organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1147-o1148

Crystal structure of meso-tetra­kis­(4-nitro­phen­yl)porphyrin nitro­benzene disolvate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, bFaculty of Chemistry, University of Wroclaw, 14, F. Joliot–Curie Str., 50383, Wroclaw, Poland, and cO.O. Bohomolets National Medical University, Department of General Chemistry, Shevchenko blvd 13, 01004 Kiev, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 September 2014; accepted 29 September 2014; online 4 October 2014)

The porphyrin core of the title centrosymmetric compound, C44H26N8O8·2C6H5NO2, is approximately planar, the maximum deviation being 0.069 (3) Å. The planes of the benzene rings of the nitro­phenyl substituents are almost perpendicular to the porphyrin mean plane, making dihedral angles of 73.89 (9) and 89.24 (9)°. The two pyrrole ring H atoms are equally disordered over the four pyrrole ring N atoms. In the crystal, weak C—H⋯O and C—H⋯N hydrogen bonds link the porphyrin mol­ecules into a three-dimensional supra­molecular network. The nitro­benzene solvent mol­ecules are linked by weak C—H⋯O hydrogen bonds into supra­molecular chains propagating along the a-axis direction.

1. Related literature

Porphyrins and metalloporphyrins are of inter­est as building blocks for mol­ecular cages (Meng et al., 2011[Meng, W., Breiner, B., Rissanen, K., Thoburn, J. D., Clegg, J. K. & Nitschke, J. R. (2011). Angew. Chem. Int. Ed. 50, 3479-3483.]), catalysts (Odo et al., 2009[Odo, J., Sumihiro, M., Okadome, T., Inoguchi, M., Akashi, H. & Nakagoe, K. (2009). Chem. Pharm. Bull. 57, 1400-1404.]) and photofunctional materials (Yan et al., 2009[Yan, B., Li, Y.-Y. & Qiao, X.-F. (2009). Microporous Mesoporous Mater, 158, 129-136.]). For related structures, see: Silvers & Tulinsky (1967[Silvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331-3337.]). For related polymeric complexes, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]); Moroz et al. (2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]); Zha et al. (2013[Zha, Q., Ding, C., Rui, X. & Xie, Y. (2013). Cryst. Growth Des. 13, 4583-4590.]). For the synthesis of meso-tetra­kis­(4-nitro­phen­yl)porphyrin, see: Bettelheim et al. (1987[Bettelheim, A., White, B. A., Raybuck, S. A. & Murray, R. W. (1987). Inorg. Chem. 26, 1009-1017.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C44H26N8O8·2C6H5NO2

  • Mr = 1040.95

  • Triclinic, [P \overline 1]

  • a = 7.949 (4) Å

  • b = 10.134 (5) Å

  • c = 16.444 (8) Å

  • α = 105.43 (5)°

  • β = 95.37 (4)°

  • γ = 102.17 (4)°

  • V = 1232.4 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.13 × 0.09 × 0.03 mm

2.2. Data collection

  • Agilent Xcalibur κ-axis diffractometer with a Ruby CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.981, Tmax = 1.000

  • 10625 measured reflections

  • 5284 independent reflections

  • 3437 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.275

  • S = 1.10

  • 5284 reflections

  • 322 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.60 3.519 (4) 171
C11—H11⋯N1ii 0.93 2.57 3.426 (4) 152
C15—H15⋯O3iii 0.93 2.56 3.453 (5) 161
C18—H18⋯O1iv 0.93 2.58 3.455 (5) 157
C26—H26⋯O5v 0.93 2.56 3.432 (10) 156
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y, -z-1; (iv) x-1, y-1, z; (v) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Experimental top

Synthesis and crystallization top

The meso-tetra­kis[4-nitro­phenyl]-porphyrin, synthesized according to Bettelheim et al. (1987), was crystallized from boiling nitro­benzene as lustrous violet crystals.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2 Ueq(N,C). Each amino H atom is equally disordered over two positions.

Results and discussion top

Porphyrins and metalloporphyrins attract attention of the researchers in many aspects, such as building blocks for molecular cages (Meng et al., 2011), catalysts (Odo et al., 2009) or photofunctional materials (Yan et al., 2009). Having continuing inter­est in study of polynuclear complexes (see, for example, Seredyuk et al., 2007, Moroz et al. 2012), in this paper we report the structure of meso-tetra­kis(4-nitro­phenyl)­porphyrin, a precursor for polytopic bridging ligands (for example, Zha et al., 2013).

The 24-membered porphyrin moiety of the title compound is planar with a maximum deviation of C2 atom equal to ±0.130 (3) Å. The angle between adjacent pyrrole ring planes (C1–C4/N1 and C5–C13/N3) is 7.190 (11), and bond lengths and angles are close to those found for tetra­phenyl­porphyrin (Silvers & Tulinsky, 1967). This suggests that the nitro­phenyl substituents and/or packing effects influence the geometry of the porphyne ring.

The molecule of porphyrin contains two structurally different pairs of pyrrole rings. Despite two hydrogen atoms are disordered over four pyrrole rings, the two structurally non-equivalent pyrrole rings have somewhat different angles C—N—C equal to 107.20 (20)° and 108.30 (20)°.

The 4-nitro­phenyl groups are rotated at angles of 73.89 (9)° and 89.24 (9)° with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle.

The unit-cell packing along the a axis is shown in Fig. 2. There are no significant π-π inter­actions between the porphyrins. The 4-nitro­benzene groups around the porphyrin core apparently hinder inter­actions between the porphyrins. The channels formed due to loose packing of porphyrins are occupied by nitro­benzene molecules.

Related literature top

Porphyrins and metalloporphyrins are of interest as building blocks for molecular cages (Meng et al., 2011), catalysts (Odo et al., 2009) and photofunctional materials (Yan et al., 2009). For related structures, see: Silvers & Tulinsky (1967). For related polymeric complexes, see: Seredyuk et al. (2007); Moroz et al. (2012); Zha et al. (2013). For the synthesis of meso-tetrakis(4-nitrophenyl)porphyrin, see: Bettelheim et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Molecular structure of the title compound with the atom-labeling scheme and 25% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Projection of the crystal packing along a axis.
meso-Tetrakis(4-nitrophenyl)porphyrin nitrobenzene disolvate top
Crystal data top
C44H26N8O8·2C6H5NO2Z = 1
Mr = 1040.95F(000) = 538
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.949 (4) ÅCell parameters from 3566 reflections
b = 10.134 (5) Åθ = 2.8–28.7°
c = 16.444 (8) ŵ = 0.10 mm1
α = 105.43 (5)°T = 293 K
β = 95.37 (4)°Plate, violet
γ = 102.17 (4)°0.13 × 0.09 × 0.03 mm
V = 1232.4 (11) Å3
Data collection top
Agilent Xcalibur κ-axis
diffractometer with a Ruby CCD detector
5284 independent reflections
Radiation source: fine-focus sealed tube3437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1010
Tmin = 0.981, Tmax = 1.000k = 1212
10625 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.275H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1381P)2 + 0.6248P]
where P = (Fo2 + 2Fc2)/3
5284 reflections(Δ/σ)max = 0.002
322 parametersΔρmax = 0.60 e Å3
9 restraintsΔρmin = 0.49 e Å3
Crystal data top
C44H26N8O8·2C6H5NO2γ = 102.17 (4)°
Mr = 1040.95V = 1232.4 (11) Å3
Triclinic, P1Z = 1
a = 7.949 (4) ÅMo Kα radiation
b = 10.134 (5) ŵ = 0.10 mm1
c = 16.444 (8) ÅT = 293 K
α = 105.43 (5)°0.13 × 0.09 × 0.03 mm
β = 95.37 (4)°
Data collection top
Agilent Xcalibur κ-axis
diffractometer with a Ruby CCD detector
5284 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3437 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 1.000Rint = 0.018
10625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0869 restraints
wR(F2) = 0.275H-atom parameters constrained
S = 1.10Δρmax = 0.60 e Å3
5284 reflectionsΔρmin = 0.49 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.0682 (3)1.0348 (3)0.1297 (2)0.0828 (9)
O21.1718 (4)0.8612 (4)0.1166 (3)0.1000 (11)
N10.2102 (3)0.6614 (2)0.06866 (14)0.0365 (5)
H1N0.11780.60230.03770.044*0.50
N21.0538 (4)0.9210 (4)0.11673 (19)0.0624 (8)
C10.2304 (4)0.7297 (3)0.15411 (17)0.0389 (6)
C20.4064 (4)0.8181 (3)0.18213 (19)0.0470 (7)
H20.45450.87420.23750.056*
C30.4871 (4)0.8038 (3)0.11299 (18)0.0447 (7)
H30.60080.84950.11160.054*
C40.3650 (3)0.7047 (3)0.04161 (17)0.0365 (6)
C50.0641 (4)0.3740 (3)0.18184 (17)0.0419 (7)
C60.5738 (3)0.7244 (3)0.06002 (17)0.0374 (6)
C70.6008 (4)0.8585 (3)0.0698 (2)0.0485 (7)
H70.51210.90570.06390.058*
C80.7578 (4)0.9233 (3)0.0882 (2)0.0515 (8)
H80.77541.01340.09460.062*
C90.8864 (4)0.8526 (3)0.09695 (19)0.0464 (7)
C100.8646 (5)0.7199 (4)0.0880 (3)0.0639 (10)
H100.95400.67360.09390.077*
C110.7068 (5)0.6564 (4)0.0701 (3)0.0628 (10)
H110.68980.56560.06480.075*
O30.2626 (6)0.1809 (4)0.5712 (2)0.1246 (15)
O40.3322 (7)0.0114 (5)0.6082 (2)0.1343 (16)
N30.1296 (3)0.4707 (2)0.10375 (14)0.0398 (6)
H3N0.07700.48320.05990.048*0.50
N4A0.2790 (5)0.0618 (4)0.5550 (2)0.0833 (11)
C120.4023 (4)0.6543 (3)0.04098 (17)0.0373 (6)
C130.2928 (4)0.5441 (3)0.10724 (17)0.0397 (6)
C140.3327 (4)0.4883 (3)0.1909 (2)0.0517 (8)
H140.43600.51830.21040.062*
C150.1940 (4)0.3851 (3)0.2362 (2)0.0535 (8)
H150.18430.33060.29250.064*
C160.1031 (4)0.2835 (3)0.20674 (17)0.0398 (6)
C170.1495 (4)0.1928 (3)0.29832 (18)0.0439 (7)
C180.1154 (6)0.0617 (4)0.3218 (2)0.0667 (10)
H180.06240.02910.28080.080*
C190.1593 (6)0.0226 (4)0.4062 (2)0.0733 (11)
H190.13830.11220.42180.088*
C200.2330 (5)0.0277 (4)0.4652 (2)0.0590 (9)
C210.2655 (6)0.1580 (5)0.4446 (2)0.0796 (12)
H210.31360.19170.48630.095*
C220.2252 (6)0.2392 (4)0.3599 (2)0.0731 (11)
H220.25020.32730.34450.088*
O50.9853 (9)0.2373 (9)0.3161 (7)0.233 (4)
O61.0580 (9)0.4623 (10)0.3993 (6)0.233 (4)
N50.9530 (10)0.3478 (10)0.3562 (6)0.160 (3)
C230.7681 (10)0.3458 (8)0.3540 (4)0.1216 (9)
C240.7255 (9)0.4653 (7)0.4008 (4)0.1216 (9)
H240.81100.54380.43410.146*
C250.5530 (9)0.4635 (8)0.3964 (4)0.1216 (9)
H250.51920.54240.42670.146*
C260.4316 (9)0.3488 (7)0.3485 (4)0.1216 (9)
H260.31420.34870.34680.146*
C270.4768 (9)0.2347 (8)0.3033 (4)0.1216 (9)
H270.38970.15690.27050.146*
C280.6424 (9)0.2289 (8)0.3038 (4)0.1216 (9)
H280.67240.14930.27160.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0524 (16)0.099 (2)0.104 (2)0.0040 (15)0.0200 (15)0.0572 (19)
O20.0414 (15)0.127 (3)0.145 (3)0.0250 (17)0.0367 (17)0.050 (2)
N10.0361 (12)0.0349 (11)0.0321 (11)0.0014 (9)0.0077 (9)0.0039 (9)
N20.0354 (15)0.089 (2)0.0634 (19)0.0058 (15)0.0115 (13)0.0285 (17)
C10.0405 (15)0.0338 (13)0.0354 (14)0.0018 (11)0.0061 (11)0.0042 (11)
C20.0429 (17)0.0450 (16)0.0393 (16)0.0023 (13)0.0003 (12)0.0017 (12)
C30.0404 (16)0.0429 (15)0.0416 (16)0.0006 (12)0.0056 (12)0.0057 (12)
C40.0353 (14)0.0331 (13)0.0382 (14)0.0038 (11)0.0064 (11)0.0093 (11)
C50.0469 (17)0.0419 (15)0.0324 (14)0.0054 (13)0.0103 (12)0.0061 (11)
C60.0349 (14)0.0410 (14)0.0348 (14)0.0072 (11)0.0076 (11)0.0093 (11)
C70.0362 (16)0.0450 (16)0.068 (2)0.0103 (13)0.0155 (14)0.0203 (15)
C80.0422 (17)0.0471 (17)0.071 (2)0.0068 (14)0.0139 (15)0.0280 (16)
C90.0315 (15)0.0611 (19)0.0457 (17)0.0052 (14)0.0086 (12)0.0180 (14)
C100.0454 (19)0.070 (2)0.091 (3)0.0261 (17)0.0242 (18)0.035 (2)
C110.053 (2)0.0543 (19)0.097 (3)0.0200 (16)0.0247 (19)0.0391 (19)
O30.189 (4)0.089 (2)0.065 (2)0.023 (3)0.023 (2)0.0227 (18)
O40.194 (5)0.139 (3)0.0400 (17)0.018 (3)0.016 (2)0.0073 (19)
N30.0421 (13)0.0399 (12)0.0305 (12)0.0017 (10)0.0091 (9)0.0044 (9)
N4A0.089 (3)0.088 (3)0.0426 (19)0.008 (2)0.0128 (17)0.0086 (18)
C120.0371 (15)0.0358 (13)0.0384 (14)0.0052 (11)0.0097 (11)0.0117 (11)
C130.0418 (16)0.0400 (14)0.0354 (14)0.0037 (12)0.0112 (11)0.0110 (12)
C140.0487 (18)0.0564 (18)0.0428 (17)0.0009 (15)0.0197 (14)0.0077 (14)
C150.059 (2)0.0539 (18)0.0362 (15)0.0014 (15)0.0201 (14)0.0002 (13)
C160.0465 (16)0.0376 (14)0.0298 (13)0.0058 (12)0.0077 (11)0.0035 (11)
C170.0445 (16)0.0445 (15)0.0337 (14)0.0004 (13)0.0088 (12)0.0040 (12)
C180.102 (3)0.054 (2)0.0382 (17)0.025 (2)0.0027 (18)0.0029 (15)
C190.102 (3)0.056 (2)0.050 (2)0.019 (2)0.013 (2)0.0049 (17)
C200.061 (2)0.064 (2)0.0318 (16)0.0046 (17)0.0078 (14)0.0035 (14)
C210.107 (3)0.080 (3)0.042 (2)0.020 (2)0.007 (2)0.0106 (18)
C220.106 (3)0.064 (2)0.0422 (19)0.030 (2)0.0006 (19)0.0017 (16)
O50.164 (6)0.203 (7)0.357 (12)0.088 (6)0.022 (6)0.098 (8)
O60.134 (5)0.259 (9)0.256 (8)0.048 (6)0.039 (5)0.089 (7)
N50.129 (6)0.158 (6)0.217 (8)0.055 (5)0.040 (5)0.078 (6)
C230.128 (2)0.138 (2)0.106 (2)0.0241 (19)0.0334 (17)0.0501 (17)
C240.128 (2)0.138 (2)0.106 (2)0.0241 (19)0.0334 (17)0.0501 (17)
C250.128 (2)0.138 (2)0.106 (2)0.0241 (19)0.0334 (17)0.0501 (17)
C260.128 (2)0.138 (2)0.106 (2)0.0241 (19)0.0334 (17)0.0501 (17)
C270.128 (2)0.138 (2)0.106 (2)0.0241 (19)0.0334 (17)0.0501 (17)
C280.128 (2)0.138 (2)0.106 (2)0.0241 (19)0.0334 (17)0.0501 (17)
Geometric parameters (Å, º) top
O1—N21.212 (4)C12—C131.399 (4)
O2—N21.220 (4)C13—C141.435 (4)
N1—C11.369 (3)C14—C151.345 (5)
N1—C41.372 (3)C14—H140.9300
N1—H1N0.8600C15—H150.9300
N2—C91.472 (4)C16—C1i1.399 (4)
C1—C16i1.399 (4)C16—C171.505 (4)
C1—C21.451 (4)C17—C221.366 (5)
C2—C31.347 (4)C17—C181.374 (5)
C2—H20.9300C18—C191.390 (5)
C3—C41.441 (4)C18—H180.9300
C3—H30.9300C19—C201.353 (6)
C4—C121.401 (4)C19—H190.9300
C5—N31.367 (4)C20—C211.359 (6)
C5—C161.400 (4)C21—C221.384 (5)
C5—C151.433 (4)C21—H210.9300
C6—C111.379 (4)C22—H220.9300
C6—C71.386 (4)O5—N51.230 (9)
C6—C121.500 (4)O6—N51.260 (9)
C7—C81.382 (4)N5—C231.462 (10)
C7—H70.9300C23—C241.378 (8)
C8—C91.363 (4)C23—C281.382 (8)
C8—H80.9300C24—C251.363 (8)
C9—C101.368 (5)C24—H240.9300
C10—C111.379 (5)C25—C261.342 (8)
C10—H100.9300C25—H250.9300
C11—H110.9300C26—C271.337 (8)
O3—N4A1.203 (5)C26—H260.9300
O4—N4A1.210 (5)C27—C281.329 (8)
N3—C131.367 (4)C27—H270.9300
N3—H3N0.8600C28—H280.9300
N4A—C201.477 (4)
C1—N1—C4107.2 (2)C12—C13—C14125.8 (3)
C1—N1—H1N126.4C15—C14—C13107.8 (3)
C4—N1—H1N126.4C15—C14—H14126.1
O1—N2—O2123.8 (3)C13—C14—H14126.1
O1—N2—C9118.5 (3)C14—C15—C5107.6 (3)
O2—N2—C9117.7 (3)C14—C15—H15126.2
N1—C1—C16i126.0 (3)C5—C15—H15126.2
N1—C1—C2109.0 (2)C1i—C16—C5125.8 (3)
C16i—C1—C2125.0 (3)C1i—C16—C17117.4 (3)
C3—C2—C1107.1 (3)C5—C16—C17116.9 (2)
C3—C2—H2126.4C22—C17—C18118.6 (3)
C1—C2—H2126.4C22—C17—C16120.9 (3)
C2—C3—C4107.4 (3)C18—C17—C16120.5 (3)
C2—C3—H3126.3C17—C18—C19120.6 (3)
C4—C3—H3126.3C17—C18—H18119.7
N1—C4—C12125.5 (2)C19—C18—H18119.7
N1—C4—C3109.2 (2)C20—C19—C18118.9 (3)
C12—C4—C3125.2 (3)C20—C19—H19120.6
N3—C5—C16126.6 (3)C18—C19—H19120.6
N3—C5—C15108.2 (3)C19—C20—C21122.1 (3)
C16—C5—C15125.2 (3)C19—C20—N4A118.8 (4)
C11—C6—C7118.3 (3)C21—C20—N4A119.1 (4)
C11—C6—C12121.2 (3)C20—C21—C22118.3 (4)
C7—C6—C12120.5 (2)C20—C21—H21120.9
C8—C7—C6120.9 (3)C22—C21—H21120.9
C8—C7—H7119.5C17—C22—C21121.5 (4)
C6—C7—H7119.5C17—C22—H22119.2
C9—C8—C7118.9 (3)C21—C22—H22119.2
C9—C8—H8120.6O5—N5—O6128.7 (9)
C7—C8—H8120.6O5—N5—C23115.7 (9)
C8—C9—C10122.0 (3)O6—N5—C23115.6 (8)
C8—C9—N2119.1 (3)C24—C23—C28121.9 (7)
C10—C9—N2118.9 (3)C24—C23—N5117.8 (7)
C9—C10—C11118.5 (3)C28—C23—N5120.3 (7)
C9—C10—H10120.8C25—C24—C23117.2 (7)
C11—C10—H10120.8C25—C24—H24121.4
C6—C11—C10121.5 (3)C23—C24—H24121.4
C6—C11—H11119.3C26—C25—C24120.6 (7)
C10—C11—H11119.3C26—C25—H25119.7
C13—N3—C5108.3 (2)C24—C25—H25119.7
C13—N3—H3N125.8C27—C26—C25120.9 (7)
C5—N3—H3N125.8C27—C26—H26119.5
O3—N4A—O4123.5 (4)C25—C26—H26119.5
O3—N4A—C20118.4 (4)C28—C27—C26122.0 (8)
O4—N4A—C20118.2 (4)C28—C27—H27119.0
C13—C12—C4125.4 (3)C26—C27—H27119.0
C13—C12—C6117.2 (2)C27—C28—C23117.4 (7)
C4—C12—C6117.3 (2)C27—C28—H28121.3
N3—C13—C12126.2 (2)C23—C28—H28121.3
N3—C13—C14108.1 (2)
C4—N1—C1—C16i179.5 (3)N3—C13—C14—C150.8 (4)
C4—N1—C1—C20.9 (3)C12—C13—C14—C15179.2 (3)
N1—C1—C2—C31.3 (3)C13—C14—C15—C50.1 (4)
C16i—C1—C2—C3179.1 (3)N3—C5—C15—C141.0 (4)
C1—C2—C3—C41.2 (3)C16—C5—C15—C14176.5 (3)
C1—N1—C4—C12176.6 (3)N3—C5—C16—C1i3.9 (5)
C1—N1—C4—C30.2 (3)C15—C5—C16—C1i179.1 (3)
C2—C3—C4—N10.7 (3)N3—C5—C16—C17176.0 (3)
C2—C3—C4—C12175.8 (3)C15—C5—C16—C171.0 (5)
C11—C6—C7—C80.8 (5)C1i—C16—C17—C2289.5 (4)
C12—C6—C7—C8179.3 (3)C5—C16—C17—C2290.4 (4)
C6—C7—C8—C90.2 (5)C1i—C16—C17—C1890.9 (4)
C7—C8—C9—C100.0 (5)C5—C16—C17—C1889.2 (4)
C7—C8—C9—N2179.9 (3)C22—C17—C18—C190.9 (6)
O1—N2—C9—C84.4 (5)C16—C17—C18—C19179.5 (3)
O2—N2—C9—C8173.5 (3)C17—C18—C19—C201.3 (6)
O1—N2—C9—C10175.5 (3)C18—C19—C20—C210.0 (6)
O2—N2—C9—C106.6 (5)C18—C19—C20—N4A179.8 (4)
C8—C9—C10—C110.4 (6)O3—N4A—C20—C196.1 (6)
N2—C9—C10—C11179.5 (3)O4—N4A—C20—C19174.3 (4)
C7—C6—C11—C101.2 (5)O3—N4A—C20—C21174.1 (4)
C12—C6—C11—C10179.7 (3)O4—N4A—C20—C215.5 (6)
C9—C10—C11—C61.0 (6)C19—C20—C21—C221.6 (7)
C16—C5—N3—C13176.0 (3)N4A—C20—C21—C22178.6 (4)
C15—C5—N3—C131.4 (3)C18—C17—C22—C210.8 (6)
N1—C4—C12—C135.3 (5)C16—C17—C22—C21178.8 (4)
C3—C4—C12—C13170.6 (3)C20—C21—C22—C172.1 (7)
N1—C4—C12—C6174.7 (2)O5—N5—C23—C24177.4 (8)
C3—C4—C12—C69.5 (4)O6—N5—C23—C242.3 (10)
C11—C6—C12—C1371.9 (4)O5—N5—C23—C284.8 (11)
C7—C6—C12—C13106.6 (3)O6—N5—C23—C28175.5 (7)
C11—C6—C12—C4108.1 (3)C28—C23—C24—C250.6 (8)
C7—C6—C12—C473.4 (4)N5—C23—C24—C25178.3 (6)
C5—N3—C13—C12178.6 (3)C23—C24—C25—C260.5 (8)
C5—N3—C13—C141.4 (3)C24—C25—C26—C270.9 (9)
C4—C12—C13—N32.5 (5)C25—C26—C27—C280.3 (10)
C6—C12—C13—N3177.5 (2)C26—C27—C28—C230.7 (10)
C4—C12—C13—C14177.5 (3)C24—C23—C28—C271.1 (9)
C6—C12—C13—C142.5 (4)N5—C23—C28—C27178.8 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.603.519 (4)171
C11—H11···N1iii0.932.573.426 (4)152
C15—H15···O3iv0.932.563.453 (5)161
C18—H18···O1v0.932.583.455 (5)157
C26—H26···O5vi0.932.563.432 (10)156
Symmetry codes: (ii) x+2, y+2, z; (iii) x+1, y+1, z; (iv) x, y, z1; (v) x1, y1, z; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.603.519 (4)170.6
C11—H11···N1ii0.932.573.426 (4)152.4
C15—H15···O3iii0.932.563.453 (5)160.6
C18—H18···O1iv0.932.583.455 (5)156.6
C26—H26···O5v0.932.563.432 (10)155.6
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x1, y1, z; (v) x1, y, z.
 

Acknowledgements

MS thanks the EU for a Marie Curie fellowship (IIF-253254).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBettelheim, A., White, B. A., Raybuck, S. A. & Murray, R. W. (1987). Inorg. Chem. 26, 1009–1017.  CrossRef CAS Web of Science Google Scholar
First citationMeng, W., Breiner, B., Rissanen, K., Thoburn, J. D., Clegg, J. K. & Nitschke, J. R. (2011). Angew. Chem. Int. Ed. 50, 3479–3483.  Web of Science CrossRef CAS Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOdo, J., Sumihiro, M., Okadome, T., Inoguchi, M., Akashi, H. & Nakagoe, K. (2009). Chem. Pharm. Bull. 57, 1400–1404.  CrossRef PubMed CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331–3337.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationYan, B., Li, Y.-Y. & Qiao, X.-F. (2009). Microporous Mesoporous Mater, 158, 129–136.  Web of Science CrossRef Google Scholar
First citationZha, Q., Ding, C., Rui, X. & Xie, Y. (2013). Cryst. Growth Des. 13, 4583–4590.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1147-o1148
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds