research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(di­methyl­ammonium) hexa­aqua­nickel(II) bis­­(sulfate) dihydrate

aInstitut für Kristallographie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 October 2014; accepted 10 October 2014; online 24 October 2014)

In the title salt, (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O, the NiII cation is located on a centre of inversion and exhibits a slightly distorted octa­hedral arrangement of water mol­ecules. The Ni—O bond lengths in the complex [Ni(H2O)6]2+ cation show a distribution as in the related Tutton salt (NH4)2[Ni(H2O)6](SO4)2, but are longer in average [2.056 (13) versus 2.037 (12) Å]. The noncoordinating water mol­ecules and di­methyl­ammonium cations connect the sulfate and [Ni(H2O)6]2+ octa­hedra via O—H⋯O and N—H⋯O hydrogen bonds from weak up to medium strength into a three-dimensional framework whereby the complex metal cations and sulfate anions are arranged in sheets parallel (001).

1. Chemical context

In the course of a systematic search for new `double salts' of simple secondary amines and divalent cations of various inorganic acids, the structure of [(CH3)2NH2][Cu(HSO4)(SO4)(H2O)4] has been described previously (Held, 2014[Held, P. (2014). Acta Cryst. E70, m119.]). In continuation of these studies, copper(II) was replaced by nickel(II), yielding crystals of the title compound with composition (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of one [NH2(CH3)]+ cation, one Ni2+ cation situated on an inversion centre (Wyckoff position 4a), one SO42− anion and four water mol­ecules, one of which is not coordinating to the metal cation (Fig. 1[link]). The NiII cation exhibits a slightly distorted octa­hedral arrangement of the water mol­ecules. The Ni—O distances show the same bond lengths distribution [mean 2.055 (12) Å], as in the related Tutton salt (NH4)2[Ni(H2O)6](SO4)2 (Grimes et al., 1963[Grimes, N. W., Kay, H. F. & Webb, M. W. (1963). Acta Cryst. 16, 823-829.]), but are slightly longer (Δd = 0.02 Å). The NiII cation reaches an overall bond valence sum (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) of 2.03 valence units. The S—O distances are nearly equal [mean 1.463 (8) Å], however, the O—S—O angles vary clearly [average bond angle 109.5 (8)°].

[Figure 1]
Figure 1
The mol­ecular entities in the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x, −y + 1, −z − 1.]

3. Supra­molecular features

Hydrogen bonds of weak up to medium strength involving coordinating and noncoordinating water mol­ecules as donor groups and O atoms of the sulfate anions as acceptor groups inter­connect neighbouring [Ni(H2O)6]2+ octa­hedra. Together with relatively weaker N—H⋯O hydrogen bonds of the ammonium H atoms to sulfate anions, a three-dimensional framework is formed with pronounced formation of sheets of complex metal cations and sulfate anions parallel (001) (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2i 0.97 (1) 1.77 (2) 2.727 (5) 166 (5)
O5—H52⋯O8 0.98 (1) 1.84 (1) 2.814 (6) 176 (7)
O6—H61⋯O3ii 0.97 (1) 1.73 (2) 2.689 (5) 169 (6)
O6—H62⋯O1 0.98 (1) 1.78 (2) 2.731 (5) 164 (5)
O7—H71⋯O4iii 0.97 (1) 1.78 (2) 2.730 (6) 164 (5)
O7—H72⋯O1iv 0.98 (1) 1.78 (2) 2.745 (5) 173 (7)
O8—H81⋯O3iii 0.98 (1) 2.01 (2) 2.962 (6) 166 (6)
O8—H82⋯O2v 0.98 (1) 1.93 (3) 2.856 (6) 158 (7)
N3—H3B⋯O4vi 0.90 2.02 2.835 (7) 151
N3—H3A⋯O6iv 0.90 2.65 3.274 (6) 127
Symmetry codes: (i) -x, -y+1, -z-1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z-1]; (iii) -x+1, -y+1, -z-1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-1].
[Figure 2]
Figure 2
(100)-projection of the crystal structure of the title compound. Colour scheme: (SO4) tetra­hedra yellow, [Ni(OH2)6] octa­hedra red, O blue, N green, C grey and H colourless. H⋯O bonds up to 1.8 Å are given as orange dashed lines and from 1.85 to 2.7 Å as light-blue dashed lines.

4. Synthesis and crystallization

The title compound was obtained by reaction of an aqueous solution of nickel(II) sulfate with di­methyl­amine and sulfuric acid (18 mol l−1) in a stoichiometric ratio of 1:2:1. The resulting solution was kept at room temperature by cooling. The title compound crystallized by slow evaporation of the solvent at room temperature in form of light-green crystals with dimensions up to 4 mm within 12 weeks.

5. Refinement

Details of structure refinement are given in Table 2[link]. All H atoms were clearly discernible from difference Fourier maps. However, riding-model contraints were applied to all H atoms in the least-squares refinement, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N) for ammonium H atoms. The H atoms of water mol­ecules were refined with a distance restraint of O—H = 0.98 Å and individual Uiso values for each H atom.

Table 2
Experimental details

Crystal data
Chemical formula (C2H8N)2[Ni(H2O)6](SO4)2·2H2O
Mr 487.13
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 295
a, b, c (Å) 8.9363 (6), 13.2370 (8), 16.4810 (14)
V3) 1949.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.28
Crystal size (mm) 0.29 × 0.27 × 0.26
 
Data collection
Diffractometer Enraf–Nonius MACH3
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.935, 0.999
No. of measured, independent and observed [I > 2σ(I)] reflections 4902, 1719, 962
Rint 0.107
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.07
No. of reflections 1719
No. of parameters 148
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.41
Computer programs: CAD-4 Software (Enraf–Nonius, 1998[Enraf-Nonius (1998). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]), MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), ATOMS (Dowty, 2011[Dowty, E. (2011). ATOMS. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

In the course of a systematic search for new `double salts' of simple secondary amines and divalent cations of various inorganic acids, the structure of [(CH3)2NH2][Cu(HSO4)(SO4)(H2O)4] has been described previously (Held, 2014). In continuation of these studies, copper(II) was replaced by nickel(II), yielding crystals of the title compound with composition (C2H8N)2[Ni(H2O)6)](SO4)2·2H2O.

Structural commentary top

The asymmetric unit of the title compound consists of one [NH2(CH3)]+ cation, one Ni2+ cation situated on an inversion centre (Wyckoff position 4a), one SO42- anion and four water molecules, one of which is not coordinating to the metal cation (Fig. 1). The NiII cation exhibits a slightly distorted o­cta­hedral arrangement of the water molecules. The Ni—O distances show the same bond lengths distribution [mean 2.055 (12) Å], as in the related Tutton salt (NH4)2[Ni(H2O)6)](SO4)2 (Grimes et al., 1963), but are slightly longer (Δd = 0.02 Å). The NiII cation reaches an overall bond valence sum (Brown & Altermatt, 1985) of 2.03 valence units. The S—O distances are nearly equal [mean 1.463 (8) Å], however, the O—S—O angles vary clearly [average bond angle 109.5 (8)°].

Supra­molecular features top

Hydrogen bonds of weak up to medium strength involving coordinating and noncoordinating water molecules as donor groups and O atoms of the sulfate anions as acceptor groups inter­connect neighbouring [Ni(H2O)6]2+ o­cta­hedra. Together with relatively weaker N—H···O hydrogen bonds of the ammonium H atoms to sulfate anions, a three-dimensional framework is formed with pronounced formation of sheets of complex metal cations and sulfate anions parallel (001) (Table 1 and Fig. 2).

Synthesis and crystallization top

The title compound was obtained by reaction of an aqueous solution of nickel(II) sulfate with di­methyl­amine and sulfuric acid (18 mol l-1) in a stoichiometric ratio of 1:2:1. The resulting solution was kept at room temperature by cooling. The title compound crystallized by slow evaporation of the solvent at room temperature in form of light-green crystals with dimensions up to 4 mm within 12 weeks.

Refinement top

Details of structure refinement are given in Table 1. All H atoms were clearly discernible from difference Fourier maps. However, riding-model contraints were applied to all H atoms in the least-squares refinement, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and N—H = 0.90 Å and Uiso(H) = 1.2Ueq(N) for ammonium H atoms. The H atoms of water molecules were refined with a distance restraint of O—H = 0.98 Å and individual Uiso values for each H atom.

Related literature top

For related literature, see: Brown & Altermatt (1985); Grimes et al. (1963); Held (2014).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1998); cell refinement: CAD-4 Software (Enraf–Nonius, 1998); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and puplCIF (Westrip, 2010).

Figures top
The molecular entities in the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y+1, -z-1.]

(100)-projection of the crystal structure of the title compound. Colour scheme: (SO4) tetrahedra yellow, [Ni(OH2)6] octahedra red, O blue, N green, C grey and H colourless. H···O bonds up to 1.8 Å are given as orange dashed lines and from 1.85 to 2.7 Å as light-blue dashed lines.
Bis(dimethylammonium) hexaaquanickel(II) bis(sulfate) dihydrate top
Crystal data top
(C2H8N)2[Ni(H2O)6](SO4)2·2H2OF(000) = 1032
Mr = 487.13Dx = 1.660 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.9363 (6) Åθ = 5.5–10.1°
b = 13.2370 (8) ŵ = 1.28 mm1
c = 16.4810 (14) ÅT = 295 K
V = 1949.5 (2) Å3Prism, light green
Z = 40.29 × 0.27 × 0.26 mm
Data collection top
Enraf–Nonius MACH3
diffractometer
962 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.107
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
/w2/q scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.935, Tmax = 0.999l = 1919
4902 measured reflections3 standard reflections every 100 reflections
1719 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.0324P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1719 reflectionsΔρmax = 0.44 e Å3
148 parametersΔρmin = 0.41 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0267 (19)
Crystal data top
(C2H8N)2[Ni(H2O)6](SO4)2·2H2OV = 1949.5 (2) Å3
Mr = 487.13Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.9363 (6) ŵ = 1.28 mm1
b = 13.2370 (8) ÅT = 295 K
c = 16.4810 (14) Å0.29 × 0.27 × 0.26 mm
Data collection top
Enraf–Nonius MACH3
diffractometer
962 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.107
Tmin = 0.935, Tmax = 0.9993 standard reflections every 100 reflections
4902 measured reflections intensity decay: 0.3%
1719 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0408 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.44 e Å3
1719 reflectionsΔρmin = 0.41 e Å3
148 parameters
Special details top

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.50000.50000.0269 (3)
S10.44455 (15)0.65768 (10)0.40485 (8)0.0314 (4)
O10.3690 (4)0.7003 (3)0.4766 (2)0.0446 (11)
O20.3354 (4)0.6104 (3)0.3508 (2)0.0424 (11)
O30.5247 (5)0.7376 (3)0.3626 (3)0.0617 (13)
O40.5509 (6)0.5805 (3)0.4313 (3)0.0764 (16)
O50.0494 (5)0.4469 (3)0.6145 (2)0.0382 (10)
H510.150 (3)0.420 (4)0.619 (3)0.06 (2)*
H520.023 (7)0.401 (5)0.639 (5)0.12 (3)*
O60.1383 (4)0.6054 (3)0.5541 (2)0.0339 (9)
H610.090 (6)0.656 (3)0.588 (3)0.07 (2)*
H620.209 (5)0.639 (4)0.518 (3)0.07 (2)*
O70.1783 (4)0.4042 (3)0.4930 (2)0.0379 (9)
H710.264 (4)0.415 (5)0.528 (3)0.07 (2)*
H720.169 (9)0.3310 (10)0.490 (4)0.11 (3)*
O80.1689 (5)0.3224 (4)0.6862 (2)0.0535 (12)
H810.275 (2)0.311 (5)0.676 (4)0.10 (3)*
H820.177 (10)0.361 (5)0.736 (3)0.12 (3)*
N30.0336 (6)0.1126 (4)0.6424 (3)0.0537 (15)
H3A0.10220.15500.62130.064*
H3B0.01890.06280.60610.064*
C10.0946 (11)0.0689 (5)0.7152 (5)0.097 (3)
H1A0.18640.03460.70270.145*
H1B0.11380.12140.75410.145*
H1C0.02430.02160.73750.145*
C20.1071 (8)0.1681 (6)0.6520 (5)0.071 (2)
H2A0.13740.19510.60050.106*
H2B0.18300.12310.67200.106*
H2C0.09300.22230.68990.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0289 (5)0.0233 (5)0.0284 (5)0.0004 (5)0.0020 (4)0.0003 (5)
S10.0293 (7)0.0309 (7)0.0340 (8)0.0008 (6)0.0010 (6)0.0055 (6)
O10.055 (3)0.040 (2)0.038 (2)0.009 (2)0.0177 (19)0.0099 (18)
O20.031 (2)0.053 (3)0.043 (2)0.0083 (19)0.0059 (19)0.007 (2)
O30.083 (3)0.054 (3)0.047 (3)0.033 (3)0.027 (2)0.015 (2)
O40.066 (3)0.059 (3)0.104 (4)0.026 (3)0.040 (3)0.029 (3)
O50.032 (2)0.045 (2)0.038 (2)0.005 (2)0.0017 (19)0.0058 (19)
O60.036 (2)0.029 (2)0.037 (2)0.0031 (18)0.0059 (18)0.0067 (18)
O70.032 (2)0.032 (2)0.050 (3)0.0070 (18)0.008 (2)0.007 (2)
O80.041 (3)0.080 (3)0.040 (3)0.003 (3)0.000 (2)0.008 (3)
N30.069 (4)0.041 (3)0.051 (3)0.004 (3)0.016 (3)0.005 (3)
C10.147 (9)0.049 (5)0.094 (7)0.008 (5)0.065 (6)0.013 (4)
C20.051 (4)0.078 (6)0.082 (5)0.001 (4)0.011 (4)0.021 (5)
Geometric parameters (Å, º) top
Ni—O7i2.040 (3)O7—H710.974 (10)
Ni—O72.040 (3)O7—H720.975 (10)
Ni—O52.061 (4)O8—H810.975 (10)
Ni—O5i2.061 (4)O8—H820.976 (10)
Ni—O62.066 (4)N3—C11.440 (8)
Ni—O6i2.066 (4)N3—C21.464 (8)
S1—O31.455 (4)N3—H3A0.9000
S1—O41.461 (4)N3—H3B0.9000
S1—O21.461 (4)C1—H1A0.9600
S1—O11.474 (4)C1—H1B0.9600
O5—H510.974 (10)C1—H1C0.9600
O5—H520.976 (10)C2—H2A0.9600
O6—H610.973 (10)C2—H2B0.9600
O6—H620.976 (10)C2—H2C0.9600
O7i—Ni—O7180.0 (2)Ni—O6—H62116 (4)
O7i—Ni—O589.60 (16)H61—O6—H62109 (5)
O7—Ni—O590.40 (16)Ni—O7—H71119 (4)
O7i—Ni—O5i90.40 (16)Ni—O7—H72123 (5)
O7—Ni—O5i89.60 (16)H71—O7—H72104 (6)
O5—Ni—O5i180.0H81—O8—H8299 (6)
O7i—Ni—O691.33 (15)C1—N3—C2115.8 (6)
O7—Ni—O688.67 (15)C1—N3—H3A108.3
O5—Ni—O687.90 (15)C2—N3—H3A108.3
O5i—Ni—O692.10 (15)C1—N3—H3B108.3
O7i—Ni—O6i88.67 (15)C2—N3—H3B108.3
O7—Ni—O6i91.33 (15)H3A—N3—H3B107.4
O5—Ni—O6i92.10 (15)N3—C1—H1A109.5
O5i—Ni—O6i87.90 (15)N3—C1—H1B109.5
O6—Ni—O6i180.00 (19)H1A—C1—H1B109.5
O3—S1—O4109.3 (3)N3—C1—H1C109.5
O3—S1—O2110.4 (3)H1A—C1—H1C109.5
O4—S1—O2108.4 (3)H1B—C1—H1C109.5
O3—S1—O1109.3 (2)N3—C2—H2A109.5
O4—S1—O1109.0 (3)N3—C2—H2B109.5
O2—S1—O1110.3 (2)H2A—C2—H2B109.5
Ni—O5—H51113 (3)N3—C2—H2C109.5
Ni—O5—H52117 (5)H2A—C2—H2C109.5
H51—O5—H52110 (6)H2B—C2—H2C109.5
Ni—O6—H61117 (4)
Symmetry code: (i) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O2i0.97 (1)1.77 (2)2.727 (5)166 (5)
O5—H52···O80.98 (1)1.84 (1)2.814 (6)176 (7)
O6—H61···O3ii0.97 (1)1.73 (2)2.689 (5)169 (6)
O6—H62···O10.98 (1)1.78 (2)2.731 (5)164 (5)
O7—H71···O4iii0.97 (1)1.78 (2)2.730 (6)164 (5)
O7—H72···O1iv0.98 (1)1.78 (2)2.745 (5)173 (7)
O8—H81···O3iii0.98 (1)2.01 (2)2.962 (6)166 (6)
O8—H82···O2v0.98 (1)1.93 (3)2.856 (6)158 (7)
N3—H3B···O4vi0.902.022.835 (7)151
N3—H3A···O6iv0.902.653.274 (6)127
Symmetry codes: (i) x, y+1, z1; (ii) x1/2, y+3/2, z1; (iii) x+1, y+1, z1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1, z1/2; (vi) x1/2, y+1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O2i0.974 (10)1.772 (19)2.727 (5)166 (5)
O5—H52···O80.976 (10)1.840 (13)2.814 (6)176 (7)
O6—H61···O3ii0.973 (10)1.728 (16)2.689 (5)169 (6)
O6—H62···O10.976 (10)1.78 (2)2.731 (5)164 (5)
O7—H71···O4iii0.974 (10)1.78 (2)2.730 (6)164 (5)
O7—H72···O1iv0.975 (10)1.776 (15)2.745 (5)173 (7)
O8—H81···O3iii0.975 (10)2.01 (2)2.962 (6)166 (6)
O8—H82···O2v0.976 (10)1.93 (3)2.856 (6)158 (7)
N3—H3B···O4vi0.902.022.835 (7)150.8
N3—H3A···O6iv0.902.653.274 (6)127.0
Symmetry codes: (i) x, y+1, z1; (ii) x1/2, y+3/2, z1; (iii) x+1, y+1, z1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1, z1/2; (vi) x1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formula(C2H8N)2[Ni(H2O)6](SO4)2·2H2O
Mr487.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)8.9363 (6), 13.2370 (8), 16.4810 (14)
V3)1949.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.29 × 0.27 × 0.26
Data collection
DiffractometerEnraf–Nonius MACH3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.935, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
4902, 1719, 962
Rint0.107
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.07
No. of reflections1719
No. of parameters148
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.41

Computer programs: CAD-4 Software (Enraf–Nonius, 1998), MolEN (Fair, 1990), SIR97 (Altomare et al., 1999), ATOMS (Dowty, 2011), SHELXL97 (Sheldrick, 2008) and puplCIF (Westrip, 2010).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2011). ATOMS. Shape Software, Hidden Valley Road, Kingsport, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1998). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGrimes, N. W., Kay, H. F. & Webb, M. W. (1963). Acta Cryst. 16, 823–829.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHeld, P. (2014). Acta Cryst. E70, m119.  CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds