metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m372-m373

Crystal structure of bis­­{2-[(2-hy­dr­oxy­eth­yl)amino]­ethanol-κ3O,N,O′}copper(II) terephthalate

aDepartment of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China, bDepartment of Vascular Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, cSt Erik's Eye Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden, and dDepartment of Gynecology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China
*Correspondence e-mail: drsundj@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 September 2014; accepted 9 October 2014; online 18 October 2014)

The mol­ecular components of the title salt, [Cu(C4H11NO2)2](C8H4O4), are one CuII cation O,N,O′-chelated by two tridentate 2-[(2-hy­droxy­eth­yl)amino]­ethanol ligands, and a terephthalate counter-dianion, located about a centre of inversion. The complex CuII cation is located about a centre of inversion and shows typical Jahn–Teller distortion, with two short Cu—O and two short Cu—N bonds in the equatorial plane and two long Cu—O bonds to the axial atoms. The cations are arranged in sheets parallel to (100), with the centrosymmetric terephthalate anions located between the sheets. Each anion is the acceptor of four O—H⋯O and two N—H⋯O hydrogen bonds, forming a three-dimensional network structure.

1. Related literature

For related copper(II) compounds with terephthalate anions, see: Abbaszadeh et al. (2012[Abbaszadeh, A., Safari, N., Amani, V. & Notash, B. (2012). Acta Cryst. E68, m1012.]); Al-Hashemi et al. (2010[Al-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010). J. Coord. Chem. 63, 3207-3217.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C4H11NO2)2](C8H4O4)

  • Mr = 437.93

  • Monoclinic, P 21 /c

  • a = 8.6013 (9) Å

  • b = 9.0398 (9) Å

  • c = 11.5732 (12) Å

  • β = 91.695 (2)°

  • V = 899.47 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 K

  • 0.29 × 0.27 × 0.26 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.728, Tmax = 0.812

  • 4784 measured reflections

  • 1780 independent reflections

  • 1611 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.08

  • 1780 reflections

  • 133 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.85 (2) 2.08 (2) 2.9196 (19) 168 (2)
O4—H4A⋯O2ii 0.84 (2) 1.66 (2) 2.496 (2) 180 (3)
O3—H3A⋯O1iii 0.81 (2) 1.88 (2) 2.6803 (19) 167 (2)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Preparation top

The synthesis was performed under hydro­thermal conditions. A mixture of Cu(CH3COO)2·2H2O, (0.2 mmol, 0.046 g), 2-(2-hy­droxy-ethyl­amine) (0.4 mmol, 0.043 g), sodium terephthalate (0.2 mmol, 0.042 g) and water (20 ml) in a 30 ml stainless steel reactor with a Teflon liner were heated from 293 to 433 K in 2 h, and a constant temperature was maintained at 433 K for 72 h, after which the mixture was cooled to 298 K. Blue crystals of the title compound were recovered from the reaction.

Refinement top

All C—H H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) using a riding model. The hy­droxy H-atoms and amine H atoms were located in a difference Fourier map and were refined with O—H or N—H distances restrained to 0.85 (3) Å and with Uiso(H) = 1.5Ueq(N,O).

Related literature top

For related copper(II) compounds with terephthalate anions, see: Abbaszadeh et al. (2012); Al-Hashemi et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
The molecular components of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 3-x, 1-y, 2-z; (ii) 2-x, -y, 2-z.]

The packing of the molecular components in the title compound. N—H···O and O—H···O hydrogen bonds are shown by dashed lines.
Bis{2-[(2-hydroxyethyl)amino]ethanol-κ3O,N,O'}copper(II) terephthalate top
Crystal data top
[Cu(C4H11NO2)2](C8H4O4)F(000) = 458
Mr = 437.93Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1780 reflections
a = 8.6013 (9) Åθ = 1.7–22.8°
b = 9.0398 (9) ŵ = 1.26 mm1
c = 11.5732 (12) ÅT = 293 K
β = 91.695 (2)°Block, blue
V = 899.47 (16) Å30.29 × 0.27 × 0.26 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
1780 independent reflections
Radiation source: fine-focus sealed tube1611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 108
Tmin = 0.728, Tmax = 0.812k = 1111
4784 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.3198P]
where P = (Fo2 + 2Fc2)/3
1780 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu(C4H11NO2)2](C8H4O4)V = 899.47 (16) Å3
Mr = 437.93Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.6013 (9) ŵ = 1.26 mm1
b = 9.0398 (9) ÅT = 293 K
c = 11.5732 (12) Å0.29 × 0.27 × 0.26 mm
β = 91.695 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1611 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.812Rint = 0.034
4784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.31 e Å3
1780 reflectionsΔρmin = 0.83 e Å3
133 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3193 (2)0.5638 (2)0.79022 (15)0.0172 (4)
C21.4142 (2)0.5319 (2)0.89901 (16)0.0152 (4)
C31.5213 (2)0.4163 (2)0.90128 (16)0.0182 (4)
H31.53590.36030.83510.022*
C41.3941 (2)0.6154 (2)0.99805 (15)0.0181 (4)
H41.32320.69320.99680.022*
C51.1185 (2)0.3121 (2)1.02670 (17)0.0256 (4)
H5A1.22860.28921.03190.031*
H5B1.10570.41551.04680.031*
C61.0583 (2)0.2870 (2)0.90354 (17)0.0235 (4)
H6A0.95340.32590.89560.028*
H6B1.12290.34170.85110.028*
C71.2043 (2)0.0697 (2)0.82537 (15)0.0233 (4)
H7A1.25370.14400.77840.028*
H7B1.18210.01580.77690.028*
C81.3139 (2)0.0254 (2)0.92433 (18)0.0229 (4)
H8A1.39310.04120.89680.027*
H8B1.36490.11230.95680.027*
N11.05698 (17)0.12937 (17)0.86951 (12)0.0159 (3)
H1A0.985 (2)0.123 (2)0.8179 (16)0.024*
O11.20598 (16)0.64876 (16)0.79517 (11)0.0258 (3)
O21.3607 (2)0.49850 (17)0.70051 (13)0.0334 (4)
O31.03789 (17)0.22244 (15)1.10678 (11)0.0211 (3)
H3A0.956 (2)0.259 (3)1.127 (2)0.032*
O41.22477 (15)0.04666 (15)1.01071 (11)0.0163 (3)
H4A1.270 (3)0.031 (3)1.0742 (16)0.025*
Cu11.00000.00001.00000.01196 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0139 (9)0.0228 (10)0.0149 (9)0.0016 (8)0.0017 (7)0.0012 (7)
C20.0130 (9)0.0170 (8)0.0156 (8)0.0019 (8)0.0020 (7)0.0018 (7)
C30.0173 (9)0.0203 (9)0.0168 (8)0.0013 (7)0.0014 (7)0.0034 (7)
C40.0162 (9)0.0189 (9)0.0192 (9)0.0040 (8)0.0023 (7)0.0008 (7)
C50.0279 (11)0.0218 (10)0.0268 (10)0.0081 (8)0.0029 (8)0.0039 (8)
C60.0283 (11)0.0185 (9)0.0235 (10)0.0043 (8)0.0035 (8)0.0038 (8)
C70.0184 (10)0.0378 (12)0.0137 (8)0.0013 (9)0.0006 (7)0.0045 (8)
C80.0140 (10)0.0371 (11)0.0176 (9)0.0004 (8)0.0027 (8)0.0047 (8)
N10.0135 (8)0.0210 (8)0.0128 (7)0.0019 (6)0.0052 (6)0.0016 (6)
O10.0223 (8)0.0351 (8)0.0195 (7)0.0124 (6)0.0071 (5)0.0038 (6)
O20.0252 (9)0.0597 (13)0.0149 (7)0.0192 (7)0.0050 (6)0.0049 (6)
O30.0216 (7)0.0223 (7)0.0194 (6)0.0015 (6)0.0005 (5)0.0037 (5)
O40.0126 (6)0.0238 (7)0.0125 (6)0.0002 (6)0.0023 (5)0.0010 (5)
Cu10.01017 (19)0.0143 (2)0.01133 (18)0.00020 (10)0.00122 (12)0.00137 (10)
Geometric parameters (Å, º) top
C1—O11.243 (2)C7—N11.482 (2)
C1—O21.255 (2)C7—C81.515 (3)
C1—C21.508 (2)C7—H7A0.9700
C2—C41.387 (3)C7—H7B0.9700
C2—C31.392 (3)C8—O41.434 (2)
C3—C4i1.386 (2)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
C4—C3i1.386 (2)N1—Cu11.9830 (15)
C4—H40.9300N1—H1A0.847 (16)
C5—O31.427 (2)O3—Cu12.3776 (13)
C5—C61.519 (3)O3—H3A0.814 (16)
C5—H5A0.9700O4—Cu11.9791 (13)
C5—H5B0.9700O4—H4A0.835 (17)
C6—N11.478 (2)Cu1—O4ii1.9791 (13)
C6—H6A0.9700Cu1—N1ii1.9830 (15)
C6—H6B0.9700Cu1—O3ii2.3776 (13)
O1—C1—O2124.81 (17)C7—C8—H8A110.0
O1—C1—C2119.04 (16)O4—C8—H8B110.0
O2—C1—C2116.13 (16)C7—C8—H8B110.0
C4—C2—C3119.43 (17)H8A—C8—H8B108.4
C4—C2—C1120.51 (17)C6—N1—C7116.30 (16)
C3—C2—C1120.05 (17)C6—N1—Cu1111.45 (11)
C4i—C3—C2120.13 (17)C7—N1—Cu1106.31 (11)
C4i—C3—H3119.9C6—N1—H1A104.5 (15)
C2—C3—H3119.9C7—N1—H1A110.2 (15)
C3i—C4—C2120.43 (17)Cu1—N1—H1A107.9 (15)
C3i—C4—H4119.8C5—O3—Cu1101.82 (10)
C2—C4—H4119.8C5—O3—H3A113.5 (18)
O3—C5—C6111.45 (16)Cu1—O3—H3A112.5 (18)
O3—C5—H5A109.3C8—O4—Cu1113.63 (11)
C6—C5—H5A109.3C8—O4—H4A106.7 (18)
O3—C5—H5B109.3Cu1—O4—H4A116.8 (18)
C6—C5—H5B109.3O4—Cu1—O4ii180.0
H5A—C5—H5B108.0O4—Cu1—N1ii95.14 (6)
N1—C6—C5113.19 (15)O4ii—Cu1—N1ii84.86 (6)
N1—C6—H6A108.9O4—Cu1—N184.86 (6)
C5—C6—H6A108.9O4ii—Cu1—N195.14 (6)
N1—C6—H6B108.9N1ii—Cu1—N1180.0
C5—C6—H6B108.9O4—Cu1—O3ii88.34 (5)
H6A—C6—H6B107.8O4ii—Cu1—O3ii91.66 (5)
N1—C7—C8110.78 (15)N1ii—Cu1—O3ii82.18 (5)
N1—C7—H7A109.5N1—Cu1—O3ii97.82 (5)
C8—C7—H7A109.5O4—Cu1—O391.66 (5)
N1—C7—H7B109.5O4ii—Cu1—O388.34 (5)
C8—C7—H7B109.5N1ii—Cu1—O397.82 (5)
H7A—C7—H7B108.1N1—Cu1—O382.18 (5)
O4—C8—C7108.27 (16)O3ii—Cu1—O3180.0
O4—C8—H8A110.0
O1—C1—C2—C411.6 (3)C8—O4—Cu1—N11.66 (13)
O2—C1—C2—C4169.71 (18)C8—O4—Cu1—O3ii96.35 (13)
O1—C1—C2—C3167.30 (18)C8—O4—Cu1—O383.65 (13)
O2—C1—C2—C311.4 (3)C6—N1—Cu1—O4103.85 (13)
C4—C2—C3—C4i0.4 (3)C7—N1—Cu1—O423.81 (11)
C1—C2—C3—C4i178.47 (17)C6—N1—Cu1—O4ii76.15 (13)
C3—C2—C4—C3i0.4 (3)C7—N1—Cu1—O4ii156.19 (11)
C1—C2—C4—C3i178.46 (17)C6—N1—Cu1—N1ii5 (100)
O3—C5—C6—N152.7 (2)C7—N1—Cu1—N1ii133 (100)
N1—C7—C8—O441.4 (2)C6—N1—Cu1—O3ii168.55 (12)
C5—C6—N1—C785.3 (2)C7—N1—Cu1—O3ii63.79 (12)
C5—C6—N1—Cu136.8 (2)C6—N1—Cu1—O311.45 (12)
C8—C7—N1—C682.9 (2)C7—N1—Cu1—O3116.21 (12)
C8—C7—N1—Cu141.82 (18)C5—O3—Cu1—O469.87 (12)
C6—C5—O3—Cu137.08 (18)C5—O3—Cu1—O4ii110.13 (12)
C7—C8—O4—Cu120.7 (2)C5—O3—Cu1—N1ii165.29 (12)
C8—O4—Cu1—O4ii53 (21)C5—O3—Cu1—N114.71 (12)
C8—O4—Cu1—N1ii178.34 (13)C5—O3—Cu1—O3ii40.8 (3)
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.85 (2)2.08 (2)2.9196 (19)168 (2)
O4—H4A···O2iv0.84 (2)1.66 (2)2.496 (2)180 (3)
O3—H3A···O1v0.81 (2)1.88 (2)2.6803 (19)167 (2)
Symmetry codes: (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.847 (16)2.084 (16)2.9196 (19)168 (2)
O4—H4A···O2ii0.835 (17)1.661 (17)2.496 (2)180 (3)
O3—H3A···O1iii0.814 (16)1.881 (17)2.6803 (19)167 (2)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+2.
 

Acknowledgements

This project was supported by the Inter­national Scientific and Technological Cooperation Foundation of Jilin Province (grant No. 20120722).

References

First citationAbbaszadeh, A., Safari, N., Amani, V. & Notash, B. (2012). Acta Cryst. E68, m1012.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010). J. Coord. Chem. 63, 3207–3217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m372-m373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds