research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[2-tert-but­­oxy-6-fluoro-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O′)iridium(III)

aResearch Institute of Natural Science, Gyeongsang National University, Jinju, 660-701, South Korea, and bDivision of Science Education and Department of Chemistry, Kangwon National, University, Chuncheon 220-701, South Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 October 2014; accepted 19 October 2014; online 29 October 2014)

The title mol­ecule, [Ir(C14H14FN2O)2(C5H7O2)], is located on a twofold rotation axis, which passes through the IrIII atom and the central C atom of the pentane-2,4-dionate anion. The IrIII atom adopts a distorted octa­hedral coordination geometry, being C,N-chelated by two 2-tert-but­oxy-6-fluoro-3-(pyridin-2-yl)pyridin-4-yl ligands and O,O′-chelated by the pentane-2,4-dionato ligand. The bipyridinate ligands, which are perpendicular to each other [dihedral angle between the two least-squares planes = 89.95 (5)°], are arranged in a cis-C,C′ and trans-N,N′ fashion relative to the central metal cation. Intra­molecular C—H⋯O and C—H⋯N hydrogen bonds and inter­molecular C—H⋯F hydrogen bonds as well as ππ inter­actions between neighbouring pyridine rings [centroid–centroid distance 3.680 (1) Å] contribute to the stabilization of the mol­ecular and crystal structure, respectively.

1. Chemical context

Iridium(III) compounds with fluorinated main dipyridyl ligands have attracted much attention due to their colour purity and high external quantum efficiency in organic light-emitting diodes (Lee et al., 2009[Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]; Park et al., 2013[Park, J., Oh, H., Oh, S., Kim, J., Park, H. J., Kim, O. Y., Lee, J. Y. & Kang, Y. (2013). Org. Electron. 14, 3228-3233.]). In particular, heteroleptic IrIII compounds have many advantages such as easy tuning of emission energies and photophysical properties by modification of the ancillary ligands (Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.]). Herein, we report the results of the crystal-structure determination of an iridium(III) compound, [Ir(C14H14FN2O)2(C5H7O2)], with acetylacetonate (acac, O,O′) as an ancillary ligand.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, Fig. 1[link], is generated by twofold rotation symmetry. The twofold rotation axis passes through the IrIII atom and the central C atom (C15) of the acetyl­acetonate ligand. Therefore, the asymmetric unit consists of one Ir(III) atom on Wyckoff position 4e, one half of the acetyl­acetonate anion and one 2-tert-but­oxy-6-fluoro-3-(pyridin-2-yl)pyridin-4-yl ligand. The IrIII atom is six-coord­inated by the two main C,N-bidentate ligands and one ancillary O,O′-bidentate ligand, forming a distorted octa­hedral coordination sphere due to the narrow ligand bite angles, which range from 80.36 (7) to 88.65 (8)°. The C,N-bidentate ligands, which are perpendicular to each other [dihedral angle between the least-squares planes = 89.95 (5)°], are arranged in a cis-C,C′ and trans-N,N′ fashion. The Ir—C bond length of 1.9760 (19) Å is shorter than the Ir—N bond length of 2.0344 (16) Å due to the electronegative fluorine substituent (Table 1[link]). The Ir—C, Ir—N, and Ir—O bond lengths are in normal ranges as reported for similar IrIII compounds, e.g. [Ir(dfpypy)2(acac); dfpypy is a difuorinated bi­pyridine] (Kang et al., 2013[Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C, 1, 441-450.]) or Ir(2′,6′-bis­(2-meth­oxy­eth­oxy)-2,3′-bipyridinato-N,C′)(picolinate) (Frey et al., 2014[Frey, J., Curchod, B. F. E., Scopelliti, R., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K. & Baranoff, E. (2014). Dalton Trans. 43, 5667-5679.]). Within the C,N-bidentate ligand of the title compound, the two pyridine rings are approximately co-planar, with a dihedral angle between the rings of 5.77 (9)°.

Table 1
Selected bond lengths (Å)

Ir1—C1 1.9760 (19) Ir1—O2 2.1393 (15)
Ir1—N1 2.0344 (16)    
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; dashed lines represent intra­molecular C—H⋯O and C—H⋯N hydrogen bonds [Symmetry code: (i) − x, y, [{3\over 2}] − z].

3. Supra­molecular features

The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O and C—H⋯N hydrogen bonds (Table 2[link]). Inter­molecular C—H⋯F hydrogen bonds and ππ inter­actions [Cg1—Cg1iii = 3.680 (1) Å, Cg1 is the centroid of the N1, C6–C10 ring, symmetry code: (iii) −x, 1 − y, 2 − z] contribute to the stabilization of the crystal structure (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.95 2.27 2.870 (2) 120
C10—H10⋯O2i 0.95 2.48 3.089 (2) 122
C10—H10⋯F1ii 0.95 2.41 3.055 (2) 125
C12—H12C⋯N2 0.98 2.29 2.927 (3) 122
C14—H14B⋯N2 0.98 2.59 3.153 (3) 116
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Packing plot of the mol­ecular components in the title compound. Yellow and black dashed lines represent inter­molecular C—H⋯F and ππ stacking inter­actions, respectively. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized according to a previous report (Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.]). Yellow single crystals were obtained by slow evaporation from a di­chloro­methane/hexane solution.

5. Refinement

Crystal data, data collection and crystal structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for Csp2 H atoms, and 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl protons.

Table 3
Experimental details

Crystal data
Chemical formula [Ir(C14H14FN2O)2(C5H7O2)]
Mr 781.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 16.9404 (12), 10.7783 (7), 17.2561 (11)
β (°) 100.001 (1)
V3) 3102.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.36
Crystal size (mm) 0.16 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.537, 0.687
No. of measured, independent and observed [I > 2σ(I)] reflections 15125, 3881, 3717
Rint 0.024
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.039, 1.01
No. of reflections 3881
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.59
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Iridium(III) compounds with fluorinated main di­pyridyl ligands have attracted much attention due to their colour purity and high external quantum efficiency in organic light-emitting diodes (Lee et al., 2009; Park et al., 2013). In particular, heteroleptic IrIII compounds have many advantages such as easy tuning of emission energies and photophysical properties by modification of the ancillary ligands (Oh et al., 2013). Herein, we report the results of the crystal-structure determination of an iridium(III) compound with acetyl­acetate (acac, O,O') as an ancillary ligand, [Ir(C14H14FN2O)2(C5H7O2)].

Structural commentary top

\ The molecular structure of the title compound, Fig. 1, is generated by twofold rotation symmetry. The twofold rotation axis passes through the IrIII atom and the central C atom (C15) of the acetyl­acetonate ligand. Therefore, the asymmetric unit consists of one Ir(III) atom on Wyckoff position 4e, one half of the acetyl­acetonate (acac) anion and one 2-tert-but­oxy-6-fluoro-3-(pyridin-2-yl)pyridine-4-yl ligand. The IrIII atom is six-coordinated by the two main C,N-bidentate ligands and one ancillary O,O'-bidentate ligand, forming a distorted o­cta­hedral coordination sphere due to the narrow ligand bite angles, which range from 80.36 (7) to 88.65 (8)°. The C,N-bidentate ligands, which are perpendicular to each other [dihedral angle between the least-squares planes = 89.95 (5)°], are arranged in a cis-C,C' and trans-N,N' fashion. The Ir—C bond length of 1.9760 (19) Å is shorter than the Ir—N bond length of 2.0344 (16) Å due to the electronegative fluorine substituent (Table 1). The Ir—C, Ir—N, and Ir—O bond lengths are in normal ranges as reported for similar IrIII compounds, e.g. [Ir(dfpypy)2(acac); dfpypy is a difuorinated bi­pyridine] (Kang et al., 2013) or Ir(2',6'-bis­(2-meth­oxy­eth­oxy)-2,3'-bipyridinato-N,C')\ (picolinate) (Frey et al., 2014). Within the C,N-bidentate ligand of the title compound, the two pyridine rings are approximately co-planar, with a dihedral angle between the rings of 5.77 (9)°.

Supra­molecular features top

The molecular structure is stabilized by weak intra­molecular C—H···O and C—H···N hydrogen bonds (Table 2). Inter­molecular C—H···F hydrogen bonds and ππ inter­actions [Cg1—Cg1iii = 3.680 (1) Å, Cg1 is the centroid of the N1, C6–C10 ring, symmetry code: (iii) -x, 1 - y, 2 - z] contribute to the stabilization of the crystal structure (Fig. 2).

Synthesis and crystallization top

The title compound was synthesized according to a previous report (Oh et al., 2013). Yellow single crystals were obtained by slow evaporation from a di­chloro­methane/hexane solution.

Refinement top

Crystal data, data collection and crystal structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for Csp2 H atoms, and 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl protons.

Related literature top

For related literature, see: Frey et al. (2014); Kang et al. (2013); Lee et al. (2009); Oh et al. (2013); Park et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
View of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; dashed lines represent intramolecular C—H···O and C—H···N hydrogen bonds [Symmetry code: (i) - x, y, 3/2 - z].

Packing plot of the molecular components in the title compound. Yellow and black dashed lines represent intermolecular C—H···F and ππ stacking interactions, respectively. H atoms not involved in intermolecular interactions have been omitted for clarity.
Bis[2-tert-butoxy-6-fluoro-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O')iridium(III) top
Crystal data top
[Ir(C14H14FN2O)2(C5H7O2)]F(000) = 1552
Mr = 781.85Dx = 1.674 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3721 reflections
a = 16.9404 (12) Åθ = 2.3–28.3°
b = 10.7783 (7) ŵ = 4.36 mm1
c = 17.2561 (11) ÅT = 173 K
β = 100.001 (1)°Block, yellow
V = 3102.9 (4) Å30.16 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3881 independent reflections
Radiation source: fine-focus sealed tube3717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.537, Tmax = 0.687k = 1414
15125 measured reflectionsl = 1523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0163P)2 + 5.6671P]
where P = (Fo2 + 2Fc2)/3
3881 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ir(C14H14FN2O)2(C5H7O2)]V = 3102.9 (4) Å3
Mr = 781.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.9404 (12) ŵ = 4.36 mm1
b = 10.7783 (7) ÅT = 173 K
c = 17.2561 (11) Å0.16 × 0.12 × 0.09 mm
β = 100.001 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3881 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3717 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.687Rint = 0.024
15125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.039H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
3881 reflectionsΔρmin = 0.59 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.00000.424606 (10)0.75000.01166 (4)
F10.22407 (8)0.06652 (13)0.79551 (8)0.0273 (3)
O10.08930 (9)0.14456 (15)0.99685 (8)0.0214 (3)
N10.04307 (9)0.41821 (15)0.85288 (10)0.0135 (3)
N20.15918 (10)0.10711 (16)0.89537 (10)0.0180 (4)
C10.06958 (11)0.29314 (18)0.80481 (11)0.0126 (4)
C20.12693 (11)0.2228 (2)0.77450 (12)0.0169 (4)
H20.13710.23540.72260.020*
C30.16737 (11)0.1357 (2)0.82308 (12)0.0180 (4)
C40.10416 (11)0.17160 (19)0.92486 (12)0.0162 (4)
C50.05807 (10)0.26689 (18)0.88253 (11)0.0127 (4)
C60.00488 (11)0.33982 (18)0.90962 (11)0.0129 (4)
C70.02889 (12)0.33774 (19)0.98317 (11)0.0160 (4)
H70.00150.28611.02370.019*
C80.09224 (12)0.41045 (19)0.99727 (12)0.0190 (4)
H80.10800.40991.04750.023*
C90.13243 (12)0.4840 (2)0.93726 (12)0.0205 (4)
H90.17760.53170.94490.025*
C100.10572 (12)0.4864 (2)0.86643 (12)0.0179 (4)
H100.13250.53820.82560.021*
C110.13969 (13)0.06280 (19)1.05388 (12)0.0189 (4)
C120.14509 (17)0.0675 (2)1.02218 (16)0.0335 (6)
H12A0.09120.10321.00930.050*
H12B0.17810.11891.06210.050*
H12C0.16950.06470.97470.050*
C130.09314 (16)0.0622 (3)1.12145 (15)0.0358 (6)
H13A0.03970.02711.10350.054*
H13B0.08790.14741.13980.054*
H13C0.12170.01181.16470.054*
C140.22125 (14)0.1217 (3)1.07830 (14)0.0307 (5)
H14A0.21480.20571.09790.046*
H14B0.24870.12561.03290.046*
H14C0.25300.07181.11990.046*
O20.08159 (9)0.56660 (14)0.79971 (9)0.0209 (3)
C150.00000.7398 (3)0.75000.0318 (8)
H150.00000.82800.75000.038*
C160.06984 (15)0.6828 (2)0.78927 (13)0.0244 (5)
C170.14050 (18)0.7636 (3)0.82222 (15)0.0390 (6)
H17A0.18460.71140.84820.059*
H17B0.12480.82180.86050.059*
H17C0.15790.81000.77940.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01340 (5)0.01297 (5)0.00844 (5)0.0000.00137 (4)0.000
F10.0230 (6)0.0369 (8)0.0223 (7)0.0164 (6)0.0047 (5)0.0021 (6)
O10.0240 (7)0.0250 (8)0.0158 (7)0.0097 (6)0.0052 (6)0.0096 (6)
N10.0140 (7)0.0146 (8)0.0117 (8)0.0011 (6)0.0017 (6)0.0012 (6)
N20.0173 (8)0.0188 (9)0.0170 (9)0.0019 (7)0.0003 (7)0.0005 (7)
C10.0107 (8)0.0140 (9)0.0120 (9)0.0023 (7)0.0014 (7)0.0026 (7)
C20.0151 (9)0.0228 (10)0.0126 (9)0.0011 (8)0.0019 (7)0.0020 (8)
C30.0133 (9)0.0212 (11)0.0188 (10)0.0029 (8)0.0009 (7)0.0048 (8)
C40.0159 (9)0.0172 (10)0.0146 (10)0.0018 (8)0.0003 (7)0.0007 (8)
C50.0118 (8)0.0147 (9)0.0112 (9)0.0015 (7)0.0007 (7)0.0005 (7)
C60.0138 (8)0.0123 (9)0.0119 (9)0.0018 (7)0.0001 (7)0.0003 (7)
C70.0190 (9)0.0161 (10)0.0128 (10)0.0001 (8)0.0028 (7)0.0020 (8)
C80.0219 (10)0.0219 (11)0.0147 (10)0.0009 (8)0.0072 (8)0.0003 (8)
C90.0199 (10)0.0243 (11)0.0188 (10)0.0061 (9)0.0072 (8)0.0002 (9)
C100.0183 (9)0.0204 (10)0.0151 (10)0.0046 (8)0.0033 (8)0.0023 (8)
C110.0226 (10)0.0180 (10)0.0143 (10)0.0030 (8)0.0018 (8)0.0062 (8)
C120.0483 (15)0.0170 (11)0.0309 (14)0.0015 (11)0.0051 (11)0.0037 (10)
C130.0379 (14)0.0486 (17)0.0223 (12)0.0122 (12)0.0091 (10)0.0177 (11)
C140.0304 (12)0.0350 (13)0.0236 (12)0.0092 (11)0.0041 (10)0.0018 (10)
O20.0287 (8)0.0202 (8)0.0137 (7)0.0078 (6)0.0034 (6)0.0029 (6)
C150.055 (2)0.0143 (15)0.0311 (19)0.0000.0203 (16)0.000
C160.0433 (13)0.0193 (11)0.0147 (10)0.0088 (10)0.0161 (9)0.0042 (8)
C170.0612 (17)0.0295 (14)0.0271 (14)0.0228 (13)0.0095 (12)0.0064 (11)
Geometric parameters (Å, º) top
Ir1—C1i1.9760 (19)C9—C101.375 (3)
Ir1—C11.9760 (19)C9—H90.9500
Ir1—N1i2.0344 (16)C10—H100.9500
Ir1—N12.0344 (16)C11—C141.512 (3)
Ir1—O22.1393 (15)C11—C121.516 (3)
Ir1—O2i2.1393 (14)C11—C131.517 (3)
F1—C31.365 (2)C12—H12A0.9800
O1—C41.342 (2)C12—H12B0.9800
O1—C111.477 (2)C12—H12C0.9800
N1—C101.345 (3)C13—H13A0.9800
N1—C61.368 (2)C13—H13B0.9800
N2—C31.315 (3)C13—H13C0.9800
N2—C41.333 (3)C14—H14A0.9800
C1—C21.403 (3)C14—H14B0.9800
C1—C51.417 (3)C14—H14C0.9800
C2—C31.362 (3)O2—C161.276 (3)
C2—H20.9500C15—C161.400 (3)
C4—C51.414 (3)C15—C16i1.400 (3)
C5—C61.465 (3)C15—H150.9500
C6—C71.399 (3)C16—C171.509 (3)
C7—C81.384 (3)C17—H17A0.9800
C7—H70.9500C17—H17B0.9800
C8—C91.385 (3)C17—H17C0.9800
C8—H80.9500
C1i—Ir1—C188.37 (10)C10—C9—C8118.72 (19)
C1i—Ir1—N1i80.36 (7)C10—C9—H9120.6
C1—Ir1—N1i96.83 (7)C8—C9—H9120.6
C1i—Ir1—N196.83 (7)N1—C10—C9122.37 (19)
C1—Ir1—N180.36 (7)N1—C10—H10118.8
N1i—Ir1—N1176.12 (9)C9—C10—H10118.8
C1i—Ir1—O2174.32 (7)O1—C11—C14109.26 (17)
C1—Ir1—O291.77 (7)O1—C11—C12112.12 (18)
N1i—Ir1—O293.98 (6)C14—C11—C12112.3 (2)
N1—Ir1—O288.80 (6)O1—C11—C13101.36 (17)
C1i—Ir1—O2i91.77 (7)C14—C11—C13111.1 (2)
C1—Ir1—O2i174.32 (7)C12—C11—C13110.2 (2)
N1i—Ir1—O2i88.80 (6)C11—C12—H12A109.5
N1—Ir1—O2i93.98 (6)C11—C12—H12B109.5
O2—Ir1—O2i88.65 (8)H12A—C12—H12B109.5
C4—O1—C11124.52 (16)C11—C12—H12C109.5
C10—N1—C6120.19 (17)H12A—C12—H12C109.5
C10—N1—Ir1123.15 (14)H12B—C12—H12C109.5
C6—N1—Ir1116.67 (12)C11—C13—H13A109.5
C3—N2—C4115.84 (18)C11—C13—H13B109.5
C2—C1—C5117.59 (18)H13A—C13—H13B109.5
C2—C1—Ir1127.09 (15)C11—C13—H13C109.5
C5—C1—Ir1115.31 (13)H13A—C13—H13C109.5
C3—C2—C1116.74 (18)H13B—C13—H13C109.5
C3—C2—H2121.6C11—C14—H14A109.5
C1—C2—H2121.6C11—C14—H14B109.5
N2—C3—C2128.36 (19)H14A—C14—H14B109.5
N2—C3—F1113.52 (18)C11—C14—H14C109.5
C2—C3—F1118.12 (18)H14A—C14—H14C109.5
N2—C4—O1119.76 (18)H14B—C14—H14C109.5
N2—C4—C5122.80 (18)C16—O2—Ir1124.86 (15)
O1—C4—C5117.42 (17)C16—C15—C16i127.9 (3)
C4—C5—C1118.65 (17)C16—C15—H15116.1
C4—C5—C6126.30 (17)C16i—C15—H15116.1
C1—C5—C6114.98 (17)O2—C16—C15126.7 (2)
N1—C6—C7118.92 (17)O2—C16—C17114.8 (2)
N1—C6—C5112.52 (16)C15—C16—C17118.5 (2)
C7—C6—C5128.56 (17)C16—C17—H17A109.5
C8—C7—C6120.46 (18)C16—C17—H17B109.5
C8—C7—H7119.8H17A—C17—H17B109.5
C6—C7—H7119.8C16—C17—H17C109.5
C7—C8—C9119.21 (19)H17A—C17—H17C109.5
C7—C8—H8120.4H17B—C17—H17C109.5
C9—C8—H8120.4
C1i—Ir1—N1—C1089.11 (17)C2—C1—C5—C40.4 (3)
C1—Ir1—N1—C10176.28 (17)Ir1—C1—C5—C4178.33 (14)
O2—Ir1—N1—C1091.72 (16)C2—C1—C5—C6177.59 (17)
O2i—Ir1—N1—C103.15 (16)Ir1—C1—C5—C61.2 (2)
C1i—Ir1—N1—C690.96 (14)C10—N1—C6—C73.9 (3)
C1—Ir1—N1—C63.79 (14)Ir1—N1—C6—C7176.01 (14)
O2—Ir1—N1—C688.21 (14)C10—N1—C6—C5175.95 (17)
O2i—Ir1—N1—C6176.77 (14)Ir1—N1—C6—C54.1 (2)
C1i—Ir1—C1—C278.83 (17)C4—C5—C6—N1175.00 (18)
N1i—Ir1—C1—C21.26 (18)C1—C5—C6—N11.9 (2)
N1—Ir1—C1—C2176.04 (18)C4—C5—C6—C74.9 (3)
O2—Ir1—C1—C295.48 (17)C1—C5—C6—C7178.21 (19)
C1i—Ir1—C1—C599.77 (15)N1—C6—C7—C82.4 (3)
N1i—Ir1—C1—C5179.86 (14)C5—C6—C7—C8177.44 (19)
N1—Ir1—C1—C52.56 (13)C6—C7—C8—C91.0 (3)
O2—Ir1—C1—C585.92 (14)C7—C8—C9—C102.8 (3)
C5—C1—C2—C30.6 (3)C6—N1—C10—C92.1 (3)
Ir1—C1—C2—C3179.21 (15)Ir1—N1—C10—C9177.85 (16)
C4—N2—C3—C20.1 (3)C8—C9—C10—N11.4 (3)
C4—N2—C3—F1179.61 (17)C4—O1—C11—C1465.0 (3)
C1—C2—C3—N20.9 (3)C4—O1—C11—C1260.2 (3)
C1—C2—C3—F1179.45 (17)C4—O1—C11—C13177.8 (2)
C3—N2—C4—O1176.95 (18)C1—Ir1—O2—C16177.15 (16)
C3—N2—C4—C51.3 (3)N1i—Ir1—O2—C1685.88 (16)
C11—O1—C4—N211.9 (3)N1—Ir1—O2—C1696.84 (16)
C11—O1—C4—C5169.79 (18)O2i—Ir1—O2—C162.82 (13)
N2—C4—C5—C11.4 (3)Ir1—O2—C16—C156.0 (3)
O1—C4—C5—C1176.82 (17)Ir1—O2—C16—C17172.81 (14)
N2—C4—C5—C6178.27 (18)C16i—C15—C16—O23.43 (16)
O1—C4—C5—C60.0 (3)C16i—C15—C16—C17175.3 (2)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.952.272.870 (2)120
C10—H10···O2i0.952.483.089 (2)122
C10—H10···F1ii0.952.413.055 (2)125
C12—H12C···N20.982.292.927 (3)122
C14—H14B···N20.982.593.153 (3)116
Symmetry codes: (i) x, y, z+3/2; (ii) x1/2, y+1/2, z.
Selected bond lengths (Å) top
Ir1—C11.9760 (19)Ir1—O22.1393 (15)
Ir1—N12.0344 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.952.272.870 (2)120.3
C10—H10···O2i0.952.483.089 (2)121.7
C10—H10···F1ii0.952.413.055 (2)124.5
C12—H12C···N20.982.292.927 (3)121.7
C14—H14B···N20.982.593.153 (3)116.4
Symmetry codes: (i) x, y, z+3/2; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ir(C14H14FN2O)2(C5H7O2)]
Mr781.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)16.9404 (12), 10.7783 (7), 17.2561 (11)
β (°) 100.001 (1)
V3)3102.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.36
Crystal size (mm)0.16 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.537, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
15125, 3881, 3717
Rint0.024
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.039, 1.01
No. of reflections3881
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.59

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (10039141) funded by MOTIE (Ministry of Trade, Industry & Energy, Korea) and KEIT (Korea Evaluation Institute of Industrial Technology).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrey, J., Curchod, B. F. E., Scopelliti, R., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K. & Baranoff, E. (2014). Dalton Trans. 43, 5667–5679.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C, 1, 441–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, J., Oh, H., Oh, S., Kim, J., Park, H. J., Kim, O. Y., Lee, J. Y. & Kang, Y. (2013). Org. Electron. 14, 3228–3233.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds