for water molecules.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The molecular structure of title compound, with at1om labels and displacement ellipsoids drawn at the 30% probability level.

The crystal packing of title compound. Hydrogen bonds are shown by dashed lines.
Triaqua(1,10-phenanthroline-κ2N,N')(2,4,5-trifluoro-3-methoxybenzoato-κO1)cobalt(II) 2,4,5-trifluoro-3-methoxybenzoate top
Crystal data top
[Co(C8H4F3O3)(C12H8N2)(H2O)3](C8H4F3O3)F(000) = 1428
Mr = 703.41Dx = 1.632 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6632 reflections
a = 17.177 (3) Åθ = 2.4–27.5°
b = 7.0429 (14) ŵ = 0.70 mm1
c = 26.543 (4) ÅT = 273 K
β = 116.942 (9)°Block, blue
V = 2862.6 (9) Å30.31 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5074 independent reflections
Radiation source: fine-focus sealed tube4221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1820
Tmin = 0.813, Tmax = 0.862k = 88
14578 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.4144P]
where P = (Fo2 + 2Fc2)/3
5074 reflections(Δ/σ)max = 0.055
417 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C8H4F3O3)(C12H8N2)(H2O)3](C8H4F3O3)V = 2862.6 (9) Å3
Mr = 703.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.177 (3) ŵ = 0.70 mm1
b = 7.0429 (14) ÅT = 273 K
c = 26.543 (4) Å0.31 × 0.24 × 0.22 mm
β = 116.942 (9)°
Data collection top
Bruker SMART CCD
diffractometer
5074 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4221 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.862Rint = 0.031
14578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
5074 reflectionsΔρmin = 0.29 e Å3
417 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.036012 (16)0.98486 (3)0.849126 (11)0.03250 (10)
F10.26524 (9)0.3645 (2)0.97664 (7)0.0707 (4)
F20.50025 (8)0.4048 (2)0.93279 (7)0.0792 (5)
F30.42723 (10)0.7110 (3)0.86781 (7)0.0915 (6)
O10.11946 (9)0.54591 (19)0.90080 (7)0.0471 (4)
O20.15660 (8)0.84291 (19)0.89122 (6)0.0438 (3)
O30.42421 (11)0.2330 (2)0.99177 (9)0.0785 (6)
O40.02612 (8)0.73632 (18)0.85611 (6)0.0400 (3)
H4A0.01460.65500.87020.060*
H4B0.06950.69300.82710.060*
O50.02512 (10)0.9156 (2)0.76868 (6)0.0559 (4)
H5A0.06440.95990.76090.084*
H5B0.00910.84390.74220.084*
O60.09820 (9)1.22487 (18)0.83776 (6)0.0396 (3)
H6A0.10831.31320.86160.059*
H6B0.14551.19920.83620.059*
N10.04641 (11)1.1074 (2)0.92526 (7)0.0369 (4)
N20.09265 (11)1.1051 (2)0.82265 (7)0.0398 (4)
C10.17226 (12)0.6698 (3)0.90106 (8)0.0358 (4)
C20.26251 (12)0.6034 (3)0.91315 (9)0.0376 (5)
C30.30280 (14)0.4504 (3)0.94752 (10)0.0455 (5)
C40.38301 (14)0.3792 (3)0.95534 (10)0.0526 (6)
C50.42300 (14)0.4690 (3)0.92756 (10)0.0528 (6)
C60.38504 (15)0.6250 (4)0.89423 (10)0.0559 (6)
C70.30619 (13)0.6933 (3)0.88676 (9)0.0461 (5)
H70.28180.79930.86420.055*
C80.3839 (2)0.0534 (4)0.97619 (15)0.0901 (10)
H8A0.32800.06680.94380.135*
H8B0.37630.00101.00710.135*
H8C0.42000.02980.96710.135*
C90.11689 (15)1.1166 (3)0.97473 (9)0.0464 (5)
H90.16941.07160.97720.056*
C100.11616 (19)1.1904 (3)1.02325 (10)0.0585 (7)
H100.16741.19711.05700.070*
C110.0396 (2)1.2524 (3)1.02041 (11)0.0605 (7)
H110.03791.29881.05270.073*
C120.03715 (17)1.2468 (3)0.96895 (10)0.0502 (6)
C130.02984 (14)1.1751 (3)0.92162 (9)0.0394 (5)
C140.10486 (14)1.1669 (3)0.86735 (9)0.0409 (5)
C150.18697 (15)1.2216 (3)0.86204 (12)0.0547 (6)
C160.25805 (17)1.2051 (4)0.80864 (14)0.0686 (8)
H160.31371.23700.80340.082*
C170.24616 (15)1.1424 (4)0.76409 (13)0.0640 (7)
H170.29341.13140.72840.077*
C180.16170 (15)1.0947 (3)0.77263 (10)0.0521 (6)
H180.15401.05410.74180.063*
C190.1918 (2)1.2905 (3)0.91190 (16)0.0704 (8)
H190.24581.32630.90900.084*
C200.1211 (2)1.3044 (3)0.96194 (14)0.0669 (8)
H200.12671.35260.99280.080*
F40.79608 (8)0.6899 (2)0.83581 (5)0.0640 (4)
F50.49409 (10)0.7502 (3)0.77106 (9)0.1131 (7)
F60.46705 (9)0.6963 (3)0.66524 (8)0.1035 (6)
O70.75824 (10)0.6564 (3)0.67096 (7)0.0624 (5)
O80.85075 (9)0.5774 (2)0.75883 (6)0.0494 (4)
O90.66903 (14)0.7478 (5)0.86077 (9)0.1250 (11)
C210.77750 (13)0.6287 (3)0.72160 (9)0.0398 (5)
C220.70364 (13)0.6598 (3)0.73757 (9)0.0378 (5)
C230.71580 (13)0.6863 (3)0.79192 (9)0.0443 (5)
C240.64763 (16)0.7167 (4)0.80576 (11)0.0632 (7)
C250.56427 (16)0.7200 (4)0.76156 (12)0.0668 (7)
C260.55010 (14)0.6927 (4)0.70685 (12)0.0636 (7)
C270.61828 (14)0.6647 (3)0.69431 (10)0.0531 (6)
H270.60770.64890.65690.064*
C280.6204 (3)0.7241 (9)0.88452 (16)0.169 (3)
H28A0.57350.81450.86990.253*
H28B0.65400.74210.92450.253*
H28C0.59690.59780.87720.253*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03164 (16)0.03054 (15)0.03758 (16)0.00071 (10)0.01767 (12)0.00163 (11)
F10.0532 (8)0.0698 (10)0.0854 (11)0.0073 (7)0.0282 (8)0.0347 (8)
F20.0357 (8)0.0979 (12)0.0941 (12)0.0176 (8)0.0207 (8)0.0184 (9)
F30.0553 (9)0.1373 (16)0.1000 (13)0.0088 (9)0.0510 (10)0.0268 (11)
O10.0360 (8)0.0348 (8)0.0701 (11)0.0005 (6)0.0236 (8)0.0001 (7)
O20.0343 (8)0.0324 (8)0.0613 (9)0.0017 (6)0.0186 (7)0.0006 (7)
O30.0479 (10)0.0503 (11)0.0954 (14)0.0101 (8)0.0043 (10)0.0101 (10)
O40.0299 (7)0.0383 (8)0.0498 (8)0.0009 (6)0.0162 (7)0.0008 (6)
O50.0585 (10)0.0714 (11)0.0481 (9)0.0273 (8)0.0332 (8)0.0229 (8)
O60.0413 (8)0.0343 (7)0.0486 (8)0.0027 (6)0.0251 (7)0.0046 (6)
N10.0414 (10)0.0327 (9)0.0412 (10)0.0059 (7)0.0227 (8)0.0031 (7)
N20.0370 (9)0.0333 (9)0.0484 (11)0.0003 (7)0.0188 (9)0.0021 (8)
C10.0335 (11)0.0333 (11)0.0376 (11)0.0014 (9)0.0136 (9)0.0038 (9)
C20.0320 (10)0.0342 (11)0.0420 (12)0.0002 (8)0.0127 (9)0.0051 (9)
C30.0352 (12)0.0414 (12)0.0525 (14)0.0022 (9)0.0133 (10)0.0013 (10)
C40.0333 (12)0.0398 (12)0.0641 (16)0.0040 (10)0.0040 (11)0.0044 (11)
C50.0293 (11)0.0587 (15)0.0595 (15)0.0078 (10)0.0107 (11)0.0145 (12)
C60.0395 (13)0.0749 (17)0.0589 (15)0.0032 (12)0.0272 (12)0.0021 (13)
C70.0368 (12)0.0494 (13)0.0493 (13)0.0042 (10)0.0171 (11)0.0046 (10)
C80.075 (2)0.0420 (15)0.117 (3)0.0082 (14)0.0108 (19)0.0039 (16)
C90.0517 (13)0.0425 (12)0.0446 (13)0.0117 (10)0.0214 (12)0.0031 (10)
C100.0800 (19)0.0488 (14)0.0462 (14)0.0213 (13)0.0281 (14)0.0070 (11)
C110.107 (2)0.0386 (13)0.0527 (15)0.0197 (13)0.0503 (17)0.0102 (11)
C120.0781 (17)0.0293 (11)0.0666 (16)0.0064 (11)0.0533 (15)0.0033 (11)
C130.0503 (13)0.0271 (10)0.0519 (13)0.0052 (9)0.0329 (11)0.0020 (9)
C140.0447 (12)0.0260 (10)0.0625 (15)0.0011 (9)0.0336 (12)0.0022 (9)
C150.0467 (14)0.0363 (12)0.0914 (19)0.0067 (10)0.0402 (15)0.0103 (12)
C160.0457 (15)0.0502 (15)0.115 (3)0.0113 (12)0.0409 (17)0.0192 (16)
C170.0377 (13)0.0542 (15)0.0792 (19)0.0011 (11)0.0080 (13)0.0183 (14)
C180.0464 (14)0.0460 (13)0.0542 (15)0.0014 (11)0.0142 (12)0.0066 (11)
C190.078 (2)0.0483 (15)0.124 (3)0.0137 (14)0.080 (2)0.0077 (16)
C200.098 (2)0.0439 (14)0.097 (2)0.0037 (14)0.078 (2)0.0019 (14)
F40.0363 (7)0.1105 (12)0.0457 (8)0.0016 (7)0.0190 (6)0.0098 (8)
F50.0470 (9)0.190 (2)0.1187 (15)0.0118 (11)0.0517 (10)0.0143 (14)
F60.0335 (8)0.1689 (19)0.0909 (12)0.0075 (9)0.0129 (8)0.0109 (12)
O70.0456 (9)0.1017 (14)0.0431 (10)0.0044 (9)0.0229 (8)0.0051 (9)
O80.0359 (8)0.0670 (10)0.0460 (9)0.0094 (7)0.0193 (7)0.0012 (8)
O90.0612 (13)0.260 (4)0.0701 (14)0.0121 (17)0.0444 (12)0.0422 (18)
C210.0371 (12)0.0403 (12)0.0441 (13)0.0032 (9)0.0201 (10)0.0048 (9)
C220.0341 (11)0.0355 (11)0.0445 (12)0.0003 (8)0.0185 (10)0.0018 (9)
C230.0311 (11)0.0537 (13)0.0484 (13)0.0015 (9)0.0182 (10)0.0026 (10)
C240.0470 (15)0.089 (2)0.0621 (16)0.0047 (13)0.0322 (13)0.0105 (14)
C250.0389 (14)0.091 (2)0.081 (2)0.0059 (13)0.0361 (14)0.0008 (16)
C260.0289 (12)0.0825 (18)0.0704 (18)0.0039 (12)0.0144 (12)0.0074 (14)
C270.0414 (13)0.0652 (15)0.0503 (14)0.0001 (11)0.0187 (11)0.0034 (12)
C280.092 (3)0.349 (8)0.084 (3)0.051 (4)0.057 (2)0.034 (4)
Geometric parameters (Å, º) top
Co1—O62.0931 (13)C10—C111.354 (4)
Co1—O42.1016 (14)C10—H100.9300
Co1—O22.1074 (14)C11—C121.405 (4)
Co1—O52.1143 (14)C11—H110.9300
Co1—N12.1290 (16)C12—C131.411 (3)
Co1—N22.1652 (17)C12—C201.427 (4)
F1—C31.353 (3)C13—C141.434 (3)
F2—C51.348 (2)C14—C151.406 (3)
F3—C61.358 (3)C15—C161.395 (4)
O1—C11.256 (2)C15—C191.447 (4)
O2—C11.250 (2)C16—C171.361 (4)
O3—C41.370 (3)C16—H160.9300
O3—C81.411 (3)C17—C181.404 (3)
O4—H4A0.8481C17—H170.9300
O4—H4B0.8494C18—H180.9300
O5—H5A0.8489C19—C201.337 (4)
O5—H5B0.8490C19—H190.9300
O6—H6A0.8476C20—H200.9300
O6—H6B0.8508F4—C231.343 (2)
N1—C91.324 (3)F5—C251.356 (3)
N1—C131.356 (3)F6—C261.352 (3)
N2—C181.322 (3)O7—C211.245 (2)
N2—C141.366 (3)O8—C211.250 (2)
C1—C21.508 (3)O9—C281.264 (4)
C2—C31.378 (3)O9—C241.353 (3)
C2—C71.389 (3)C21—C221.525 (3)
C3—C41.390 (3)C22—C231.373 (3)
C4—C51.369 (3)C22—C271.394 (3)
C5—C61.376 (3)C23—C241.393 (3)
C6—C71.364 (3)C24—C251.380 (4)
C7—H70.9300C25—C261.373 (4)
C8—H8A0.9600C26—C271.369 (3)
C8—H8B0.9600C27—H270.9300
C8—H8C0.9600C28—H28A0.9600
C9—C101.394 (3)C28—H28B0.9600
C9—H90.9300C28—H28C0.9600
O6—Co1—O4176.42 (5)C11—C10—C9118.9 (2)
O6—Co1—O290.94 (5)C11—C10—H10120.5
O4—Co1—O288.54 (5)C9—C10—H10120.5
O6—Co1—O581.85 (6)C10—C11—C12120.3 (2)
O4—Co1—O594.63 (6)C10—C11—H11119.8
O2—Co1—O592.40 (6)C12—C11—H11119.8
O6—Co1—N188.89 (6)C11—C12—C13116.9 (2)
O4—Co1—N194.67 (6)C11—C12—C20124.5 (2)
O2—Co1—N192.83 (6)C13—C12—C20118.6 (2)
O5—Co1—N1169.43 (6)N1—C13—C12122.4 (2)
O6—Co1—N298.62 (6)N1—C13—C14117.17 (17)
O4—Co1—N282.53 (6)C12—C13—C14120.5 (2)
O2—Co1—N2166.20 (6)N2—C14—C15122.8 (2)
O5—Co1—N298.76 (7)N2—C14—C13117.61 (17)
N1—Co1—N277.52 (7)C15—C14—C13119.6 (2)
C1—O2—Co1129.80 (13)C16—C15—C14117.1 (2)
C4—O3—C8116.0 (2)C16—C15—C19124.8 (2)
Co1—O4—H4A104.6C14—C15—C19118.1 (3)
Co1—O4—H4B119.4C17—C16—C15120.2 (2)
H4A—O4—H4B111.5C17—C16—H16119.9
Co1—O5—H5A116.4C15—C16—H16119.9
Co1—O5—H5B133.2C16—C17—C18119.2 (3)
H5A—O5—H5B110.2C16—C17—H17120.4
Co1—O6—H6A115.4C18—C17—H17120.4
Co1—O6—H6B113.3N2—C18—C17122.7 (2)
H6A—O6—H6B108.4N2—C18—H18118.7
C9—N1—C13118.23 (18)C17—C18—H18118.7
C9—N1—Co1127.37 (14)C20—C19—C15122.0 (2)
C13—N1—Co1114.34 (13)C20—C19—H19119.0
C18—N2—C14117.97 (18)C15—C19—H19119.0
C18—N2—Co1128.57 (15)C19—C20—C12121.2 (2)
C14—N2—Co1112.24 (13)C19—C20—H20119.4
O2—C1—O1126.14 (18)C12—C20—H20119.4
O2—C1—C2116.75 (17)C28—O9—C24126.8 (3)
O1—C1—C2117.10 (17)O7—C21—O8125.34 (19)
C3—C2—C7117.77 (19)O7—C21—C22115.47 (18)
C3—C2—C1122.87 (18)O8—C21—C22119.18 (18)
C7—C2—C1119.28 (18)C23—C22—C27117.68 (19)
F1—C3—C2120.08 (18)C23—C22—C21124.19 (18)
F1—C3—C4116.8 (2)C27—C22—C21118.12 (19)
C2—C3—C4123.2 (2)F4—C23—C22121.42 (17)
C5—C4—O3120.2 (2)F4—C23—C24115.07 (19)
C5—C4—C3117.3 (2)C22—C23—C24123.5 (2)
O3—C4—C3122.4 (2)O9—C24—C25125.8 (2)
F2—C5—C4120.0 (2)O9—C24—C23117.4 (2)
F2—C5—C6119.5 (2)C25—C24—C23116.8 (2)
C4—C5—C6120.5 (2)F5—C25—C26118.2 (2)
F3—C6—C7119.7 (2)F5—C25—C24120.8 (2)
F3—C6—C5118.7 (2)C26—C25—C24121.0 (2)
C7—C6—C5121.7 (2)F6—C26—C27120.4 (2)
C6—C7—C2119.6 (2)F6—C26—C25118.5 (2)
C6—C7—H7120.2C27—C26—C25121.1 (2)
C2—C7—H7120.2C26—C27—C22120.0 (2)
O3—C8—H8A109.5C26—C27—H27120.0
O3—C8—H8B109.5C22—C27—H27120.0
H8A—C8—H8B109.5O9—C28—H28A109.5
O3—C8—H8C109.5O9—C28—H28B109.5
H8A—C8—H8C109.5H28A—C28—H28B109.5
H8B—C8—H8C109.5O9—C28—H28C109.5
N1—C9—C10123.2 (2)H28A—C28—H28C109.5
N1—C9—H9118.4H28B—C28—H28C109.5
C10—C9—H9118.4
O6—Co1—O2—C1162.24 (18)C10—C11—C12—C20178.5 (2)
O4—Co1—O2—C114.22 (18)C9—N1—C13—C122.8 (3)
O5—Co1—O2—C180.36 (18)Co1—N1—C13—C12174.58 (15)
N1—Co1—O2—C1108.82 (18)C9—N1—C13—C14178.83 (17)
N2—Co1—O2—C163.7 (3)Co1—N1—C13—C143.8 (2)
O6—Co1—N1—C976.76 (17)C11—C12—C13—N12.5 (3)
O4—Co1—N1—C9102.89 (17)C20—C12—C13—N1176.21 (19)
O2—Co1—N1—C914.12 (17)C11—C12—C13—C14179.17 (18)
O5—Co1—N1—C9105.5 (4)C20—C12—C13—C142.1 (3)
N2—Co1—N1—C9175.84 (17)C18—N2—C14—C150.9 (3)
O6—Co1—N1—C13106.12 (13)Co1—N2—C14—C15169.32 (16)
O4—Co1—N1—C1374.23 (13)C18—N2—C14—C13179.10 (18)
O2—Co1—N1—C13163.00 (13)Co1—N2—C14—C1310.6 (2)
O5—Co1—N1—C1377.4 (4)N1—C13—C14—N24.9 (3)
N2—Co1—N1—C137.04 (13)C12—C13—C14—N2176.77 (17)
O6—Co1—N2—C1896.75 (18)N1—C13—C14—C15175.11 (18)
O4—Co1—N2—C1879.82 (18)C12—C13—C14—C153.3 (3)
O2—Co1—N2—C18129.9 (3)N2—C14—C15—C161.9 (3)
O5—Co1—N2—C1813.75 (19)C13—C14—C15—C16178.1 (2)
N1—Co1—N2—C18176.32 (19)N2—C14—C15—C19178.05 (19)
O6—Co1—N2—C1496.30 (13)C13—C14—C15—C192.0 (3)
O4—Co1—N2—C1487.13 (13)C14—C15—C16—C171.4 (3)
O2—Co1—N2—C1437.0 (3)C19—C15—C16—C17178.5 (2)
O5—Co1—N2—C14179.31 (13)C15—C16—C17—C180.0 (4)
N1—Co1—N2—C149.37 (13)C14—N2—C18—C170.7 (3)
Co1—O2—C1—O119.6 (3)Co1—N2—C18—C17165.64 (17)
Co1—O2—C1—C2159.01 (13)C16—C17—C18—N21.1 (4)
O2—C1—C2—C3150.4 (2)C16—C15—C19—C20179.5 (2)
O1—C1—C2—C330.9 (3)C14—C15—C19—C200.5 (4)
O2—C1—C2—C732.7 (3)C15—C19—C20—C121.7 (4)
O1—C1—C2—C7146.1 (2)C11—C12—C20—C19178.3 (2)
C7—C2—C3—F1176.35 (19)C13—C12—C20—C190.4 (3)
C1—C2—C3—F16.7 (3)O7—C21—C22—C23162.0 (2)
C7—C2—C3—C42.2 (3)O8—C21—C22—C2318.6 (3)
C1—C2—C3—C4174.8 (2)O7—C21—C22—C2716.9 (3)
C8—O3—C4—C5115.6 (3)O8—C21—C22—C27162.5 (2)
C8—O3—C4—C368.5 (3)C27—C22—C23—F4177.8 (2)
F1—C3—C4—C5177.9 (2)C21—C22—C23—F41.2 (3)
C2—C3—C4—C50.7 (3)C27—C22—C23—C240.3 (3)
F1—C3—C4—O31.8 (3)C21—C22—C23—C24179.2 (2)
C2—C3—C4—O3176.7 (2)C28—O9—C24—C2524.9 (6)
O3—C4—C5—F24.9 (3)C28—O9—C24—C23157.9 (4)
C3—C4—C5—F2179.0 (2)F4—C23—C24—O90.6 (4)
O3—C4—C5—C6175.1 (2)C22—C23—C24—O9177.6 (3)
C3—C4—C5—C61.1 (4)F4—C23—C24—C25178.0 (2)
F2—C5—C6—F30.5 (4)C22—C23—C24—C250.1 (4)
C4—C5—C6—F3179.4 (2)O9—C24—C25—F52.3 (5)
F2—C5—C6—C7178.8 (2)C23—C24—C25—F5179.5 (3)
C4—C5—C6—C71.3 (4)O9—C24—C25—C26177.7 (3)
F3—C6—C7—C2179.0 (2)C23—C24—C25—C260.6 (4)
C5—C6—C7—C20.3 (4)F5—C25—C26—F60.3 (4)
C3—C2—C7—C61.9 (3)C24—C25—C26—F6179.6 (3)
C1—C2—C7—C6175.2 (2)F5—C25—C26—C27178.9 (3)
C13—N1—C9—C100.8 (3)C24—C25—C26—C271.2 (5)
Co1—N1—C9—C10176.24 (16)F6—C26—C27—C22179.5 (2)
N1—C9—C10—C111.5 (3)C25—C26—C27—C221.3 (4)
C9—C10—C11—C121.7 (3)C23—C22—C27—C260.8 (3)
C10—C11—C12—C130.2 (3)C21—C22—C27—C26179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O10.851.782.604 (2)163
O4—H4B···O8i0.851.892.729 (2)169
O5—H5A···O8ii0.851.942.791 (2)176
O5—H5B···O6iii0.852.152.976 (2)165
O6—H6A···O1iv0.851.902.738 (2)167
O6—H6B···O7ii0.851.772.623 (2)176
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x, y1/2, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O10.851.782.604 (2)162.6
O4—H4B···O8i0.851.892.729 (2)168.8
O5—H5A···O8ii0.851.942.791 (2)176.0
O5—H5B···O6iii0.852.152.976 (2)165.4
O6—H6A···O1iv0.851.902.738 (2)167.4
O6—H6B···O7ii0.851.772.623 (2)176.1
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x, y1/2, z+3/2; (iv) x, y+1, z.
 

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaizer, J., Csay, T., Speier, G., Réglier, M. & Giorgi, M. (2006). Inorg. Chem. Commun. 9, 1037–1039.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Li, J., Li, M. K. & Fei, Z. (2014). J. Mol. Struct. 1059, 294–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030–m2032.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Ma, C. B., Wang, H. S., Chen, C. N. & Liu, Q. T. (2008). J. Mol. Struct. 873, 94–100.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m367-m368
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds