research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­{2-[(2-hy­droxyeth­yl)(pyridin-2-ylmeth­yl)amino]­ethano­lato-κ4N,N′,O,O′}iron(III) dihydrate from synchrotron data

aBeamline Department, Pohang Accelerator Laboratory/POSTECH 80, Pohang 790-784, Republic of Korea
*Correspondence e-mail: dmoon@postech.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 September 2014; accepted 7 October 2014; online 11 October 2014)

In the title compound, [Fe(C10H15N2O2)Cl2]·2H2O, the FeIII ion is coordinated by two N and two O atoms of the tetra­dentate 2-{(2-hy­droxy­eth­yl)(pyridin-2-ylmeth­yl)amino}­ethano­late ligand and by two chloride anions, resulting in a distorted octa­hedral coordination sphere. The average Fe—X (X = ligand N and O atoms) and Fe—Cl bond lengths are 2.10 and 2.32 Å, respectively. In the crystal, duplex O—H⋯O hydrogen bonds between the hydroxyl and eth­oxy groups of two neighbouring complexes give rise to a dimeric unit. The dimers are connected to the lattice water mol­ecules (one of which is equally disordered over two sets of sites) through O—H⋯Cl hydrogen bonds, forming undulating sheets parallel to (010). Weak C—H⋯Cl hydrogen bonds are also observed.

1. Chemical context

Tetra­dentate ligands including pyridine and hydroxyl groups have attracted considerable attention in chemistry and mat­erials science (Paz et al., 2012[Paz, F. A. A., Klinowski, J., Vilela, S. M. F., Tomé, J. P. C., Cavaleiro, J. A. S. & Rocha, J. (2012). Chem. Soc. Rev. 41, 1088-1110.]; Li et al., 2007[Li, F., Wang, M., Li, P., Zhang, T. & Sun, L. (2007). Inorg. Chem. 46, 9364-9371.]). These ligands are able to form multinuclear complexes with various transition metal ions, leading to dimeric, trimeric, tetra­meric or polymeric structures through the deprotonation of hydroxyl groups (Shin et al., 2010[Shin, J. W., Rowthu, S. R., Kim, B. G. & Min, K. S. (2010). Dalton Trans. 39, 2765-2767.]; Han et al., 2009[Han, J. H., Shin, J. W. & Min, K. S. (2009). Bull. Korean Chem. Soc. 30, 1113-1117.]). Such multinuclear complexes have potential applications in catalysis and magnetic materials. For example, FeIII and CoII/III complexes with amino­ethanol moieties have been studied as oxidation catalysts of various olefins and investigated due to their magnetic properties (Shin et al., 2011[Shin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). Dalton Trans. 40, 5762-5773.], 2014[Shin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999-4008.]). Moreover, MnII/III complexes containing hydroxyl substituents exhibit excellent single-mol­ecular magnetic properties due to magnetic spin-orbit anisotropy (Wu et al., 2010[Wu, C.-C., Datta, S., Wernsdorfer, W., Lee, G.-H., Hill, S. & Yang, E.-C. (2010). Dalton Trans. 39, 10160-10168.]).

[Scheme 1]

Here, we report the synthesis and crystal structure of a complex with six-coordinate FeIII constructed from the tetra­dentate ligand 2-[(2-hy­droxy­eth­yl)(pyridin-2-ylmeth­yl)amino]­ethanol (H2pmide; C10H17N2O2) and chloride anions, [Fe(Hpmide)Cl2]·2H2O, (I)[link].

2. Structural commentary

A view of the mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. The coordination sphere of the FeIII ion can be described as distorted octa­hedral, consisting of the two N atoms and two O atoms from the Hpmide ligand, and two chloride anions. The chloride anions are trans to the deprotonated eth­oxy O atom and the N atom of the pyridine group of the Hpmide ligand, respectively, and coordinate in cis position to each other. The average Fe—XHpmide (X = N, O) bond length is 2.10 Å and the Fe—Cl bond lengths are 2.2773 (5) (equatorial) and 2.3581 (7) (axial) Å. Both the average Fe—N (2.182 Å) and Fe—O (2.010 Å) distances in (I)[link] are comparable to those found in related N2O2-chelated high-spin FeIII complexes (Shin et al., 2014[Shin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999-4008.]; Cappillino et al., 2012[Cappillino, P. J., Miecznikowski, J. R., Tyler, L. A., Tarves, P. C., McNally, J. S., Lo, W., Kasibhatla, B. S. T., Krzyaniak, M. D., McCracken, J., Wang, F., Armstrong, W. H. & Caradonna, J. P. (2012). Dalton Trans. 41, 5662-5677.]). The bite angles of the five-membered chelate rings in (I)[link] range from 76.59 (5) to 81.45 (4)°.

[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms and lattice water mol­ecules are omitted for clarity except for the H atom of the hydroxyl group.

3. Supra­molecular features

The hydroxyl substituent of the Hpmide ligand forms a strong hydrogen bond with the O atom of the deprotonated eth­oxy group of a neighbouring mol­ecule. These duplex inter­actions lead to a dinuclear dimeric unit. The dimers are linked through O—H⋯Cl inter­actions to the lattice water mol­ecules, that are likewise connected to each other through O—H⋯O hydrogen bonds. All these hydrogen-bonding inter­actions (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.]) lead to the formation of undulating sheets parallel to (010). Further weak hydrogen bonding between pyridine and methyl H atoms and chloride anions stabilizes this arrangement (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W1—H1W1⋯Cl1 0.84 (1) 2.51 (3) 3.279 (4) 152 (5)
O1W2—H2W2⋯Cl1 0.84 (1) 2.91 (5) 3.470 (4) 125 (5)
O2—H1O2⋯O1i 0.83 (2) 1.69 (2) 2.5196 (14) 177 (2)
O1W1—H2W1⋯O2Wii 0.84 (1) 2.15 (4) 2.876 (7) 144 (7)
O1W2—H1W2⋯O2Wii 0.84 (1) 2.06 (5) 2.647 (8) 126 (5)
O1W2—H1W2⋯O2Wiii 0.84 (1) 2.06 (3) 2.836 (8) 153 (6)
C4—H4⋯Cl1iv 0.95 2.76 3.5962 (16) 147
C9—H9A⋯Cl1v 0.99 2.78 3.6371 (15) 145
C3—H3⋯Cl2vi 0.95 2.80 3.5721 (16) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1; (iii) -x, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the crystal packing of the title compound, with inter­molecular O—H⋯O hydrogen bonds between FeIII complex mol­ecules drawn as blue dashed lines. C—H⋯Cl hydrogen bonds are indicated as red dashed lines; water mol­ecules and chloride anions are also connected through O—H⋯O hydrogen bonds (black dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662-671.]) indicated that five complexes derived from the H2pmide ligand have been reported. These include NiII and MnII/III; FeIII complexes have been studied for their magnetic properties and catalytic effects (Saalfrank et al., 2001[Saalfrank, R. W., Bernt, I. & Hampel, F. (2001). Chem. Eur. J. 13, 2770-2774.]; Wu et al., 2010[Wu, C.-C., Datta, S., Wernsdorfer, W., Lee, G.-H., Hill, S. & Yang, E.-C. (2010). Dalton Trans. 39, 10160-10168.]; Shin et al., 2014[Shin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999-4008.]).

5. Synthesis and crystallization

The H2pmide ligand was prepared following a previously reported method (Wu et al., 2010[Wu, C.-C., Datta, S., Wernsdorfer, W., Lee, G.-H., Hill, S. & Yang, E.-C. (2010). Dalton Trans. 39, 10160-10168.]). Compound (I)[link] was prepared as follows: to a MeOH solution (4 ml) of FeCl2·4H2O (81 mg, 0.408 mmol) was added dropwise a MeOH solution (3 ml) of H2pmide (80 mg, 0.408 mmol). The colour became yellow, and then the solution was stirred for 30 min at room temperature. Yellow crystals of (I)[link] were obtained by diffusion of diethyl ether into the yellow solution for several days, and were collected by filtration and washed with diethyl ether and dried in air. Yield: 67 mg (46%). Elemental analysis calculated for C10H15Cl2FeN2O2: C 37.30, H 4.70, N 8.70%; found: C 37.19, H 4.58, N 8.78%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic H atoms) and 0.99 Å (open-chain H atoms) and with Uiso(H) values of 1.2Ueq(C) of the parent atoms. One lattice water mol­ecule (OW1) was found to be equally disordered over two positions. The H atoms of this disordered water mol­ecule (H1W1 and H1W2) were located from difference Fourier maps and refined with restraints and a fixed O—H distances of 0.84 Å, with Uiso(H) values of 1.2Ueq(O). Moreover, the second water mol­ecule (O2W) was modelled without hydrogen atoms because difference Fourier maps did not suggest suitable H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C10H15N2O2)Cl2]·2H2O
Mr 358.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.2690 (15), 14.497 (3), 14.094 (3)
β (°) 95.86 (3)
V3) 1477.4 (5)
Z 4
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 0.99
Crystal size (mm) 0.10 × 0.10 × 0.08
 
Data collection
Diffractometer ADSC Q210 CCD area-detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.907, 0.925
No. of measured, independent and observed [I > 2σ(I)] reflections 14975, 4056, 3866
Rint 0.021
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.04
No. of reflections 4056
No. of parameters 197
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.51, −0.84
Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS2013/1 and SHELXL2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Tetra­dentate ligands including pyridine and hydroxyl groups have attracted considerable attention in chemistry and materials science (Paz et al., 2012; Li et al., 2007). These ligands are able to form multinuclear complexes with various transition metal ions, leading to dimeric, trimeric, tetra­meric or polymeric structures through the deprotonation of hydroxyl groups (Shin et al., 2010; Han et al., 2009). Such multinuclear complexes have potential applications in catalysis and magnetic materials. For example, FeIII and CoII/III complexes with amino­ethanol moieties have been studied as oxidation catalysts of various olefins and investigated due to their magnetic properties (Shin et al., 2011, 2014). Moreover, MnII/III complexes containing hydroxyl substituents exhibit excellent single-molecular magnetic properties due to magnetic spin orbit anisotropy (Wu et al., 2010).

Here, we report the synthesis and crystal structure of a complex with six-coordinate FeIII constructed from the tetra­dentate ligand [2-{(2-hy­droxy­ethyl)(pyridin-2-yl­methyl)­amino}­ethanol (H2pmide; C10H17N2O2) and chloride anions, [Fe(Hpmide)Cl2]·2H2O, (I).

Structural commentary top

A view of the molecular structure of compound (I) is shown in Fig. 1. The coordination sphere of the FeIII ion can be described as distorted o­cta­hedral, consisting of the two N atoms and two O atoms from the Hpmide ligand, and two chloride anions. The chloride anions are trans to the deprotonated eth­oxy O atom and the N atom of the pyridine group of the Hpmide ligand, respectively, and coordinate in cis position to each other. The average Fe—XHpmide (X = N, O) bond length is 2.10 Å and the Fe—Cl bond lengths are 2.2773 (5) (equatorial) and 2.3581 (7) (axial) Å. Both the average Fe—N (2.182 Å) and Fe—O (2.010 Å) distances in (I) are comparable to those found in related N2O2-chelated high-spin FeIII complexes (Shin et al., 2014; Cappillino et al., 2012). The bite angles of the five-membered chelate rings in (I) range from 76.59 (5) to 81.45 (4)°.

Supra­molecular features top

The hydroxyl substituent of the Hpmide ligand forms a strong hydrogen bond with the O atom of the deprotonated eth­oxy group of a neighbouring molecule. These duplex inter­actions lead to a dinuclear dimeric unit. The dimers are linked through O—H···Cl inter­actions to the lattice water molecules, that are likewise connected to each other through O—H···O hydrogen bonds. All these hydrogen-bonding inter­actions (Steed & Atwood, 2009) lead to the formation of undulating sheets parallel to (010). Further weak hydrogen bonding between pyridine and methyl H atoms and chloride anions stabilizes this arrangement (Fig. 2 and Table 2).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom & Allen, 2014) indicated that five complexes derived from the H2pmide ligand have been reported. These include NiII and MnII/III; FeIII complexes have been studied for their magnetic properties and catalytic effects (Saalfrank et al., 2001; Wu et al., 2010; Shin et al., 2014).

Synthesis and crystallization top

The H2pmide ligand was prepared following a previously reported method (Wu et al., 2010). Compound (I) was prepared as follows: To a MeOH solution (4 ml) of FeCl2·4H2O (81 mg, 0.408 mmol) was added dropwise a MeOH solution (3 ml) of H2pmide (80 mg, 0.408 mmol). The colour became yellow, and then the solution was stirred for 30 min at room temperature. Yellow crystals of (I) were obtained by diffusion of di­ethyl ether into the yellow solution for several days, and were collected by filtration and washed with di­ethyl ether and dried in air. Yield: 67 mg (46%). Analysis: calculated for C10H15Cl2FeN2O2: C, 37.30; H, 4.70; N, 8.70; found: C, 37.19; H, 4.58; N, 8.78.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic H atoms) and 0.99 Å (open-chain H atoms) and with Uiso(H) values of 1.2Ueq(C) of the parent atoms. One lattice water molecule (OW1) was found to be equally disordered over two positions. The H atoms of this disordered water molecule (H1W1 and H1W2) were located from difference Fourier maps and refined with restraints and a fixed O—H distances of 0.84 Å, with Uiso(H) values of 1.2Ueq(O). Moreover, the second water molecule (O2W) was modelled without hydrogen atoms because difference Fourier maps did not suggest suitable H atoms.

Related literature top

For related literature, see: Groon & Allen (2014); Cappillino et al. (2012); Han et al. (2009); Li et al. (2007); Paz et al. (2012); Saalfrank et al. (2001); Shin et al. (2010, 2011, 2014); Steed & Atwood (2009); Wu et al. (2010).

Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
View of the molecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms and lattice water molecules are omitted for clarity except for the H atom of the hydroxyl group.

View of the crystal packing of the title compound, with intermolecular O—H···O hydrogen bonds between FeIII complex molecules drawn as blue dashed lines. C—H···Cl hydrogen bonds are indicated as red dashed lines; water molecules and chloride anions are also connected through O—H···O hydrogen bonds (black dashed lines).
Dichlorido{2-[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]ethanolato-κ4N,N',O,O'}iron(III) dihydrate top
Crystal data top
[Fe(C10H15N2O2)Cl2]·2H2OF(000) = 740
Mr = 358.02Dx = 1.610 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.62998 Å
a = 7.2690 (15) ÅCell parameters from 47717 reflections
b = 14.497 (3) Åθ = 0.4–33.6°
c = 14.094 (3) ŵ = 0.99 mm1
β = 95.86 (3)°T = 100 K
V = 1477.4 (5) Å3Block, yellow
Z = 40.10 × 0.10 × 0.08 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
3866 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.021
ω scanθmax = 26.0°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.907, Tmax = 0.925k = 1919
14975 measured reflectionsl = 1919
4056 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0354P)2 + 1.6679P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4056 reflectionsΔρmax = 1.51 e Å3
197 parametersΔρmin = 0.84 e Å3
Crystal data top
[Fe(C10H15N2O2)Cl2]·2H2OV = 1477.4 (5) Å3
Mr = 358.02Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.62998 Å
a = 7.2690 (15) ŵ = 0.99 mm1
b = 14.497 (3) ÅT = 100 K
c = 14.094 (3) Å0.10 × 0.10 × 0.08 mm
β = 95.86 (3)°
Data collection top
ADSC Q210 CCD area-detector
diffractometer
4056 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
3866 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.925Rint = 0.021
14975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0277 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.51 e Å3
4056 reflectionsΔρmin = 0.84 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.49921 (2)0.59458 (2)0.35450 (2)0.00581 (6)
Cl10.66209 (5)0.61966 (2)0.22045 (2)0.01181 (8)
Cl20.32215 (5)0.47400 (2)0.29547 (2)0.01270 (8)
O10.70234 (13)0.53542 (7)0.42787 (7)0.00933 (18)
O20.33434 (14)0.60360 (7)0.46844 (7)0.00925 (18)
H1O20.322 (3)0.5590 (12)0.5041 (13)0.011*
N10.32550 (15)0.70945 (8)0.30279 (8)0.0085 (2)
N20.62789 (15)0.71338 (8)0.43157 (8)0.0075 (2)
C10.15712 (19)0.70132 (10)0.25359 (10)0.0117 (2)
H10.10990.64150.23830.014*
C20.05082 (19)0.77769 (11)0.22469 (10)0.0143 (3)
H20.06690.77030.18960.017*
C30.1193 (2)0.86521 (11)0.24795 (11)0.0156 (3)
H30.04920.91850.22880.019*
C40.2913 (2)0.87365 (10)0.29950 (11)0.0130 (3)
H40.34010.93280.31690.016*
C50.39138 (18)0.79407 (9)0.32537 (10)0.0089 (2)
C60.58321 (19)0.79876 (9)0.37700 (10)0.0107 (2)
H6A0.67430.80790.33020.013*
H6B0.59170.85220.42100.013*
C70.82796 (18)0.69147 (9)0.43890 (10)0.0102 (2)
H7A0.89580.73100.48790.012*
H7B0.87700.70350.37710.012*
C80.85570 (19)0.58946 (9)0.46615 (11)0.0125 (3)
H8A0.96990.56630.44160.015*
H8B0.87060.58350.53650.015*
C90.56136 (19)0.71512 (10)0.52794 (10)0.0113 (2)
H9A0.57590.77810.55480.014*
H9B0.63730.67260.57080.014*
C100.35997 (19)0.68663 (10)0.52331 (10)0.0117 (2)
H10A0.32500.67620.58850.014*
H10B0.28040.73620.49320.014*
O1W10.4145 (8)0.5368 (3)0.0321 (3)0.0527 (11)0.5
H1W10.444 (8)0.551 (5)0.0896 (16)0.063*0.5
H2W10.300 (3)0.526 (6)0.025 (4)0.063*0.5
O1W20.3007 (7)0.5629 (4)0.0504 (3)0.0549 (11)0.5
H1W20.190 (3)0.546 (5)0.041 (4)0.066*0.5
H2W20.314 (8)0.593 (4)0.101 (3)0.066*0.5
O2W0.0911 (9)0.4335 (4)0.9619 (4)0.182 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00713 (10)0.00133 (10)0.00853 (10)0.00039 (6)0.00140 (6)0.00067 (6)
Cl10.01740 (15)0.00679 (15)0.01158 (14)0.00204 (11)0.00321 (11)0.00141 (10)
Cl20.01370 (15)0.00686 (15)0.01705 (15)0.00509 (10)0.00075 (11)0.00279 (11)
O10.0089 (4)0.0039 (4)0.0146 (4)0.0005 (3)0.0017 (3)0.0029 (3)
O20.0115 (4)0.0047 (4)0.0117 (4)0.0016 (3)0.0018 (3)0.0014 (3)
N10.0085 (5)0.0051 (5)0.0115 (5)0.0001 (4)0.0005 (4)0.0023 (4)
N20.0082 (5)0.0031 (5)0.0105 (5)0.0002 (4)0.0016 (4)0.0019 (4)
C10.0100 (6)0.0114 (6)0.0132 (6)0.0008 (5)0.0009 (5)0.0036 (5)
C20.0083 (5)0.0179 (7)0.0165 (6)0.0022 (5)0.0004 (5)0.0072 (5)
C30.0129 (6)0.0134 (7)0.0206 (7)0.0072 (5)0.0025 (5)0.0074 (5)
C40.0144 (6)0.0056 (6)0.0191 (6)0.0035 (5)0.0025 (5)0.0040 (5)
C50.0102 (5)0.0045 (6)0.0121 (6)0.0012 (4)0.0010 (4)0.0023 (4)
C60.0120 (6)0.0019 (5)0.0172 (6)0.0010 (4)0.0033 (5)0.0028 (4)
C70.0072 (5)0.0068 (6)0.0161 (6)0.0016 (4)0.0022 (4)0.0025 (4)
C80.0079 (5)0.0077 (6)0.0207 (7)0.0005 (4)0.0041 (5)0.0046 (5)
C90.0156 (6)0.0083 (6)0.0099 (6)0.0024 (5)0.0001 (5)0.0024 (4)
C100.0147 (6)0.0070 (6)0.0140 (6)0.0008 (5)0.0041 (5)0.0012 (5)
O1W10.095 (4)0.035 (2)0.0249 (16)0.019 (2)0.0105 (19)0.0025 (14)
O1W20.066 (3)0.069 (3)0.0270 (18)0.008 (2)0.0078 (18)0.0038 (18)
O2W0.229 (6)0.182 (5)0.138 (4)0.037 (5)0.023 (4)0.009 (4)
Geometric parameters (Å, º) top
Fe1—O11.9165 (11)C4—C51.3925 (18)
Fe1—O22.1036 (12)C4—H40.9500
Fe1—N12.1704 (12)C5—C61.5071 (19)
Fe1—N22.1939 (12)C6—H6A0.9900
Fe1—Cl22.2773 (5)C6—H6B0.9900
Fe1—Cl12.3581 (7)C7—C81.5360 (19)
O1—C81.4229 (16)C7—H7A0.9900
O2—C101.4326 (17)C7—H7B0.9900
O2—H1O20.829 (15)C8—H8A0.9900
N1—C51.3433 (17)C8—H8B0.9900
N1—C11.3488 (17)C9—C101.516 (2)
N2—C61.4759 (17)C9—H9A0.9900
N2—C71.4818 (17)C9—H9B0.9900
N2—C91.4878 (18)C10—H10A0.9900
C1—C21.387 (2)C10—H10B0.9900
C1—H10.9500O1W1—H1W10.842 (10)
C2—C31.390 (2)O1W1—H2W10.842 (10)
C2—H20.9500O1W2—H1W20.842 (10)
C3—C41.386 (2)O1W2—H2W20.839 (10)
C3—H30.9500
O1—Fe1—O294.79 (4)C3—C4—H4120.6
O1—Fe1—N1156.10 (4)C5—C4—H4120.6
O2—Fe1—N181.45 (4)N1—C5—C4122.05 (13)
O1—Fe1—N279.52 (5)N1—C5—C6116.46 (11)
O2—Fe1—N279.66 (4)C4—C5—C6121.45 (12)
N1—Fe1—N276.59 (5)N2—C6—C5110.93 (10)
O1—Fe1—Cl2103.25 (4)N2—C6—H6A109.5
O2—Fe1—Cl288.96 (3)C5—C6—H6A109.5
N1—Fe1—Cl2100.28 (4)N2—C6—H6B109.5
N2—Fe1—Cl2168.51 (3)C5—C6—H6B109.5
O1—Fe1—Cl194.54 (4)H6A—C6—H6B108.0
O2—Fe1—Cl1166.87 (3)N2—C7—C8109.06 (11)
N1—Fe1—Cl186.28 (3)N2—C7—H7A109.9
N2—Fe1—Cl192.98 (3)C8—C7—H7A109.9
Cl2—Fe1—Cl197.869 (19)N2—C7—H7B109.9
C8—O1—Fe1119.26 (8)C8—C7—H7B109.9
C10—O2—Fe1114.30 (8)H7A—C7—H7B108.3
C10—O2—H1O2110.1 (14)O1—C8—C7110.95 (11)
Fe1—O2—H1O2121.2 (14)O1—C8—H8A109.4
C5—N1—C1118.97 (12)C7—C8—H8A109.4
C5—N1—Fe1116.11 (9)O1—C8—H8B109.4
C1—N1—Fe1124.88 (9)C7—C8—H8B109.4
C6—N2—C7112.22 (11)H8A—C8—H8B108.0
C6—N2—C9112.75 (11)N2—C9—C10111.01 (11)
C7—N2—C9110.38 (11)N2—C9—H9A109.4
C6—N2—Fe1109.90 (8)C10—C9—H9A109.4
C7—N2—Fe1103.42 (8)N2—C9—H9B109.4
C9—N2—Fe1107.66 (8)C10—C9—H9B109.4
N1—C1—C2122.02 (13)H9A—C9—H9B108.0
N1—C1—H1119.0O2—C10—C9108.90 (11)
C2—C1—H1119.0O2—C10—H10A109.9
C1—C2—C3118.93 (13)C9—C10—H10A109.9
C1—C2—H2120.5O2—C10—H10B109.9
C3—C2—H2120.5C9—C10—H10B109.9
C4—C3—C2119.12 (13)H10A—C10—H10B108.3
C4—C3—H3120.4H1W1—O1W1—H2W1108 (3)
C2—C3—H3120.4H1W2—O1W2—H2W2109 (3)
C3—C4—C5118.90 (14)
C5—N1—C1—C20.7 (2)Fe1—N2—C6—C534.62 (13)
Fe1—N1—C1—C2178.26 (10)N1—C5—C6—N226.63 (17)
N1—C1—C2—C30.6 (2)C4—C5—C6—N2155.71 (13)
C1—C2—C3—C40.2 (2)C6—N2—C7—C8161.67 (11)
C2—C3—C4—C50.8 (2)C9—N2—C7—C871.64 (14)
C1—N1—C5—C40.1 (2)Fe1—N2—C7—C843.28 (12)
Fe1—N1—C5—C4177.80 (10)Fe1—O1—C8—C70.47 (15)
C1—N1—C5—C6177.70 (12)N2—C7—C8—O131.76 (16)
Fe1—N1—C5—C64.56 (16)C6—N2—C9—C1083.81 (14)
C3—C4—C5—N10.7 (2)C7—N2—C9—C10149.79 (11)
C3—C4—C5—C6176.80 (13)Fe1—N2—C9—C1037.58 (12)
C7—N2—C6—C5149.11 (12)Fe1—O2—C10—C935.00 (13)
C9—N2—C6—C585.49 (14)N2—C9—C10—O248.37 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W1—H1W1···Cl10.84 (1)2.51 (3)3.279 (4)152 (5)
O1W2—H2W2···Cl10.84 (1)2.91 (5)3.470 (4)125 (5)
O2—H1O2···O1i0.83 (2)1.69 (2)2.5196 (14)177 (2)
O1W1—H2W1···O2Wii0.84 (1)2.15 (4)2.876 (7)144 (7)
O1W2—H1W2···O2Wii0.84 (1)2.06 (5)2.647 (8)126 (5)
O1W2—H1W2···O2Wiii0.84 (1)2.06 (3)2.836 (8)153 (6)
C4—H4···Cl1iv0.952.763.5962 (16)147
C9—H9A···Cl1v0.992.783.6371 (15)145
C3—H3···Cl2vi0.952.803.5721 (16)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W1—H1W1···Cl10.842 (10)2.51 (3)3.279 (4)152 (5)
O1W2—H2W2···Cl10.839 (10)2.91 (5)3.470 (4)125 (5)
O2—H1O2···O1i0.829 (15)1.691 (15)2.5196 (14)177 (2)
O1W1—H2W1···O2Wii0.842 (10)2.15 (4)2.876 (7)144 (7)
O1W2—H1W2···O2Wii0.842 (10)2.06 (5)2.647 (8)126 (5)
O1W2—H1W2···O2Wiii0.842 (10)2.06 (3)2.836 (8)153 (6)
C4—H4···Cl1iv0.952.763.5962 (16)147
C9—H9A···Cl1v0.992.783.6371 (15)145
C3—H3···Cl2vi0.952.803.5721 (16)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C10H15N2O2)Cl2]·2H2O
Mr358.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.2690 (15), 14.497 (3), 14.094 (3)
β (°) 95.86 (3)
V3)1477.4 (5)
Z4
Radiation typeSynchrotron, λ = 0.62998 Å
µ (mm1)0.99
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerADSC Q210 CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.907, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
14975, 4056, 3866
Rint0.021
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.04
No. of reflections4056
No. of parameters197
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.51, 0.84

Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2002507) and supported by the Institute for Basic Science (IBS, IBS-R007-D1-2014-a01). X-ray crystallography at the PLS-II 2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationCappillino, P. J., Miecznikowski, J. R., Tyler, L. A., Tarves, P. C., McNally, J. S., Lo, W., Kasibhatla, B. S. T., Krzyaniak, M. D., McCracken, J., Wang, F., Armstrong, W. H. & Caradonna, J. P. (2012). Dalton Trans. 41, 5662–5677.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHan, J. H., Shin, J. W. & Min, K. S. (2009). Bull. Korean Chem. Soc. 30, 1113–1117.  Web of Science CrossRef CAS Google Scholar
First citationLi, F., Wang, M., Li, P., Zhang, T. & Sun, L. (2007). Inorg. Chem. 46, 9364–9371.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaz, F. A. A., Klinowski, J., Vilela, S. M. F., Tomé, J. P. C., Cavaleiro, J. A. S. & Rocha, J. (2012). Chem. Soc. Rev. 41, 1088–1110.  Web of Science PubMed Google Scholar
First citationSaalfrank, R. W., Bernt, I. & Hampel, F. (2001). Chem. Eur. J. 13, 2770–2774.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999–4008.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). Dalton Trans. 40, 5762–5773.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShin, J. W., Rowthu, S. R., Kim, B. G. & Min, K. S. (2010). Dalton Trans. 39, 2765–2767.  Web of Science CrossRef PubMed Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationWu, C.-C., Datta, S., Wernsdorfer, W., Lee, G.-H., Hill, S. & Yang, E.-C. (2010). Dalton Trans. 39, 10160–10168.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds