metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m382-m383

Crystal structure of di­chlorido­(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)zinc: a redeter­min­ation

aDeparment of Chemistry, Anhui University, Hefei 230039, Peoples Republic of China, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: lsl1968@ahu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 October 2014; accepted 27 October 2014; online 31 October 2014)

The crystal structure of the title compound, [ZnCl2(C15H11N3)], was redetermined based on modern CCD data. In comparison with the previous determination from photographic film data [Corbridge & Cox (1956[Corbridge, D. E. C. & Cox, E. G. (1956). J. Chem. Soc. pp. 594-603.]). J. Chem. Soc. 159, 594–603; Einstein & Penfold (1966[Einstein, F. W. B. & Penfold, B. R. (1966). Acta Cryst. 20, 924-926.]). Acta Cryst. 20, 924–926], all non-H atoms were refined with anisotropic displacement parameters, leading to a much higher precision in terms of bond lengths and angles [e.g. Zn—Cl = 2.2684 (8) and 2.2883 (11) compared to 2.25 (1) and 2.27 (1) Å]. In the title mol­ecule, the ZnII atom is five-coordinated in a distorted square-pyramidal mode by two Cl atoms and by the three N atoms from the 2,2′:6′,2′′-terpyridine ligand. The latter is not planar and shows dihedral angles between the least-squares planes of the central pyridine ring and the terminal rings of 3.18 (8) and 6.36 (9)°. The mol­ecules in the crystal structure pack with ππ inter­actions [centroid–centroid distance = 3.655 (2) Å] between pyridine rings of neighbouring terpyridine moieties. These, together with inter­molecular C—H⋯Cl inter­actions, stablize the three-dimensional structure.

1. Related literature

The title compound is dimorphic, with one polymorph (form I) crystallizing in space group No. 15, and the second polymorph (type II) crystallizing in space group No. 14 (Corbridge & Cox, 1956[Corbridge, D. E. C. & Cox, E. G. (1956). J. Chem. Soc. pp. 594-603.]). The crystal structure of the title compound was originally determined by Corbridge & Cox (1956[Corbridge, D. E. C. & Cox, E. G. (1956). J. Chem. Soc. pp. 594-603.]) from photographic data (final R value = 0.24) and was later re-refined by Einstein & Penfold (1966[Einstein, F. W. B. & Penfold, B. R. (1966). Acta Cryst. 20, 924-926.]) based on the original intensity data but using more advanced least-squares procedures (R = 0.14). In both reports, the setting in P21/a of space group No. 14 was used. For background to terpyridine-based materials, see: Fermi et al. (2014[Fermi, A., Bergamini, G., Roy, M., Gingras, M. & Ceroni, P. (2014). J. Am. Chem. Soc. 136, 6395-6400.]); Song et al. (2014[Song, S. G., Xue, Y. H., Feng, L. F., Elbatal, H., Wang, P. S., Moorefield, C. N., Newkome, G. R. & Dai, L. (2014). Angew. Chem. Int. Ed. 53, 1415-1419.]). For the biocompatibility of zinc compounds, see: Gao et al. (2009[Gao, Y. H., Wu, J. Y., Li, Y. M., Sun, P. P., Zhou, H. P., Yang, J. X., Zhang, S. Y., Jin, B. K. & Tian, Y. P. (2009). J. Am. Chem. Soc. 131, 5208-5213.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [ZnCl2(C15H11N3)]

  • Mr = 369.54

  • Monoclinic, P 21 /c

  • a = 10.950 (5) Å

  • b = 8.250 (5) Å

  • c = 16.216 (5) Å

  • β = 93.911 (5)°

  • V = 1461.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.580, Tmax = 0.686

  • 9990 measured reflections

  • 2564 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.056

  • S = 1.05

  • 2564 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl2i 0.93 2.68 3.518 (2) 151
C13—H13⋯Cl2ii 0.93 2.81 3.686 (2) 158
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Related literature top

The title compound is dimorphic, with one polymorph (form I) crystallizing in space group No. 15, and the second polymorph (type II) crystallizing in space group No. 14 (Corbridge & Cox, 1956). The crystal structure of the title compound was originally determined by Corbridge & Cox (1956) from photographic data (final R value = 0.24) and was later re-refined by Einstein & Penfold (1966) based on the original intensity data but using more advanced least-squares procedures (R = 0.14). In both reports, the setting in P21/a of space group No. 14 was used. For background to terpyridine-based materials, see: Fermi et al. (2014); Song et al., (2014). For the biocompatibility of zinc compounds, see: Gao et al. (2009).

Experimental top

A solution of 2,2':6',2''-terpyridine (0.23 g, 1 mmol) in acetonitrile (20 ml) was mixed with a solution of zinc chloride (0.14 g, 1 mmol) in methanol (5 ml) and refluxed for 4 h. The reaction mixture was the cooled to room temperature and filtered into a large test tube. Colorless crystals were obtained at room temperature after two weeks. Yield: 75%.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The arrangement of the molecules in the crystal structure of (I), showing ππ interactions (dashed red lines) and C—H···Cl hydrogen bonds (dashed green and turquoise lines).

Packing diagram of (I). All H atoms have been omitted for clarity.
Dichlorido(2,2':6',2''-terpyridine-κ3N,N',N'')zinc top
Crystal data top
[ZnCl2(C15H11N3)]F(000) = 744
Mr = 369.54Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 6593 reflections
a = 10.950 (5) Åθ = 2.8–26.9°
b = 8.250 (5) ŵ = 2.04 mm1
c = 16.216 (5) ÅT = 298 K
β = 93.911 (5)°Block, colorless
V = 1461.5 (12) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2564 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1312
Tmin = 0.580, Tmax = 0.686k = 99
9990 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.4083P]
where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[ZnCl2(C15H11N3)]V = 1461.5 (12) Å3
Mr = 369.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.950 (5) ŵ = 2.04 mm1
b = 8.250 (5) ÅT = 298 K
c = 16.216 (5) Å0.30 × 0.20 × 0.20 mm
β = 93.911 (5)°
Data collection top
Bruker SMART CCD
diffractometer
2564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2404 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.686Rint = 0.017
9990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2564 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.217983 (18)0.40487 (2)0.117728 (11)0.03587 (8)
Cl20.33535 (4)0.17571 (5)0.13148 (3)0.04477 (12)
Cl30.13940 (5)0.47642 (7)0.23837 (3)0.06000 (15)
N10.35875 (14)0.59791 (17)0.11822 (9)0.0384 (3)
N20.22895 (12)0.47354 (16)0.00704 (8)0.0324 (3)
N30.05709 (13)0.29671 (17)0.05158 (9)0.0385 (3)
C40.48010 (17)0.7621 (2)0.03495 (12)0.0471 (4)
H40.50070.79440.01730.057*
C50.39054 (15)0.6462 (2)0.04352 (10)0.0353 (4)
C100.15500 (16)0.40050 (19)0.06497 (11)0.0352 (4)
C90.17350 (19)0.4201 (2)0.14845 (11)0.0462 (5)
H90.12280.36900.18880.055*
C120.03366 (17)0.2236 (2)0.08134 (13)0.0463 (4)
H120.03370.22900.13860.056*
C20.5060 (2)0.7802 (2)0.18111 (14)0.0564 (5)
H20.54410.82400.22910.068*
C80.26887 (19)0.5170 (3)0.16981 (11)0.0497 (5)
H80.28320.53040.22530.060*
C150.02974 (17)0.2127 (2)0.08669 (13)0.0459 (4)
H150.02860.20940.14410.055*
C60.32011 (15)0.56916 (19)0.02768 (10)0.0336 (4)
C110.05559 (15)0.3024 (2)0.03164 (11)0.0369 (4)
C10.41594 (19)0.6650 (2)0.18517 (12)0.0485 (5)
H10.39380.63230.23700.058*
C140.12109 (18)0.1307 (2)0.04107 (15)0.0522 (5)
H140.18020.07280.06730.063*
C130.12326 (18)0.1362 (2)0.04368 (15)0.0542 (5)
H130.18410.08190.07560.065*
C30.53854 (19)0.8291 (3)0.10520 (14)0.0560 (5)
H30.59940.90670.10080.067*
C70.34327 (18)0.5944 (2)0.11007 (11)0.0430 (4)
H70.40680.66130.12440.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04271 (14)0.03704 (13)0.02811 (12)0.00301 (8)0.00414 (9)0.00265 (7)
Cl20.0482 (3)0.0413 (2)0.0446 (3)0.00621 (19)0.00184 (19)0.00566 (19)
Cl30.0765 (4)0.0645 (3)0.0410 (3)0.0083 (3)0.0181 (2)0.0013 (2)
N10.0457 (8)0.0353 (8)0.0339 (8)0.0016 (6)0.0007 (6)0.0008 (6)
N20.0369 (7)0.0307 (7)0.0296 (7)0.0045 (6)0.0023 (6)0.0007 (5)
N30.0390 (8)0.0358 (8)0.0410 (8)0.0042 (6)0.0045 (6)0.0028 (6)
C40.0467 (11)0.0434 (10)0.0518 (11)0.0007 (8)0.0073 (9)0.0049 (8)
C50.0361 (9)0.0319 (8)0.0381 (9)0.0066 (7)0.0039 (7)0.0012 (7)
C100.0390 (9)0.0332 (9)0.0330 (9)0.0083 (7)0.0005 (7)0.0021 (7)
C90.0546 (11)0.0507 (11)0.0328 (10)0.0051 (9)0.0013 (8)0.0075 (8)
C120.0454 (10)0.0379 (10)0.0541 (11)0.0058 (8)0.0071 (8)0.0063 (8)
C20.0657 (13)0.0434 (11)0.0571 (13)0.0012 (10)0.0170 (10)0.0062 (10)
C80.0623 (12)0.0595 (12)0.0284 (9)0.0057 (10)0.0120 (8)0.0005 (8)
C150.0426 (10)0.0410 (10)0.0549 (11)0.0047 (8)0.0101 (8)0.0073 (8)
C60.0359 (9)0.0315 (8)0.0335 (9)0.0073 (7)0.0045 (7)0.0014 (7)
C110.0370 (9)0.0304 (8)0.0429 (10)0.0077 (7)0.0015 (7)0.0017 (7)
C10.0646 (12)0.0426 (11)0.0370 (10)0.0025 (9)0.0063 (9)0.0023 (8)
C140.0384 (10)0.0358 (10)0.0831 (16)0.0036 (8)0.0102 (10)0.0056 (10)
C130.0402 (10)0.0361 (10)0.0844 (16)0.0035 (8)0.0091 (10)0.0081 (10)
C30.0493 (11)0.0444 (11)0.0731 (15)0.0086 (9)0.0050 (10)0.0010 (10)
C70.0477 (11)0.0461 (11)0.0365 (10)0.0045 (8)0.0132 (8)0.0037 (8)
Geometric parameters (Å, º) top
Zn1—N22.1123 (14)C9—H90.9300
Zn1—N32.1893 (16)C12—C111.386 (3)
Zn1—N12.2160 (17)C12—C131.392 (3)
Zn1—Cl32.2684 (8)C12—H120.9300
Zn1—Cl22.2883 (11)C2—C31.365 (3)
N1—C11.336 (2)C2—C11.375 (3)
N1—C51.343 (2)C2—H20.9300
N2—C61.333 (2)C8—C71.379 (3)
N2—C101.341 (2)C8—H80.9300
N3—C151.335 (2)C15—C141.380 (3)
N3—C111.349 (2)C15—H150.9300
C4—C51.383 (3)C6—C71.393 (2)
C4—C31.384 (3)C1—H10.9300
C4—H40.9300C14—C131.374 (3)
C5—C61.487 (2)C14—H140.9300
C10—C91.392 (3)C13—H130.9300
C10—C111.487 (2)C3—H30.9300
C9—C81.378 (3)C7—H70.9300
N2—Zn1—N374.72 (6)C11—C12—H12120.7
N2—Zn1—N174.08 (5)C13—C12—H12120.7
N3—Zn1—N1146.20 (6)C3—C2—C1118.67 (19)
N2—Zn1—Cl3143.70 (4)C3—C2—H2120.7
N3—Zn1—Cl3100.88 (5)C1—C2—H2120.7
N1—Zn1—Cl396.58 (5)C7—C8—C9120.90 (17)
N2—Zn1—Cl2104.28 (4)C7—C8—H8119.5
N3—Zn1—Cl297.98 (5)C9—C8—H8119.5
N1—Zn1—Cl2101.98 (6)N3—C15—C14122.48 (19)
Cl3—Zn1—Cl2111.99 (2)N3—C15—H15118.8
C1—N1—C5118.30 (16)C14—C15—H15118.8
C1—N1—Zn1126.03 (13)N2—C6—C7121.20 (16)
C5—N1—Zn1115.64 (11)N2—C6—C5114.56 (14)
C6—N2—C10121.12 (14)C7—C6—C5124.22 (16)
C6—N2—Zn1119.46 (11)N3—C11—C12121.68 (17)
C10—N2—Zn1118.66 (11)N3—C11—C10115.04 (15)
C15—N3—C11118.97 (16)C12—C11—C10123.27 (17)
C15—N3—Zn1125.12 (13)N1—C1—C2123.08 (19)
C11—N3—Zn1115.48 (11)N1—C1—H1118.5
C5—C4—C3119.01 (18)C2—C1—H1118.5
C5—C4—H4120.5C13—C14—C15118.87 (19)
C3—C4—H4120.5C13—C14—H14120.6
N1—C5—C4121.64 (17)C15—C14—H14120.6
N1—C5—C6114.90 (15)C14—C13—C12119.42 (19)
C4—C5—C6123.44 (16)C14—C13—H13120.3
N2—C10—C9120.56 (17)C12—C13—H13120.3
N2—C10—C11114.32 (15)C2—C3—C4119.32 (19)
C9—C10—C11125.12 (16)C2—C3—H3120.3
C8—C9—C10118.35 (18)C4—C3—H3120.3
C8—C9—H9120.8C8—C7—C6117.84 (17)
C10—C9—H9120.8C8—C7—H7121.1
C11—C12—C13118.6 (2)C6—C7—H7121.1
N2—Zn1—N1—C1174.74 (16)N2—C10—C9—C80.5 (3)
N3—Zn1—N1—C1151.48 (14)C11—C10—C9—C8179.05 (16)
Cl3—Zn1—N1—C130.57 (15)C10—C9—C8—C70.8 (3)
Cl2—Zn1—N1—C183.62 (15)C11—N3—C15—C140.2 (3)
N2—Zn1—N1—C57.44 (11)Zn1—N3—C15—C14171.91 (14)
N3—Zn1—N1—C530.69 (17)C10—N2—C6—C71.2 (2)
Cl3—Zn1—N1—C5151.60 (11)Zn1—N2—C6—C7168.70 (12)
Cl2—Zn1—N1—C594.20 (11)C10—N2—C6—C5177.68 (14)
N3—Zn1—N2—C6177.72 (13)Zn1—N2—C6—C512.46 (18)
N1—Zn1—N2—C610.88 (11)N1—C5—C6—N25.3 (2)
Cl3—Zn1—N2—C690.10 (13)C4—C5—C6—N2173.10 (16)
Cl2—Zn1—N2—C687.75 (12)N1—C5—C6—C7175.93 (16)
N3—Zn1—N2—C1012.17 (11)C4—C5—C6—C75.7 (3)
N1—Zn1—N2—C10179.01 (13)C15—N3—C11—C120.0 (2)
Cl3—Zn1—N2—C1099.79 (13)Zn1—N3—C11—C12172.94 (13)
Cl2—Zn1—N2—C1082.36 (12)C15—N3—C11—C10179.28 (14)
N2—Zn1—N3—C15177.15 (15)Zn1—N3—C11—C107.83 (18)
N1—Zn1—N3—C15153.97 (13)C13—C12—C11—N30.2 (3)
Cl3—Zn1—N3—C1534.18 (14)C13—C12—C11—C10179.42 (16)
Cl2—Zn1—N3—C1580.15 (14)N2—C10—C11—N32.3 (2)
N2—Zn1—N3—C1110.46 (11)C9—C10—C11—N3178.21 (16)
N1—Zn1—N3—C1133.64 (17)N2—C10—C11—C12176.96 (15)
Cl3—Zn1—N3—C11153.42 (11)C9—C10—C11—C122.6 (3)
Cl2—Zn1—N3—C1192.24 (11)C5—N1—C1—C20.4 (3)
C1—N1—C5—C40.1 (2)Zn1—N1—C1—C2177.41 (15)
Zn1—N1—C5—C4177.91 (13)C3—C2—C1—N10.2 (3)
C1—N1—C5—C6178.31 (15)N3—C15—C14—C130.3 (3)
Zn1—N1—C5—C63.69 (18)C15—C14—C13—C120.1 (3)
C3—C4—C5—N10.3 (3)C11—C12—C13—C140.2 (3)
C3—C4—C5—C6178.53 (17)C1—C2—C3—C40.1 (3)
C6—N2—C10—C91.4 (2)C5—C4—C3—C20.4 (3)
Zn1—N2—C10—C9168.50 (13)C9—C8—C7—C61.1 (3)
C6—N2—C10—C11178.11 (14)N2—C6—C7—C80.1 (3)
Zn1—N2—C10—C1111.94 (18)C5—C6—C7—C8178.83 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2i0.932.683.518 (2)151
C13—H13···Cl2ii0.932.813.686 (2)158
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2i0.932.683.518 (2)150.7
C13—H13···Cl2ii0.932.813.686 (2)158.2
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51372003), Anhui Provincial Natural Science Foundation (1308085MB24) and the Educational Commission of Anhui Province of China (KJ2012A025).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorbridge, D. E. C. & Cox, E. G. (1956). J. Chem. Soc. pp. 594–603.  CrossRef Web of Science Google Scholar
First citationEinstein, F. W. B. & Penfold, B. R. (1966). Acta Cryst. 20, 924–926.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFermi, A., Bergamini, G., Roy, M., Gingras, M. & Ceroni, P. (2014). J. Am. Chem. Soc. 136, 6395–6400.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGao, Y. H., Wu, J. Y., Li, Y. M., Sun, P. P., Zhou, H. P., Yang, J. X., Zhang, S. Y., Jin, B. K. & Tian, Y. P. (2009). J. Am. Chem. Soc. 131, 5208–5213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S. G., Xue, Y. H., Feng, L. F., Elbatal, H., Wang, P. S., Moorefield, C. N., Newkome, G. R. & Dai, L. (2014). Angew. Chem. Int. Ed. 53, 1415–1419.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m382-m383
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds