research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of μ-1κC:2(η2)-carbonyl-carbonyl-1κC-chlorido-2κCl-μ-chlorido­borylene-1:2κ2B:B-[1(η5)-penta­methyl­cyclo­penta­dien­yl](tri­cyclo­hexyl­phosphane-2κP)iron(II)platinum(II) benzene monosolvate

aInstitut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
*Correspondence e-mail: h.braunschweig@mail.uni-wuerzburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 October 2014; accepted 23 October 2014; online 29 October 2014)

In the mol­ecular structure of the dinuclear title compound [η5-(C5(CH3)5)(CO)Fe{(μ-BCl)(μ-CO)}PtCl(P(C6H11)3)]·C6H6, the two metal atoms, iron(II) and platinum(II), are bridged by one carbonyl (μ-CO) and one chlorido­borylene ligand (μ-BCl). The PtII atom is additionally bound to a chloride ligand situated trans to the bridging borylene, and a tri­cyclo­hexyl­phosphane ligand (PCy3) trans to the carbonyl ligand, forming a distorted square-planar structural motif at the PtII atom. The FeII atom is bound to a penta­methyl­cyclo­penta­dienyl ligand [η5-C5(CH3)5] and one carbonyl ligand (CO), forming a piano-stool structure. Additionally, one benzene solvent mol­ecule is incorporated into the crystal structure, positioned staggered relative to the penta­methyl­cyclo­penta­dienyl ligand at the FeII atom, with a centroid–centroid separation of 3.630 (2) Å.

1. Chemical context

In 2005, Braunschweig et al. reported the compound [(η5-C5Me5)Fe(μ-BCl2)(μ-CO)2Pd(PCy3)] (Me is methyl and Cy is cyclo­hex­yl) with a novel bonding motif featuring a BCl2 unit bridging an Fe and an Pd atom. This compound was isolated upon the reaction of [(η5-C5Me5)(CO)2FeBCl2] with [Pd(PCy3)2] via the loss of one of the tri­cyclo­hexyl­phosphane ligands (Braunschweig et al., 2005a[Braunschweig, H., Radacki, K., Rais, D. & Whittell, G. R. (2005a). Angew. Chem. Int. Ed. 44, 1192-1194.]). In the same year, the synthesis of the related compound [(η5-C5Me5)(CO)Fe(μ-BBr)(μ-CO)PdBr(PCy3)], which was spectroscopically characterized, was reported without structural proof (Braunschweig et al., 2005b[Braunschweig, H., Radacki, K., Rais, D., Seeler, F. & Uttinger, K. (2005b). J. Am. Chem. Soc. 127, 1386-1387.]). One year later, Braunschweig et al. further reported the synthesis of [(η5-C5Me5)(OC)Fe(μ-CO)Pt(PCy3)(μ-Br)Pt(PCy3)Br(μ3-B)]. Spectroscopic investigations indicated that [(η5-C5Me5)(CO)Fe(μ-BBr)(μ-CO)PtBr(PCy3)] is likely initially formed, and subsequently reacts with a second equivalent of [Pt(PCy3)2] to give the final product. However, once again, no structural proof could be given (Braunschweig et al., 2006[Braunschweig, H., Radacki, K., Rais, D. & Seeler, F. (2006). Angew. Chem. Int. Ed. 45, 1066-1069.]).

[Scheme 1]

Herein we report the related heterodinuclear bridging chlorido­borylene complex [(η5-C5Me5)(CO)Fe{(μ-BCl)(μ-CO)}Pt(PCy3)Cl]·C6H6, (I)[link], which forms upon the reaction of [Pt(PCy3)2] with [(η5-C5Me5)(CO)2FeBCl2] via oxidative addition of a B—Cl bond to the low-valent platinum, resulting in the loss of one phosphane ligand.

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. As already reported for these type of reactions, the chloride ligand at the Pt atom adopts the trans position relative to the borylene unit due to its trans influence (Braunschweig et al., 2010[Braunschweig, H., Dewhurst, R. D. & Schneider, A. (2010). Chem. Rev. 110, 3924-3957.]). The Fe—Pt distance of 2.6455 (5) Å is slightly longer than the sum of the covalent radii and is most likely influenced by the two bridging ligands between both metals. The bridging borylene ligand and the additional semi-bridging carbonyl ligand, together with the phosphane and chloride ligand, form a distorted square-planar structural motif at the Pt atom (Fig. 1[link]). The Pt—B bond length [1.910 (4) Å] is shorter than the Fe—B bond length [2.009 (4) Å], indicating a stronger bonding inter­action. Compared to the similar parent compound [(η5-C5H5)(CO)2FeBCl2], (II), which has a Fe—B bond length of 1.942 (3) Å, there is an obvious lengthening of this bond in the target mol­ecule. In the structure of (I)[link], the Fe atom is additionally bound to a (penta­meth­yl)cyclo­penta­dienyl ligand (η5-C5Me5) and one carbonyl ligand (CO), forming an overall piano-stool structure. The 11B NMR resonance in the spectrum of (I)[link] is shifted downfield to 107.4 p.p.m. from the previous resonance at 95.3 p.p.m. in compound (II). The 31P NMR spectrum shows a peak at 56.55 p.p.m. with a coupling constant of 1JP–Pt = 4864 Hz, which is typical for a bridging square-planar platinum complex (Arnold et al., 2012[Arnold, N., Braunschweig, H., Brenner, P., Jimenez-Halla, J. O. C., Kupfer, T. & Radacki, K. (2012). Organometallics, 31, 1897-1907.]). Furthermore, the observed FT–IR signals are indicative of one semi-bridging carbonyl ligand at 1913 cm−1 and one terminal carbonyl ligand at 1978 cm−1.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids for the non-H atoms at the 50% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

The orientation of the benzene solvent mol­ecule in the crystal structure of (I)[link] with its staggered conformation with respect to the (penta­meth­yl)cyclo­penta­dienyl ligand and a centroid–centroid distance of 3.630 (2) Å (Fig. 1[link]) raises the possibility of inter­molecular inter­actions, such as ππ stacking. However, as no further inter­actions are detected in the crystal structure (Fig. 2[link]), it seems that the benzene mol­ecule occupies a free void in the asymmetric unit and mainly supports the crystallization process.

[Figure 2]
Figure 2
Packing plot of the title compound.

4. Synthesis and crystallization

[(η5-C5Me5)(CO)2Fe(BCl2)] (50.0 mg, 0.11 mmol) was dis­solved in 2 ml of benzene and bis­(tri­cyclo­hexyl­phos­phane)platinum (86.9 mg, 0.11 mmol) was added to the solution. After 5 h of stirring, the solvent was removed, by-products were extracted with two portions of 2 ml of hexane, and the bright-yellow residue was redissolved in 2 ml of benzene. Upon slow evaporation, yellow crystals suitable for X-ray diffraction were obtained at room temperature (yield: 72.4 mg, 0.09 mmol, 82%). Elemental analysis calculated (%): C 49.00, H 6.16; found (%): C 50.08, H 6.20. 1H NMR (C6D6, 400.1 MHz): δ 1.14–2.12 (30H, PCy3), 1.66 (s, 15H, C5Me5), 2.92 (m, 3H, PCH). 11B{1H} NMR (C6D6, 128.4 MHz): δ 107.4. 13C{1H} NMR (C6D6, 100.6 MHz): δ 10.1 (C5Me5), 27.0 (PCy3), 27.8 (PCy3), 30.6 (PCy3), 34.4 (PCy3), 98.1 (s, C5Me5), 167.6 (μ-CO), 205.9 (CO). 31P{1H} NMR (C6D6, 162.0 MHz): δ 56.55 (1JP–Pt = 4864 Hz). IR (toluene): 1978, 1913 cm−1.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were placed at idealized positions and treated as riding atoms; C—H = 0.98 (CH3) or 1.00 Å (aliphatic). Uiso(H) values were fixed at 1.5 (for primary H atoms) and 1.2 times (tertiary H atoms) Ueq of the parent C atoms.

Table 1
Experimental details

Crystal data
Chemical formula [FePt(BCl)Cl(C10H15)(C18H33P)(CO)2]·C6H6
Mr 882.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.4578 (2), 12.6902 (3), 30.5130 (9)
β (°) 96.334 (1)
V3) 3639.86 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.46
Crystal size (mm) 0.28 × 0.26 × 0.19
 
Data collection
Diffractometer Bruker X8 APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.374, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 57360, 9098, 6917
Rint 0.077
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.059, 1.00
No. of reflections 9098
No. of parameters 402
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.78
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Chemical context top

In 2005, Braunschweig et al. reported the compound [(η5-C5Me5)Fe(µ-BCl2)(µ-CO)2Pd(PCy3)] (Me is methyl and Cy is cyclo­hexyl) with a novel bonding motif featuring a BCl2 unit bridging an Fe and an Pd atom. This compound was isolated upon the reaction of [(η5-C5Me5)(CO)2FeBCl2] with [Pd(PCy3)2] via the loss of one of the tri­cyclo­hexyl­phosphane ligands (Braunschweig et al., 2005a). In the same year, the synthesis of the related compound [(η5-C5Me5)(CO)Fe(µ-BBr)(µ-CO)PdBr(PCy3)], which was spectroscopically characterized, was reported without structural proof (Braunschweig et al., 2005b). One year later, Braunschweig et al. further reported the synthesis of [(η5-C5Me5)(OC)Fe(µ-CO)Pt(PCy3)(µ-Br)Pt(PCy3)Br(µ3-B)]. Spectroscopic investigations indicated that [(η5-C5Me5)(CO)Fe(µ-BBr)(µ-CO)PtBr(PCy3)] is likely initially formed, and subsequently reacts with a second equivalent of [Pt(PCy3)2] to give the final product. However, once again, no structural proof could be given (Braunschweig et al., 2006).

Herein we report the related heterodinuclear bridging chloridoborylene complex [(η5-C5Me5)(CO)Fe{(µ-BCl)(µ-CO)}Pt(PCy3)Cl].C6H6, (I), which forms upon the reaction of [Pt(PCy3)2] with [(η5-C5Me5)(CO)2FeBCl2] via oxidative addition of a B—Cl bond to the low-valent platinum, resulting in the loss of one phosphane ligand.

Structural commentary top

The molecular structure of compound (I) is shown in Fig. 1. As already reported for these type of reactions, the chloride ligand at the Pt atom adopts the trans position relative to the borylene unit due to its trans influence (Braunschweig et al., 2010). The Fe—Pt distance of 2.6455 (5) Å is slightly longer than the sum of the covalent radii and is most likely influenced by the two bridging ligands between both metals. The bridging borylene ligand and the additional semi-bridging carbonyl ligand, together with the phosphane and chloride ligand, form a distorted square-planar structural motif at the Pt atom (Fig. 1). The Pt—B bond length [1.910 (4) Å] is shorter than the Fe—B bond length [2.009 (4) Å], indicating a stronger bonding inter­action. Compared to the similar parent compound [(η5-C5H5)(CO)2FeBCl2], (II), which has a Fe—B bond length of 1.942 (3) Å, there is an obvious lengthening of this bond in the target molecule. In the structure of (I), the Fe atom is additionally bound to a (penta­methyl)­cyclo­penta­dienyl ligand (η5-C5Me5) and one carbonyl ligand (CO), forming an overall piano-stool structure. The 11B NMR resonance in the spectrum of (I) is shifted downfield to 107.4 p.p.m. from the previous resonance at 95.3 p.p.m. in compound (II). The 31P NMR spectrum shows a peak at 56.55 p.p.m. with a coupling constant of 1JP–Pt = 4864 Hz, which is typical for a bridging square-planar platinum complex (Arnold et al., 2012). Furthermore, the observed FT–IR signals are indicative of one semi-bridging carbonyl ligand at 1913 cm-1 and one terminal carbonyl ligand at 1978 cm-1.

Supra­molecular features top

The orientation of the benzene solvent molecule in the crystal structure of (I) with its staggered conformation with respect to the (penta­methyl)­cyclo­penta­dienyl ligand and a centroid–centroid distance of 3.630 (2) Å (Fig. 1) raises the possibility of inter­molecular inter­actions, such as ππ stacking. However, as no further inter­actions are detected in the crystal structure (Fig. 2), it seems that the benzene molecule occupies a free void in the asymmetric unit and mainly supports the crystallization process.

Synthesis and crystallization top

[(η5-C5Me5)(CO)2Fe(BCl2)] (50.0 mg, 0.11 mmol) was dissolved in 2 ml of benzene and bis­(tri­cyclo­hexyl­phosphane)platinum (86.9 mg, 0.11 mmol) was added to the solution. After 5 h of stirring, the solvent was removed, by-products were extracted with two portions of 2 ml of hexane, and the bright-yellow residue was redissolved in 2 ml of benzene. Upon slow evaporation, yellow crystals suitable for X-ray diffraction were obtained at room temperature (yield: 72.4 mg, 0.09 mmol, 82%). Elemental analysis calculated (%): C 49.00, H 6.16; found (%): C 50.08, H 6.20. 1H NMR (C6D6, 400.1 MHz): δ 1.14–2.12 (30H, PCy3), 1.66 (s, 15H, C5Me5), 2.92 (m, 3H, PCH). 11B{1H} NMR (C6D6, 128.4 MHz): δ 107.4. 13C{1H} NMR (C6D6, 100.6 MHz): δ 10.1 (C5Me5), 27.0 (PCy3), 27.8 (PCy3), 30.6 (PCy3), 34.4 (PCy3), 98.1 (s, C5Me5), 167.6 (µ-CO), 205.9 (CO). 31P{1H} NMR (C6D6, 162.0 MHz): δ 56.55 (1JP—Pt = 4864 Hz). IR (toluene): 1978, 1913 cm-1.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed at idealized positions and treated as riding atoms; C—H = 0.98 (CH3) or 1.00 Å (aliphatic). Uiso(H) values were fixed at 1.5 (for primary H atoms) and 1.2 times (tertiary H atoms) Ueq of the parent C atoms.

Related literature top

For related literature, see: Arnold et al. (2012); Braunschweig et al. (2005a, 2005b, 2006, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXLE (Hübschle et al., 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids for the non-H atoms at the 50% probability level. H atoms have been omitted for clarity.

Packing plot of the title compound.
µ-1κC:2(η2)-Carbonyl-carbonyl-1κC-\ chlorido-2κCl-µ-chloridoborylene-1:2κ2B:B-\ [1(η5)-pentamethylcyclopentadienyl](tricyclohexylphosphane-\ 2κP)iron(II)platinum(II) benzene monosolvate top
Crystal data top
[FePt(BCl)Cl(C10H15)(C18H33P)(CO)2]·C6H6F(000) = 1776
Mr = 882.41Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5551 reflections
a = 9.4578 (2) Åθ = 2.6–22.4°
b = 12.6902 (3) ŵ = 4.46 mm1
c = 30.5130 (9) ÅT = 100 K
β = 96.334 (1)°Block, yellow
V = 3639.86 (16) Å30.28 × 0.26 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
9098 independent reflections
Radiation source: rotating anode6917 reflections with I > 2σ(I)
Multi-layer mirror monochromatorRint = 0.077
Detector resolution: 8.333 pixels mm-1θmax = 28.7°, θmin = 1.3°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1616
Tmin = 0.374, Tmax = 0.431l = 4139
57360 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0177P)2]
where P = (Fo2 + 2Fc2)/3
9098 reflections(Δ/σ)max = 0.001
402 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[FePt(BCl)Cl(C10H15)(C18H33P)(CO)2]·C6H6V = 3639.86 (16) Å3
Mr = 882.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4578 (2) ŵ = 4.46 mm1
b = 12.6902 (3) ÅT = 100 K
c = 30.5130 (9) Å0.28 × 0.26 × 0.19 mm
β = 96.334 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
9098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6917 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.431Rint = 0.077
57360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.00Δρmax = 1.00 e Å3
9098 reflectionsΔρmin = 0.78 e Å3
402 parameters
Special details top

Experimental. The crystal was immersed in a film of perfluoropolyether oil, mounted on a glass fiber and transferred to stream of cold nitrogen.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.526460 (14)0.632771 (10)0.387705 (4)0.01107 (4)
Fe20.64690 (5)0.47736 (4)0.347519 (14)0.01174 (11)
B30.6882 (4)0.5475 (3)0.40656 (12)0.0134 (9)
Cl40.82199 (9)0.51932 (7)0.45042 (3)0.0170 (2)
C50.4564 (4)0.4860 (3)0.34065 (10)0.0136 (8)
O60.3379 (3)0.46715 (18)0.32991 (7)0.0181 (6)
Cl70.32826 (9)0.71629 (7)0.34063 (3)0.0182 (2)
P80.52924 (9)0.76039 (7)0.43998 (3)0.0109 (2)
C90.6047 (3)0.8854 (2)0.42227 (10)0.0118 (8)
H90.62080.93160.44890.014*
C100.7503 (4)0.8649 (3)0.40638 (11)0.0176 (8)
H10A0.81230.82890.43010.021*
H10B0.73830.81720.38050.021*
C110.8229 (4)0.9664 (3)0.39367 (11)0.0219 (9)
H11A0.84701.01000.42030.026*
H11B0.91260.94870.38140.026*
C120.7275 (4)1.0286 (3)0.35996 (11)0.0248 (9)
H12A0.71400.98880.33190.030*
H12B0.77371.09650.35430.030*
C130.5827 (4)1.0497 (3)0.37603 (11)0.0213 (9)
H13A0.52151.08800.35290.026*
H13B0.59561.09500.40260.026*
C140.5095 (4)0.9472 (3)0.38706 (11)0.0162 (8)
H14A0.49030.90380.36010.019*
H14B0.41740.96340.39810.019*
C150.6401 (4)0.7299 (3)0.49250 (10)0.0119 (8)
H150.73300.70410.48390.014*
C160.6773 (4)0.8230 (3)0.52455 (10)0.0160 (8)
H16A0.72490.87920.50910.019*
H16B0.58860.85270.53400.019*
C170.7750 (4)0.7875 (3)0.56515 (10)0.0184 (8)
H17A0.86720.76410.55600.022*
H17B0.79330.84760.58570.022*
C180.7083 (4)0.6977 (3)0.58863 (11)0.0193 (9)
H18A0.61890.72220.59940.023*
H18B0.77400.67510.61440.023*
C190.6768 (4)0.6048 (3)0.55734 (11)0.0191 (9)
H19A0.76690.57740.54810.023*
H19B0.63120.54760.57280.023*
C200.5788 (4)0.6385 (3)0.51681 (10)0.0167 (8)
H20A0.48560.65960.52600.020*
H20B0.56260.57770.49650.020*
C210.3461 (3)0.7936 (3)0.44995 (10)0.0123 (8)
H210.30240.82440.42140.015*
C220.3291 (4)0.8798 (3)0.48436 (11)0.0156 (8)
H22A0.36390.85340.51410.019*
H22B0.38680.94210.47820.019*
C230.1729 (4)0.9117 (3)0.48306 (11)0.0188 (8)
H23A0.16290.96650.50560.023*
H23B0.13990.94190.45380.023*
C240.0816 (4)0.8174 (3)0.49171 (11)0.0215 (9)
H24A0.01930.83920.49000.026*
H24B0.11030.79010.52180.026*
C250.0977 (4)0.7308 (3)0.45814 (12)0.0220 (9)
H25A0.04070.66890.46520.026*
H25B0.06010.75610.42840.026*
C260.2519 (4)0.6978 (3)0.45771 (12)0.0173 (8)
H26A0.25890.64520.43410.021*
H26B0.28630.66440.48620.021*
C270.6543 (4)0.3662 (3)0.38169 (10)0.0148 (8)
O280.6684 (3)0.29309 (19)0.40407 (8)0.0213 (6)
C290.7129 (4)0.5825 (3)0.29891 (10)0.0143 (8)
C300.6452 (4)0.4909 (3)0.27809 (10)0.0136 (8)
C310.7216 (4)0.4009 (3)0.29399 (10)0.0134 (8)
C320.8390 (3)0.4352 (3)0.32478 (10)0.0139 (8)
C330.8337 (4)0.5478 (3)0.32728 (10)0.0149 (8)
C340.6721 (4)0.6938 (3)0.28770 (11)0.0213 (9)
H34A0.68970.70870.25730.032*
H34B0.72900.74170.30780.032*
H34C0.57100.70400.29070.032*
C350.5207 (4)0.4923 (3)0.24333 (11)0.0226 (9)
H35A0.55460.49330.21410.034*
H35B0.46310.55530.24690.034*
H35C0.46260.42920.24610.034*
C360.6898 (4)0.2893 (3)0.27928 (11)0.0233 (9)
H36A0.71570.27960.24930.035*
H36B0.58810.27510.27960.035*
H36C0.74500.24050.29930.035*
C370.9540 (4)0.3681 (3)0.34783 (11)0.0234 (9)
H37A1.03880.37210.33210.035*
H37B0.92130.29490.34840.035*
H37C0.97730.39340.37810.035*
C380.9461 (4)0.6162 (3)0.35157 (11)0.0230 (9)
H38A1.01890.63300.33220.035*
H38B0.99010.57870.37770.035*
H38C0.90270.68160.36070.035*
C390.9832 (4)0.6166 (3)0.22311 (12)0.0269 (10)
H390.98870.69050.22810.032*
C400.8760 (4)0.5756 (3)0.19333 (12)0.0272 (10)
H400.80830.62130.17780.033*
C410.8680 (4)0.4681 (3)0.18633 (12)0.0287 (10)
H410.79410.43970.16620.034*
C420.9662 (4)0.4022 (3)0.20839 (12)0.0305 (10)
H420.96060.32830.20350.037*
C431.0738 (4)0.4437 (3)0.23779 (12)0.0258 (9)
H431.14250.39790.25280.031*
C441.0823 (4)0.5503 (3)0.24558 (11)0.0232 (9)
H441.15540.57810.26620.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01238 (8)0.01078 (8)0.00994 (6)0.00060 (6)0.00079 (5)0.00084 (6)
Fe20.0135 (3)0.0119 (3)0.0099 (2)0.0007 (2)0.0015 (2)0.0012 (2)
B30.010 (2)0.013 (2)0.018 (2)0.0073 (18)0.0023 (17)0.0013 (17)
Cl40.0163 (5)0.0193 (5)0.0146 (4)0.0019 (4)0.0027 (4)0.0020 (4)
C50.021 (2)0.012 (2)0.0075 (16)0.0010 (17)0.0011 (15)0.0000 (14)
O60.0154 (14)0.0202 (15)0.0178 (13)0.0010 (12)0.0024 (11)0.0005 (11)
Cl70.0188 (5)0.0175 (5)0.0172 (4)0.0041 (4)0.0033 (4)0.0004 (4)
P80.0123 (5)0.0104 (5)0.0100 (4)0.0003 (4)0.0012 (4)0.0006 (4)
C90.0116 (18)0.0083 (19)0.0153 (17)0.0028 (15)0.0010 (14)0.0024 (14)
C100.018 (2)0.019 (2)0.0158 (17)0.0013 (17)0.0034 (15)0.0021 (16)
C110.021 (2)0.025 (2)0.021 (2)0.0107 (18)0.0060 (17)0.0051 (17)
C120.035 (3)0.020 (2)0.020 (2)0.0096 (19)0.0058 (18)0.0049 (17)
C130.029 (2)0.016 (2)0.0180 (19)0.0008 (18)0.0015 (17)0.0045 (16)
C140.018 (2)0.0130 (19)0.0170 (18)0.0020 (16)0.0001 (16)0.0001 (16)
C150.0131 (19)0.0145 (19)0.0074 (16)0.0026 (15)0.0013 (14)0.0016 (14)
C160.017 (2)0.0138 (19)0.0165 (18)0.0002 (16)0.0002 (15)0.0003 (15)
C170.018 (2)0.024 (2)0.0142 (18)0.0004 (17)0.0030 (15)0.0003 (16)
C180.015 (2)0.030 (2)0.0129 (18)0.0002 (18)0.0012 (15)0.0048 (17)
C190.025 (2)0.016 (2)0.0170 (18)0.0004 (17)0.0053 (16)0.0075 (15)
C200.019 (2)0.016 (2)0.0153 (17)0.0006 (17)0.0006 (15)0.0000 (16)
C210.0140 (19)0.0097 (19)0.0127 (17)0.0011 (15)0.0002 (14)0.0009 (14)
C220.016 (2)0.011 (2)0.0202 (18)0.0048 (16)0.0039 (15)0.0035 (15)
C230.018 (2)0.018 (2)0.0207 (19)0.0006 (17)0.0050 (16)0.0052 (16)
C240.012 (2)0.030 (2)0.022 (2)0.0007 (18)0.0040 (16)0.0025 (17)
C250.014 (2)0.019 (2)0.033 (2)0.0066 (17)0.0037 (17)0.0046 (18)
C260.015 (2)0.013 (2)0.025 (2)0.0057 (16)0.0057 (16)0.0001 (16)
C270.018 (2)0.013 (2)0.0124 (17)0.0010 (17)0.0005 (15)0.0055 (16)
O280.0244 (15)0.0160 (14)0.0234 (14)0.0010 (12)0.0019 (12)0.0018 (12)
C290.016 (2)0.016 (2)0.0129 (17)0.0027 (16)0.0078 (15)0.0020 (15)
C300.016 (2)0.016 (2)0.0101 (16)0.0003 (16)0.0061 (14)0.0023 (15)
C310.0138 (19)0.019 (2)0.0082 (16)0.0017 (16)0.0026 (14)0.0024 (15)
C320.0104 (19)0.021 (2)0.0100 (17)0.0004 (16)0.0022 (14)0.0003 (15)
C330.016 (2)0.018 (2)0.0121 (17)0.0005 (16)0.0069 (15)0.0007 (15)
C340.032 (2)0.018 (2)0.0151 (19)0.0010 (18)0.0080 (17)0.0029 (16)
C350.022 (2)0.031 (2)0.0143 (18)0.0019 (19)0.0019 (16)0.0002 (17)
C360.031 (2)0.021 (2)0.0183 (19)0.0013 (19)0.0054 (17)0.0090 (17)
C370.018 (2)0.033 (2)0.0186 (19)0.0073 (19)0.0025 (16)0.0026 (18)
C380.021 (2)0.029 (2)0.0198 (19)0.0026 (18)0.0046 (16)0.0056 (17)
C390.033 (2)0.020 (2)0.030 (2)0.000 (2)0.0122 (19)0.0004 (18)
C400.021 (2)0.040 (3)0.022 (2)0.004 (2)0.0079 (17)0.0073 (19)
C410.028 (2)0.040 (3)0.019 (2)0.010 (2)0.0045 (18)0.0072 (19)
C420.042 (3)0.024 (2)0.029 (2)0.006 (2)0.018 (2)0.0043 (19)
C430.028 (2)0.028 (2)0.023 (2)0.001 (2)0.0075 (18)0.0034 (18)
C440.018 (2)0.033 (3)0.0193 (19)0.0090 (19)0.0071 (16)0.0069 (18)
Geometric parameters (Å, º) top
Pt1—B31.910 (4)C21—H211.0000
Pt1—P82.2712 (9)C22—C231.528 (5)
Pt1—C52.400 (3)C22—H22A0.9900
Pt1—Cl72.4711 (8)C22—H22B0.9900
Pt1—Fe22.6455 (5)C23—C241.516 (5)
Fe2—C271.751 (4)C23—H23A0.9900
Fe2—C51.794 (4)C23—H23B0.9900
Fe2—B32.009 (4)C24—C251.521 (5)
Fe2—C322.085 (3)C24—H24A0.9900
Fe2—C312.089 (3)C24—H24B0.9900
Fe2—C302.124 (3)C25—C261.519 (5)
Fe2—C332.132 (3)C25—H25A0.9900
Fe2—C292.138 (3)C25—H25B0.9900
B3—Cl41.774 (4)C26—H26A0.9900
C5—O61.158 (4)C26—H26B0.9900
P8—C211.841 (3)C27—O281.151 (4)
P8—C91.845 (3)C29—C331.425 (5)
P8—C151.856 (3)C29—C301.441 (5)
C9—C101.533 (5)C29—C341.494 (5)
C9—C141.538 (4)C30—C311.409 (5)
C9—H91.0000C30—C351.495 (4)
C10—C111.529 (5)C31—C321.440 (4)
C10—H10A0.9900C31—C361.505 (5)
C10—H10B0.9900C32—C331.432 (5)
C11—C121.514 (5)C32—C371.495 (5)
C11—H11A0.9900C33—C381.503 (5)
C11—H11B0.9900C34—H34A0.9800
C12—C131.528 (5)C34—H34B0.9800
C12—H12A0.9900C34—H34C0.9800
C12—H12B0.9900C35—H35A0.9800
C13—C141.529 (5)C35—H35B0.9800
C13—H13A0.9900C35—H35C0.9800
C13—H13B0.9900C36—H36A0.9800
C14—H14A0.9900C36—H36B0.9800
C14—H14B0.9900C36—H36C0.9800
C15—C201.526 (5)C37—H37A0.9800
C15—C161.550 (4)C37—H37B0.9800
C15—H151.0000C37—H37C0.9800
C16—C171.530 (4)C38—H38A0.9800
C16—H16A0.9900C38—H38B0.9800
C16—H16B0.9900C38—H38C0.9800
C17—C181.519 (5)C39—C441.384 (5)
C17—H17A0.9900C39—C401.386 (5)
C17—H17B0.9900C39—H390.9500
C18—C191.526 (5)C40—C411.383 (5)
C18—H18A0.9900C40—H400.9500
C18—H18B0.9900C41—C421.370 (5)
C19—C201.522 (4)C41—H410.9500
C19—H19A0.9900C42—C431.384 (5)
C19—H19B0.9900C42—H420.9500
C20—H20A0.9900C43—C441.374 (5)
C20—H20B0.9900C43—H430.9500
C21—C221.537 (4)C44—H440.9500
C21—C261.541 (5)
B3—Pt1—P8104.22 (12)H19A—C19—H19B108.1
B3—Pt1—C584.23 (14)C19—C20—C15112.2 (3)
P8—Pt1—C5162.67 (9)C19—C20—H20A109.2
B3—Pt1—Cl7161.64 (12)C15—C20—H20A109.2
P8—Pt1—Cl792.96 (3)C19—C20—H20B109.2
C5—Pt1—Cl781.00 (8)C15—C20—H20B109.2
B3—Pt1—Fe249.13 (11)H20A—C20—H20B107.9
P8—Pt1—Fe2152.23 (3)C22—C21—C26110.6 (3)
C5—Pt1—Fe241.29 (9)C22—C21—P8116.5 (2)
Cl7—Pt1—Fe2112.84 (2)C26—C21—P8114.5 (2)
C27—Fe2—C595.32 (16)C22—C21—H21104.6
C27—Fe2—B380.32 (15)C26—C21—H21104.6
C5—Fe2—B399.86 (15)P8—C21—H21104.6
C27—Fe2—C3290.69 (15)C23—C22—C21110.1 (3)
C5—Fe2—C32151.34 (13)C23—C22—H22A109.6
B3—Fe2—C32108.78 (14)C21—C22—H22A109.6
C27—Fe2—C3195.53 (14)C23—C22—H22B109.6
C5—Fe2—C31111.03 (14)C21—C22—H22B109.6
B3—Fe2—C31149.10 (15)H22A—C22—H22B108.2
C32—Fe2—C3140.37 (12)C24—C23—C22110.8 (3)
C27—Fe2—C30130.89 (14)C24—C23—H23A109.5
C5—Fe2—C3088.93 (14)C22—C23—H23A109.5
B3—Fe2—C30146.94 (15)C24—C23—H23B109.5
C32—Fe2—C3066.41 (12)C22—C23—H23B109.5
C31—Fe2—C3039.07 (12)H23A—C23—H23B108.1
C27—Fe2—C33122.02 (15)C23—C24—C25110.6 (3)
C5—Fe2—C33142.60 (14)C23—C24—H24A109.5
B3—Fe2—C3389.34 (14)C25—C24—H24A109.5
C32—Fe2—C3339.70 (13)C23—C24—H24B109.5
C31—Fe2—C3366.78 (13)C25—C24—H24B109.5
C30—Fe2—C3365.95 (13)H24A—C24—H24B108.1
C27—Fe2—C29156.92 (15)C26—C25—C24111.9 (3)
C5—Fe2—C29104.29 (14)C26—C25—H25A109.2
B3—Fe2—C29107.62 (15)C24—C25—H25A109.2
C32—Fe2—C2966.28 (13)C26—C25—H25B109.2
C31—Fe2—C2966.29 (13)C24—C25—H25B109.2
C30—Fe2—C2939.51 (12)H25A—C25—H25B107.9
C33—Fe2—C2939.00 (12)C25—C26—C21110.8 (3)
C27—Fe2—Pt1108.40 (11)C25—C26—H26A109.5
C5—Fe2—Pt161.99 (10)C21—C26—H26A109.5
B3—Fe2—Pt145.98 (12)C25—C26—H26B109.5
C32—Fe2—Pt1141.37 (10)C21—C26—H26B109.5
C31—Fe2—Pt1155.35 (9)H26A—C26—H26B108.1
C30—Fe2—Pt1116.48 (9)O28—C27—Fe2175.7 (3)
C33—Fe2—Pt1103.57 (9)C33—C29—C30107.8 (3)
C29—Fe2—Pt191.71 (9)C33—C29—C34126.9 (3)
Cl4—B3—Pt1145.3 (2)C30—C29—C34124.8 (3)
Cl4—B3—Fe2129.7 (2)C33—C29—Fe270.24 (19)
Pt1—B3—Fe284.89 (15)C30—C29—Fe269.70 (18)
O6—C5—Fe2161.6 (3)C34—C29—Fe2131.4 (2)
O6—C5—Pt1121.6 (3)C31—C30—C29108.4 (3)
Fe2—C5—Pt176.72 (12)C31—C30—C35126.0 (3)
C21—P8—C9104.64 (15)C29—C30—C35125.5 (3)
C21—P8—C15110.93 (15)C31—C30—Fe269.13 (18)
C9—P8—C15103.45 (15)C29—C30—Fe270.79 (18)
C21—P8—Pt1109.95 (11)C35—C30—Fe2128.8 (2)
C9—P8—Pt1112.48 (11)C30—C31—C32108.0 (3)
C15—P8—Pt1114.79 (11)C30—C31—C36125.6 (3)
C10—C9—C14110.1 (3)C32—C31—C36126.4 (3)
C10—C9—P8109.7 (2)C30—C31—Fe271.80 (19)
C14—C9—P8115.3 (2)C32—C31—Fe269.65 (18)
C10—C9—H9107.1C36—C31—Fe2126.6 (2)
C14—C9—H9107.1C33—C32—C31107.9 (3)
P8—C9—H9107.1C33—C32—C37124.8 (3)
C11—C10—C9112.4 (3)C31—C32—C37127.1 (3)
C11—C10—H10A109.1C33—C32—Fe271.91 (19)
C9—C10—H10A109.1C31—C32—Fe269.97 (18)
C11—C10—H10B109.1C37—C32—Fe2127.3 (2)
C9—C10—H10B109.1C29—C33—C32107.8 (3)
H10A—C10—H10B107.9C29—C33—C38126.7 (3)
C12—C11—C10111.2 (3)C32—C33—C38125.2 (3)
C12—C11—H11A109.4C29—C33—Fe270.76 (19)
C10—C11—H11A109.4C32—C33—Fe268.39 (19)
C12—C11—H11B109.4C38—C33—Fe2131.5 (2)
C10—C11—H11B109.4C29—C34—H34A109.5
H11A—C11—H11B108.0C29—C34—H34B109.5
C11—C12—C13111.2 (3)H34A—C34—H34B109.5
C11—C12—H12A109.4C29—C34—H34C109.5
C13—C12—H12A109.4H34A—C34—H34C109.5
C11—C12—H12B109.4H34B—C34—H34C109.5
C13—C12—H12B109.4C30—C35—H35A109.5
H12A—C12—H12B108.0C30—C35—H35B109.5
C12—C13—C14111.4 (3)H35A—C35—H35B109.5
C12—C13—H13A109.3C30—C35—H35C109.5
C14—C13—H13A109.3H35A—C35—H35C109.5
C12—C13—H13B109.3H35B—C35—H35C109.5
C14—C13—H13B109.3C31—C36—H36A109.5
H13A—C13—H13B108.0C31—C36—H36B109.5
C13—C14—C9110.1 (3)H36A—C36—H36B109.5
C13—C14—H14A109.6C31—C36—H36C109.5
C9—C14—H14A109.6H36A—C36—H36C109.5
C13—C14—H14B109.6H36B—C36—H36C109.5
C9—C14—H14B109.6C32—C37—H37A109.5
H14A—C14—H14B108.2C32—C37—H37B109.5
C20—C15—C16110.2 (3)H37A—C37—H37B109.5
C20—C15—P8111.7 (2)C32—C37—H37C109.5
C16—C15—P8116.9 (2)H37A—C37—H37C109.5
C20—C15—H15105.7H37B—C37—H37C109.5
C16—C15—H15105.7C33—C38—H38A109.5
P8—C15—H15105.7C33—C38—H38B109.5
C17—C16—C15111.2 (3)H38A—C38—H38B109.5
C17—C16—H16A109.4C33—C38—H38C109.5
C15—C16—H16A109.4H38A—C38—H38C109.5
C17—C16—H16B109.4H38B—C38—H38C109.5
C15—C16—H16B109.4C44—C39—C40120.2 (4)
H16A—C16—H16B108.0C44—C39—H39119.9
C18—C17—C16111.0 (3)C40—C39—H39119.9
C18—C17—H17A109.4C41—C40—C39119.7 (4)
C16—C17—H17A109.4C41—C40—H40120.2
C18—C17—H17B109.4C39—C40—H40120.2
C16—C17—H17B109.4C42—C41—C40120.2 (4)
H17A—C17—H17B108.0C42—C41—H41119.9
C17—C18—C19110.3 (3)C40—C41—H41119.9
C17—C18—H18A109.6C41—C42—C43119.8 (4)
C19—C18—H18A109.6C41—C42—H42120.1
C17—C18—H18B109.6C43—C42—H42120.1
C19—C18—H18B109.6C44—C43—C42120.7 (4)
H18A—C18—H18B108.1C44—C43—H43119.6
C20—C19—C18110.5 (3)C42—C43—H43119.6
C20—C19—H19A109.5C43—C44—C39119.3 (4)
C18—C19—H19A109.5C43—C44—H44120.3
C20—C19—H19B109.5C39—C44—H44120.3
C18—C19—H19B109.5
B3—Pt1—Fe2—C2755.40 (19)C27—Fe2—C29—C34163.7 (3)
P8—Pt1—Fe2—C2774.29 (13)C5—Fe2—C29—C3448.9 (3)
C5—Pt1—Fe2—C2786.21 (16)B3—Fe2—C29—C3456.6 (3)
Cl7—Pt1—Fe2—C27128.75 (12)C32—Fe2—C29—C34159.8 (4)
B3—Pt1—Fe2—C5141.60 (19)C31—Fe2—C29—C34155.9 (4)
P8—Pt1—Fe2—C5160.50 (12)C30—Fe2—C29—C34119.1 (4)
Cl7—Pt1—Fe2—C542.54 (12)C33—Fe2—C29—C34122.3 (4)
P8—Pt1—Fe2—B318.89 (16)Pt1—Fe2—C29—C3412.6 (3)
C5—Pt1—Fe2—B3141.60 (19)C33—C29—C30—C311.1 (4)
Cl7—Pt1—Fe2—B3175.86 (15)C34—C29—C30—C31173.9 (3)
B3—Pt1—Fe2—C3260.5 (2)Fe2—C29—C30—C3159.1 (2)
P8—Pt1—Fe2—C3241.60 (16)C33—C29—C30—C35175.3 (3)
C5—Pt1—Fe2—C32157.90 (18)C34—C29—C30—C352.4 (5)
Cl7—Pt1—Fe2—C32115.36 (14)Fe2—C29—C30—C35124.6 (3)
B3—Pt1—Fe2—C31139.0 (3)C33—C29—C30—Fe260.2 (2)
P8—Pt1—Fe2—C31120.1 (2)C34—C29—C30—Fe2127.0 (3)
C5—Pt1—Fe2—C3179.4 (3)C27—Fe2—C30—C3130.2 (3)
Cl7—Pt1—Fe2—C3136.8 (2)C5—Fe2—C30—C31126.3 (2)
B3—Pt1—Fe2—C30145.16 (18)B3—Fe2—C30—C31127.1 (3)
P8—Pt1—Fe2—C30126.27 (11)C32—Fe2—C30—C3138.6 (2)
C5—Pt1—Fe2—C3073.24 (16)C33—Fe2—C30—C3182.2 (2)
Cl7—Pt1—Fe2—C3030.69 (11)C29—Fe2—C30—C31119.4 (3)
B3—Pt1—Fe2—C3375.53 (18)Pt1—Fe2—C30—C31175.94 (16)
P8—Pt1—Fe2—C3356.64 (11)C27—Fe2—C30—C29149.6 (2)
C5—Pt1—Fe2—C33142.87 (15)C5—Fe2—C30—C29114.3 (2)
Cl7—Pt1—Fe2—C33100.33 (9)B3—Fe2—C30—C297.7 (4)
B3—Pt1—Fe2—C29113.10 (18)C32—Fe2—C30—C2980.8 (2)
P8—Pt1—Fe2—C2994.20 (11)C31—Fe2—C30—C29119.4 (3)
C5—Pt1—Fe2—C29105.30 (15)C33—Fe2—C30—C2937.20 (19)
Cl7—Pt1—Fe2—C2962.76 (10)Pt1—Fe2—C30—C2956.5 (2)
P8—Pt1—B3—Cl411.6 (4)C27—Fe2—C30—C3589.8 (4)
C5—Pt1—B3—Cl4153.0 (4)C5—Fe2—C30—C356.3 (3)
Cl7—Pt1—B3—Cl4170.45 (11)B3—Fe2—C30—C35112.9 (4)
Fe2—Pt1—B3—Cl4177.3 (5)C32—Fe2—C30—C35158.7 (4)
P8—Pt1—B3—Fe2171.05 (8)C31—Fe2—C30—C35120.0 (4)
C5—Pt1—B3—Fe224.33 (12)C33—Fe2—C30—C35157.7 (4)
Cl7—Pt1—B3—Fe212.2 (4)C29—Fe2—C30—C35120.5 (4)
C27—Fe2—B3—Cl450.4 (3)Pt1—Fe2—C30—C3564.0 (3)
C5—Fe2—B3—Cl4144.2 (3)C29—C30—C31—C320.4 (4)
C32—Fe2—B3—Cl437.0 (3)C35—C30—C31—C32175.9 (3)
C31—Fe2—B3—Cl434.1 (5)Fe2—C30—C31—C3260.6 (2)
C30—Fe2—B3—Cl4112.3 (3)C29—C30—C31—C36177.4 (3)
C33—Fe2—B3—Cl472.2 (3)C35—C30—C31—C361.1 (5)
C29—Fe2—B3—Cl4107.2 (3)Fe2—C30—C31—C36122.5 (3)
Pt1—Fe2—B3—Cl4178.0 (4)C29—C30—C31—Fe260.1 (2)
C27—Fe2—B3—Pt1127.60 (16)C35—C30—C31—Fe2123.6 (3)
C5—Fe2—B3—Pt133.82 (16)C27—Fe2—C31—C30157.5 (2)
C32—Fe2—B3—Pt1144.98 (13)C5—Fe2—C31—C3059.7 (2)
C31—Fe2—B3—Pt1147.8 (2)B3—Fe2—C31—C30122.1 (3)
C30—Fe2—B3—Pt169.6 (3)C32—Fe2—C31—C30117.9 (3)
C33—Fe2—B3—Pt1109.73 (14)C33—Fe2—C31—C3079.9 (2)
C29—Fe2—B3—Pt174.73 (15)C29—Fe2—C31—C3037.25 (19)
C27—Fe2—C5—O669.1 (9)Pt1—Fe2—C31—C308.7 (4)
B3—Fe2—C5—O6150.2 (9)C27—Fe2—C31—C3284.5 (2)
C32—Fe2—C5—O632.2 (11)C5—Fe2—C31—C32177.6 (2)
C31—Fe2—C5—O628.9 (9)B3—Fe2—C31—C324.2 (4)
C30—Fe2—C5—O661.8 (9)C30—Fe2—C31—C32117.9 (3)
C33—Fe2—C5—O6107.8 (9)C33—Fe2—C31—C3238.01 (19)
C29—Fe2—C5—O698.6 (9)C29—Fe2—C31—C3280.7 (2)
Pt1—Fe2—C5—O6177.2 (10)Pt1—Fe2—C31—C32109.2 (2)
C27—Fe2—C5—Pt1108.03 (12)C27—Fe2—C31—C3636.3 (3)
B3—Fe2—C5—Pt126.96 (14)C5—Fe2—C31—C3661.6 (3)
C32—Fe2—C5—Pt1150.7 (3)B3—Fe2—C31—C36116.7 (4)
C31—Fe2—C5—Pt1153.95 (11)C32—Fe2—C31—C36120.8 (4)
C30—Fe2—C5—Pt1120.99 (11)C30—Fe2—C31—C36121.2 (4)
C33—Fe2—C5—Pt175.1 (2)C33—Fe2—C31—C36158.8 (3)
C29—Fe2—C5—Pt184.23 (11)C29—Fe2—C31—C36158.5 (3)
B3—Pt1—C5—O6150.8 (3)Pt1—Fe2—C31—C36130.0 (3)
P8—Pt1—C5—O630.4 (5)C30—C31—C32—C330.3 (4)
Cl7—Pt1—C5—O640.2 (3)C36—C31—C32—C33176.6 (3)
Fe2—Pt1—C5—O6178.9 (3)Fe2—C31—C32—C3362.3 (2)
B3—Pt1—C5—Fe228.17 (14)C30—C31—C32—C37175.9 (3)
P8—Pt1—C5—Fe2148.5 (2)C36—C31—C32—C371.0 (5)
Cl7—Pt1—C5—Fe2140.88 (10)Fe2—C31—C32—C37122.2 (3)
B3—Pt1—P8—C21143.61 (16)C30—C31—C32—Fe261.9 (2)
C5—Pt1—P8—C2126.0 (3)C36—C31—C32—Fe2121.1 (3)
Cl7—Pt1—P8—C2142.93 (11)C27—Fe2—C32—C33144.6 (2)
Fe2—Pt1—P8—C21158.24 (11)C5—Fe2—C32—C33112.9 (3)
B3—Pt1—P8—C9100.22 (16)B3—Fe2—C32—C3364.6 (2)
C5—Pt1—P8—C9142.1 (3)C31—Fe2—C32—C33117.6 (3)
Cl7—Pt1—P8—C973.25 (12)C30—Fe2—C32—C3380.2 (2)
Fe2—Pt1—P8—C985.58 (13)C29—Fe2—C32—C3336.90 (18)
B3—Pt1—P8—C1517.71 (17)Pt1—Fe2—C32—C3323.3 (3)
C5—Pt1—P8—C1599.9 (3)C27—Fe2—C32—C3197.7 (2)
Cl7—Pt1—P8—C15168.82 (12)C5—Fe2—C32—C314.7 (4)
Fe2—Pt1—P8—C1532.35 (14)B3—Fe2—C32—C31177.7 (2)
C21—P8—C9—C10171.7 (2)C30—Fe2—C32—C3137.42 (19)
C15—P8—C9—C1072.0 (2)C33—Fe2—C32—C31117.6 (3)
Pt1—P8—C9—C1052.4 (2)C29—Fe2—C32—C3180.7 (2)
C21—P8—C9—C1446.8 (3)Pt1—Fe2—C32—C31140.88 (17)
C15—P8—C9—C14163.1 (2)C27—Fe2—C32—C3724.2 (3)
Pt1—P8—C9—C1472.5 (3)C5—Fe2—C32—C37126.7 (3)
C14—C9—C10—C1155.4 (4)B3—Fe2—C32—C3755.8 (3)
P8—C9—C10—C11176.7 (2)C31—Fe2—C32—C37122.0 (4)
C9—C10—C11—C1254.5 (4)C30—Fe2—C32—C37159.4 (3)
C10—C11—C12—C1354.3 (4)C33—Fe2—C32—C37120.4 (4)
C11—C12—C13—C1456.8 (4)C29—Fe2—C32—C37157.3 (3)
C12—C13—C14—C957.7 (4)Pt1—Fe2—C32—C3797.1 (3)
C10—C9—C14—C1356.4 (4)C30—C29—C33—C321.3 (4)
P8—C9—C14—C13178.9 (2)C34—C29—C33—C32174.0 (3)
C21—P8—C15—C2058.5 (3)Fe2—C29—C33—C3258.5 (2)
C9—P8—C15—C20170.2 (2)C30—C29—C33—C38172.2 (3)
Pt1—P8—C15—C2066.9 (3)C34—C29—C33—C380.5 (5)
C21—P8—C15—C1669.7 (3)Fe2—C29—C33—C38128.0 (3)
C9—P8—C15—C1642.0 (3)C30—C29—C33—Fe259.8 (2)
Pt1—P8—C15—C16164.9 (2)C34—C29—C33—Fe2127.5 (3)
C20—C15—C16—C1754.0 (4)C31—C32—C33—C291.0 (4)
P8—C15—C16—C17177.1 (2)C37—C32—C33—C29176.7 (3)
C15—C16—C17—C1856.5 (4)Fe2—C32—C33—C2960.0 (2)
C16—C17—C18—C1958.2 (4)C31—C32—C33—C38172.6 (3)
C17—C18—C19—C2057.8 (4)C37—C32—C33—C383.1 (5)
C18—C19—C20—C1556.8 (4)Fe2—C32—C33—C38126.4 (3)
C16—C15—C20—C1954.5 (4)C31—C32—C33—Fe261.0 (2)
P8—C15—C20—C19173.8 (2)C37—C32—C33—Fe2123.3 (3)
C9—P8—C21—C2258.5 (3)C27—Fe2—C33—C29162.2 (2)
C15—P8—C21—C2252.4 (3)C5—Fe2—C33—C2914.2 (3)
Pt1—P8—C21—C22179.5 (2)B3—Fe2—C33—C29119.7 (2)
C9—P8—C21—C26170.3 (2)C32—Fe2—C33—C29119.1 (3)
C15—P8—C21—C2678.8 (3)C31—Fe2—C33—C2980.5 (2)
Pt1—P8—C21—C2649.2 (3)C30—Fe2—C33—C2937.68 (19)
C26—C21—C22—C2356.8 (4)Pt1—Fe2—C33—C2975.56 (19)
P8—C21—C22—C23170.2 (2)C27—Fe2—C33—C3243.0 (2)
C21—C22—C23—C2458.4 (4)C5—Fe2—C33—C32133.3 (2)
C22—C23—C24—C2557.8 (4)B3—Fe2—C33—C32121.2 (2)
C23—C24—C25—C2656.4 (4)C31—Fe2—C33—C3238.65 (18)
C24—C25—C26—C2155.1 (4)C30—Fe2—C33—C3281.5 (2)
C22—C21—C26—C2555.2 (4)C29—Fe2—C33—C32119.1 (3)
P8—C21—C26—C25170.7 (2)Pt1—Fe2—C33—C32165.31 (16)
C27—Fe2—C29—C3341.5 (4)C27—Fe2—C33—C3875.4 (4)
C5—Fe2—C29—C33171.2 (2)C5—Fe2—C33—C38108.2 (4)
B3—Fe2—C29—C3365.7 (2)B3—Fe2—C33—C382.7 (3)
C32—Fe2—C29—C3337.55 (19)C32—Fe2—C33—C38118.5 (4)
C31—Fe2—C29—C3381.8 (2)C31—Fe2—C33—C38157.1 (4)
C30—Fe2—C29—C33118.7 (3)C30—Fe2—C33—C38160.1 (4)
Pt1—Fe2—C29—C33109.65 (18)C29—Fe2—C33—C38122.4 (4)
C27—Fe2—C29—C3077.2 (4)Pt1—Fe2—C33—C3846.9 (3)
C5—Fe2—C29—C3070.2 (2)C44—C39—C40—C410.3 (5)
B3—Fe2—C29—C30175.6 (2)C39—C40—C41—C420.6 (6)
C32—Fe2—C29—C3081.1 (2)C40—C41—C42—C430.0 (6)
C31—Fe2—C29—C3036.84 (19)C41—C42—C43—C440.8 (6)
C33—Fe2—C29—C30118.7 (3)C42—C43—C44—C391.1 (5)
Pt1—Fe2—C29—C30131.67 (18)C40—C39—C44—C430.5 (5)

Experimental details

Crystal data
Chemical formula[FePt(BCl)Cl(C10H15)(C18H33P)(CO)2]·C6H6
Mr882.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4578 (2), 12.6902 (3), 30.5130 (9)
β (°) 96.334 (1)
V3)3639.86 (16)
Z4
Radiation typeMo Kα
µ (mm1)4.46
Crystal size (mm)0.28 × 0.26 × 0.19
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.374, 0.431
No. of measured, independent and
observed [I > 2σ(I)] reflections
57360, 9098, 6917
Rint0.077
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.059, 1.00
No. of reflections9098
No. of parameters402
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.78

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011).

 

Acknowledgements

Financial support by the DFG is gratefully acknowledged.

References

First citationArnold, N., Braunschweig, H., Brenner, P., Jimenez-Halla, J. O. C., Kupfer, T. & Radacki, K. (2012). Organometallics, 31, 1897–1907.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraunschweig, H., Dewhurst, R. D. & Schneider, A. (2010). Chem. Rev. 110, 3924–3957.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBraunschweig, H., Radacki, K., Rais, D. & Seeler, F. (2006). Angew. Chem. Int. Ed. 45, 1066–1069.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraunschweig, H., Radacki, K., Rais, D., Seeler, F. & Uttinger, K. (2005b). J. Am. Chem. Soc. 127, 1386–1387.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBraunschweig, H., Radacki, K., Rais, D. & Whittell, G. R. (2005a). Angew. Chem. Int. Ed. 44, 1192–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds