organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1183-o1184

Crystal structure of 2,5-di­methyl­anilinium hydrogen maleate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bDepartment of Chemistry and Biochemistry, St Catherine University, 2004 Randolph Avenue, #4282, St Paul, MN 55105, USA
*Correspondence e-mail: wajda_sta@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 October 2014; accepted 17 October 2014; online 24 October 2014)

The crystal structure of the title salt, C8H12N+·C4H3O4, consists of a 2,5-di­methyl­anilinium cation and an hydrogen maleate anion. In the anion, a strong intra­molecular O—H⋯O hydrogen bond is observed, leading to an S(7) graph-set motif. In the crystal, the cations and anions pack in alternating layers parallel to (001). The ammonium group undergoes inter­molecular N—H⋯O hydrogen-bonding inter­actions with the O atoms of three different hydrogen maleate anions. This results in the formation of ribbons extending parallel to [010] with hydrogen-bonding motifs of the types R44(12) and R44(18).

1. Related literature

For active pharmaceutical ingredients (API), see: Kelley et al. (2013[Kelley, S. P., Narita, A., Holbrey, J. D., Green, K. D., Reichert, W. M. & Rogers, R. D. (2013). Cryst. Growth Des. 13, 965-975.]). An example of the modification of API properties through the change of one of the mol­ecular components is the substitution of the saccharinate anion in the anti-HIV active lamivudine saccharinate by maleate (Martins et al., 2009[Martins, F. T., Paparidis, N., Doriguetto, A. C. & Ellena, J. (2009). Cryst. Growth Des. 9, 5283-5292.]). For 2,5-di­methyl­anilinium cations in combination with other anions, see: Smirani & Rzaigui (2009a[Smirani, W. & Rzaigui, M. (2009a). Acta Cryst. E65, o83.],b[Smirani, W. & Rzaigui, M. (2009b). Acta Cryst. E65, o1917.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H12N+·C4H3O4

  • Mr = 237.25

  • Triclinic, [P \overline 1]

  • a = 6.7983 (17) Å

  • b = 8.515 (2) Å

  • c = 11.012 (3) Å

  • α = 108.784 (8)°

  • β = 98.026 (7)°

  • γ = 98.742 (7)°

  • V = 584.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.45 × 0.26 × 0.19 mm

2.2. Data collection

  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.833, Tmax = 0.981

  • 6136 measured reflections

  • 2667 independent reflections

  • 2222 reflections with F2 > 2.0σ(F2)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.06

  • 2667 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 1.02 (3) 1.45 (3) 2.4651 (16) 175 (2)
N1—H1A⋯O3 0.92 (3) 1.94 (3) 2.859 (2) 177.2 (15)
N1—H1C⋯O4i 0.92 (2) 1.86 (2) 2.7602 (18) 168 (2)
N1—H1B⋯O2ii 0.94 (2) 1.88 (2) 2.7920 (17) 161.4 (16)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2011[Rigaku (2011). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Use of salts and co-crystals of active pharmaceutical ingredients (APIs) as a method for tuning their delivery and activity is an area of growing interest. (Kelley et al. (2013)). Modifying API properties such as solubility by finding new salts that employ similar hydrogen-bonding have been successful. A recent example includes increasing the solubility of the anti-HIV drug lamivudine saccharinate by substituting with the anion maleate. (Martins et al. (2009)). In an effort to further study the hydrogen-bonding patterns of the maleate ion with other ammonium salts, we report here the synthesis and crystal structure of 2,5-dimethylanilinium maleate.

The structure consists of a protonated 2,5-dimethylanilinium cation with the hydrogen maleate anion (Fig. 1). H1 of the maleate anion undergoes intramolecular O—H···O hydrogen-bonding with O3 as the acceptor. This is common in many structures of maleic acid as the cis disposition of the alkene places hydrogen bonding donors and acceptors in close proximity. As such, the maleate anion is very flat (mean deviation from a least-squares plane composed of atoms O1–O4, C9–C12, H1 of 0.04 Å). Parallel maleate anions pack in layers in between layers of parallel 2,5-dimethylanilinium cation layers. The cation layers are parallel with the ab plane at c = 0. The anion layers are parallel with the ab plane at c = 1/2 (Fig. 2). The hydrogen atoms of the protonated amine (H1A, H1B, H1C) undergo intermolecular N—H···O hydrogen-bonding interactions with oxygen atoms of three different maleate anions. The two hydrogen-bonding motifs dominating the structure are R44(12) and R44(18). These ring motifs form ribbons of hydrogen bonding that are parallel with the b axis (Fig. 3).

Related literature top

For active pharmaceutical ingredients (API), see: Kelley et al. (2013). An example of the modification of API properties through the change of one of the molecular components is the substitution of the saccharinate anion in the anti-HIV active lamivudine saccharinate by maleate (Martins et al., 2009). For 2,5-dimethylanilinium cations in combination with other anions, see: Smirani & Rzaigui (2009a,b).

Experimental top

A mixture of maleic acid (1M) and 2,5-xylidine dissolved in ethanol (molar ratio 1:1:1) was stirred for 2 h and then kept at room temperature. Colourless crystals of the title compound were obtained one week later.

Refinement top

H atoms were treated in calculated positions and refined as riding with distances of C—H = 0.95 and 0.98 Å for the phenyl and methyl groups, respectively, and with Uiso(H) = 1.2Ueq(C). Hydrogen atoms bonded to N or O atoms were located in a difference Fourier map, and their positions and Uiso(H) values were refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2011); software used to prepare material for publication: CrystalStructure (Rigaku, 2011).

Figures top
View of the molecular components of 2,5-dimethylanilinium hydrogen maleate with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

View of the molecular arrangement of the title compound along [100]. Hydrogen bonds are shown as dashed lines.

Graph-set description of ring-type hydrogen bonding. Hydrogen bonds are shown as dashed lines.
2,5-Dimethylanilinium hydrogen maleate top
Crystal data top
C8H12N+·C4H3O4Z = 2
Mr = 237.25F(000) = 252.00
Triclinic, P1Dx = 1.348 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 6.7983 (17) ÅCell parameters from 5478 reflections
b = 8.515 (2) Åθ = 3.1–27.7°
c = 11.012 (3) ŵ = 0.10 mm1
α = 108.784 (8)°T = 173 K
β = 98.026 (7)°Prism, colorless
γ = 98.742 (7)°0.45 × 0.26 × 0.19 mm
V = 584.3 (3) Å3
Data collection top
Rigaku XtaLAB mini
diffractometer
2222 reflections with F2 > 2.0σ(F2)
Detector resolution: 6.849 pixels mm-1Rint = 0.021
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 88
Tmin = 0.833, Tmax = 0.981k = 1111
6136 measured reflectionsl = 1414
2667 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.1991P]
where P = (Fo2 + 2Fc2)/3
2667 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H12N+·C4H3O4γ = 98.742 (7)°
Mr = 237.25V = 584.3 (3) Å3
Triclinic, P1Z = 2
a = 6.7983 (17) ÅMo Kα radiation
b = 8.515 (2) ŵ = 0.10 mm1
c = 11.012 (3) ÅT = 173 K
α = 108.784 (8)°0.45 × 0.26 × 0.19 mm
β = 98.026 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2667 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2222 reflections with F2 > 2.0σ(F2)
Tmin = 0.833, Tmax = 0.981Rint = 0.021
6136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
2667 reflectionsΔρmin = 0.28 e Å3
172 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28044 (17)1.15154 (14)0.58091 (10)0.0323 (3)
O20.37703 (18)1.31701 (13)0.47170 (11)0.0355 (3)
O30.19359 (18)0.84302 (14)0.53298 (10)0.0329 (3)
O40.11116 (16)0.60871 (13)0.35616 (11)0.0330 (3)
N10.25093 (19)0.58663 (15)0.64194 (11)0.0215 (3)
C10.34834 (19)0.65824 (16)0.78115 (12)0.0196 (3)
C20.2577 (2)0.77054 (16)0.86650 (13)0.0215 (3)
C30.3508 (3)0.83054 (18)0.99864 (13)0.0267 (3)
C40.5245 (3)0.78132 (19)1.04275 (14)0.0295 (4)
C50.6148 (2)0.67116 (18)0.95572 (15)0.0264 (3)
C60.5240 (2)0.60942 (17)0.82285 (14)0.0231 (3)
C70.0705 (3)0.82651 (19)0.81904 (14)0.0279 (3)
C80.8045 (3)0.6188 (3)1.00350 (18)0.0371 (4)
C90.3196 (2)1.17476 (17)0.47453 (14)0.0240 (3)
C100.2959 (3)1.02714 (18)0.35196 (14)0.0261 (3)
C110.2359 (3)0.86040 (17)0.32482 (13)0.0253 (3)
C120.1743 (2)0.76436 (17)0.41028 (14)0.0236 (3)
H10.240 (4)1.025 (4)0.564 (3)0.070 (8)*
H1A0.237 (3)0.671 (3)0.6082 (18)0.033 (5)*
H30.29380.90731.06020.0320*
H40.58260.82351.13370.0354*
H1C0.124 (3)0.523 (3)0.6319 (19)0.041 (5)*
H60.58230.53410.76110.0277*
H7A0.03760.72660.76960.0334*
H7B0.10260.89090.76230.0334*
H7C0.02510.89840.89430.0334*
H8A0.77670.55961.06420.0445*
H8B0.91300.71981.04860.0445*
H8C0.84720.54300.92870.0445*
H1B0.321 (3)0.511 (3)0.5915 (19)0.036 (5)*
H100.32941.05660.28010.0313*
H110.23170.79190.23690.0304*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0469 (7)0.0269 (6)0.0224 (6)0.0110 (5)0.0078 (5)0.0058 (5)
O20.0427 (7)0.0205 (6)0.0417 (7)0.0047 (5)0.0167 (6)0.0062 (5)
O30.0478 (7)0.0312 (6)0.0248 (6)0.0102 (5)0.0101 (5)0.0148 (5)
O40.0339 (6)0.0226 (6)0.0416 (7)0.0012 (5)0.0088 (5)0.0118 (5)
N10.0251 (6)0.0209 (6)0.0179 (6)0.0041 (5)0.0043 (5)0.0064 (5)
C10.0217 (7)0.0179 (6)0.0191 (7)0.0000 (5)0.0043 (5)0.0082 (5)
C20.0233 (7)0.0208 (7)0.0214 (7)0.0037 (5)0.0059 (6)0.0088 (6)
C30.0329 (8)0.0264 (7)0.0195 (7)0.0053 (6)0.0071 (6)0.0060 (6)
C40.0320 (8)0.0317 (8)0.0209 (7)0.0020 (6)0.0014 (6)0.0108 (6)
C50.0214 (7)0.0279 (7)0.0322 (8)0.0001 (6)0.0016 (6)0.0174 (7)
C60.0227 (7)0.0223 (7)0.0268 (7)0.0044 (5)0.0071 (6)0.0111 (6)
C70.0294 (8)0.0313 (8)0.0269 (8)0.0129 (6)0.0088 (6)0.0112 (6)
C80.0251 (8)0.0449 (10)0.0471 (10)0.0044 (7)0.0004 (7)0.0281 (8)
C90.0216 (7)0.0225 (7)0.0263 (7)0.0069 (6)0.0047 (6)0.0056 (6)
C100.0326 (8)0.0250 (7)0.0217 (7)0.0046 (6)0.0071 (6)0.0095 (6)
C110.0308 (8)0.0229 (7)0.0195 (7)0.0034 (6)0.0043 (6)0.0051 (6)
C120.0210 (7)0.0239 (7)0.0276 (8)0.0060 (5)0.0042 (6)0.0110 (6)
Geometric parameters (Å, º) top
O1—C91.305 (2)C4—C51.391 (3)
O1—H11.02 (3)C4—H40.9500
O2—C91.227 (2)C5—C61.397 (2)
O3—C121.2777 (18)C5—C81.509 (3)
O4—C121.2422 (17)C6—H60.9500
N1—C11.4671 (17)C7—H7A0.9800
N1—H1A0.922 (19)C7—H7B0.9800
N1—H1C0.92 (2)C7—H7C0.9800
N1—H1B0.941 (19)C8—H8A0.9800
C1—C21.3926 (19)C8—H8B0.9800
C1—C61.389 (2)C8—H8C0.9800
C2—C31.3946 (19)C9—C101.4876 (19)
C2—C71.510 (3)C10—C111.337 (2)
C3—C41.388 (3)C11—C121.494 (3)
C3—H30.9500
C9—O1—H1109.8 (14)C5—C6—H6120.0
C12—O3—H1111.1 (9)C2—C7—H7A109.5
C1—N1—H1A111.0 (11)C2—C7—H7B109.5
C1—N1—H1C109.7 (12)H7A—C7—H7B109.5
H1A—N1—H1C108.3 (16)C2—C7—H7C109.5
C1—N1—H1B112.6 (11)H7A—C7—H7C109.5
H1A—N1—H1B109.7 (15)H7B—C7—H7C109.5
H1C—N1—H1B105.3 (16)C5—C8—H8A109.5
C6—C1—C2122.76 (12)C5—C8—H8B109.5
C6—C1—N1119.04 (12)H8A—C8—H8B109.5
C2—C1—N1118.19 (12)C5—C8—H8C109.5
C1—C2—C3116.33 (12)H8A—C8—H8C109.5
C1—C2—C7122.09 (12)H8B—C8—H8C109.5
C3—C2—C7121.57 (12)O2—C9—O1121.78 (13)
C4—C3—C2121.87 (13)O2—C9—C10117.86 (13)
C4—C3—H3119.1O1—C9—C10120.36 (12)
C2—C3—H3119.1C11—C10—C9131.55 (13)
C3—C4—C5120.95 (13)C11—C10—H10114.2
C3—C4—H4119.5C9—C10—H10114.2
C5—C4—H4119.5C10—C11—C12130.50 (13)
C4—C5—C6118.13 (13)C10—C11—H11114.8
C4—C5—C8120.96 (14)C12—C11—H11114.8
C6—C5—C8120.91 (14)O4—C12—O3123.77 (13)
C1—C6—C5119.94 (13)O4—C12—C11116.61 (13)
C1—C6—H6120.0O3—C12—C11119.59 (12)
C6—C1—C2—C31.19 (19)C2—C1—C6—C51.2 (2)
N1—C1—C2—C3177.61 (12)N1—C1—C6—C5177.58 (12)
C6—C1—C2—C7178.07 (12)C4—C5—C6—C10.11 (19)
N1—C1—C2—C73.14 (18)C8—C5—C6—C1179.49 (12)
C1—C2—C3—C40.1 (2)O2—C9—C10—C11179.46 (15)
C7—C2—C3—C4179.14 (13)O1—C9—C10—C110.7 (2)
C2—C3—C4—C50.9 (2)C9—C10—C11—C121.0 (3)
C3—C4—C5—C60.9 (2)C10—C11—C12—O4175.04 (15)
C3—C4—C5—C8179.48 (13)C10—C11—C12—O36.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O31.02 (3)1.45 (3)2.4651 (16)175 (2)
N1—H1A···O30.92 (3)1.94 (3)2.859 (2)177.2 (15)
N1—H1C···O4i0.92 (2)1.86 (2)2.7602 (18)168 (2)
N1—H1B···O2ii0.94 (2)1.88 (2)2.7920 (17)161.4 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O31.02 (3)1.45 (3)2.4651 (16)175 (2)
N1—H1A···O30.92 (3)1.94 (3)2.859 (2)177.2 (15)
N1—H1C···O4i0.92 (2)1.86 (2)2.7602 (18)168 (2)
N1—H1B···O2ii0.94 (2)1.88 (2)2.7920 (17)161.4 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

We acknowledge the NSF–MRI grant No. 1125975 `MRI Consortium Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility'.

References

First citationKelley, S. P., Narita, A., Holbrey, J. D., Green, K. D., Reichert, W. M. & Rogers, R. D. (2013). Cryst. Growth Des. 13, 965–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartins, F. T., Paparidis, N., Doriguetto, A. C. & Ellena, J. (2009). Cryst. Growth Des. 9, 5283–5292.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmirani, W. & Rzaigui, M. (2009a). Acta Cryst. E65, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmirani, W. & Rzaigui, M. (2009b). Acta Cryst. E65, o1917.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1183-o1184
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds