research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl 3,3′-[(3-nitro­phen­yl)methyl­ene]bis­­(1H-indole-2-carboxyl­ate) ethanol monosolvate

aChemical Engineering Department, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 September 2014; accepted 9 October 2014; online 24 October 2014)

In the title compound, C27H21N3O6·C2H5OH, the indole ring systems are approximately perpendicular to each other, with a dihedral angle of 89.3 (5)°; the plane of the benzene ring is oriented with respect to the indole ring systems at 49.9 (5) and 73.4 (3)°. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯π inter­actions into a three-dimensional supra­molecular architecture. A void of 33.0 (7) Å3 is observed in the crystal structure. The solvent ethanol molecule acts as a donor, forming an O—H⋯O hydrogen bond, reinforcing the framework structure.

1. Chemical context

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977[Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]). Among them, bis-indolymethane derivatives are found to be potentially bioactive compounds (Chang et al., 1999[Chang, Y.-C., Riby, J., Grace, H. F., Peng, G.-F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]; Ge et al., 1999[Ge, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199-3203.]). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied. The title compound is one of the bis-indolymethane derivatives as a precursor for MRI contrast agents (Ni, 2008[Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.]). We report herein the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 89.3 (5)°] while the benzene ring (C1–C6) is twisted to the N1/C8–C15 and N2/C18–C25 indole ring systems with dihedral angles of 49.9 (5) and 73.4 (3)°, respectively. The carboxyl groups are approximately coplanar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean plane of attached indole ring system are 10.0 (3) and 4.0 (4)°. The nitro group is also nearly coplanar with the attached benzene ring, the dihedral angle being 7.7 (7)°. A void of 33.0 (7) Å3 is observed in the crystal structure. The solvent ethanol molecule acts as a donor, forming an O—H⋯O hydrogen bond, reinforcing the framework structure.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule. showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the hydrogen bond between the main molecule and the ethanol solvent molecule.

3. Supra­molecular features

In the crystal, the organic mol­ecules and ethanol solvent mol­ecules are linked by classic N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯π inter­actions involved the benzene rings, forming the three-dimensional supra­molecular architecture (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg4 and Cg5 are the centroids of the C1-ring, C10-ring and C20-ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O7i 0.86 2.17 2.924 (3) 146
N3—H3A⋯O4ii 0.86 2.02 2.861 (4) 166
O7—H7B⋯O5 0.82 2.13 2.892 (4) 154
C10—H10ACg3 0.93 2.87 3.633 (4) 140
C11—H11ACg5iii 0.93 2.76 3.634 (4) 156
C17—H17BCg4i 0.96 2.89 3.813 (5) 163
C27—H27BCg5ii 0.96 2.75 3.496 (4) 135
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z.

4. Database survey

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]) and dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.]). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles are 82.0 (5) and 84.5 (5)°, respectively.

5. Synthesis and crystallization

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 3-nitro­benzaldehyde (7.6 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction can be followed by thin-layer chromatography (CHCl3–hexane = 1:1 v/v). The yield was 90%. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

6. Refinement

H atoms were positioned geometrically, with N—H = 0.86Å and O—H = 0.82Å, and C—H = 0.93, 0.96, 0.97 or 0.98 Å for aromatic, methyl, methene and methine H atom, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl and hy­droxy, and x = 1.2 for all other H atoms.[link]

Table 2
Experimental details

Crystal data
Chemical formula C27H21N3O6·C2H6O
Mr 529.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 11.074 (2), 11.585 (2), 12.898 (3)
α, β, γ (°) 114.09 (3), 106.68 (3), 99.20 (3)
V3) 1372.5 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.973, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 5313, 5032, 3254
Rint 0.029
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.166, 1.04
No. of reflections 5032
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.26
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives are found to be potentially bioactive compounds (Chang et al., 1999; Ge et al., 1999). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied. The title compound is one of bis-indolymethane derivatives as a precursor for MRI Contrast Agents (Ni, 2008). We report herein the synthesis and crystal structure of the title compound.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 89.3 (5)°] while the benzene ring (C1–C6) is twisted to the N1/C8–C15 and N2/C18–C25 indole ring systems with dihedral angles of 49.9 (5) and 73.4 (3)°, respectively. The carboxyl groups are approximately coplanar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean plane of attached indole ring system are 10.0 (3) and 4.0 (4)°. The nitro group is also nearly coplanar with the attached benzene ring, the dihedral angle being 7.7 (7)°. A void of 33.0 (7) Å3 is observed in the crystal structure, but no solvent molecule is present.

Supra­molecular features top

In the crystal, the organic molecules and crystalline water molecules are linked by classic N—H···O and O—H···O hydrogen bonds and weak C—H···π inter­actions involved the benzene rings, forming the three-dimensional supra­molecular architecture (Table 1).

Database survey top

Several similar structures have been reported previously, i.e. di­ethyl 3,3'-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012) and di­methyl 3,3'-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles are 82.0 (5) and 84.5 (5)°, respectively.

Synthesis and crystallization top

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 3-nitro­benzaldehyde (7.6 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction can be followed by thin-layer chromatography (CHCl3–hexane = 1:1 v/v). The yield was 90%. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86Å and O—H = 0.82Å, and C—H = 0.93, 0.96, 0.97 or 0.98 Å for aromatic, methyl, methene and methine H atom , respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl and hy­droxy, and x = 1.2 for all other H atoms.

Related literature top

For related literature, see: Chang et al. (1999); Ge et al. (1999); Ni (2008); Poter et al. (1977); Sun et al. (2012, 2013); Sundberg (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The molecular structure of the title molecule. showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the hydrogen bond.
3,3'-[(3-Nitrophenyl)methylene]bis(1H-indole-2-carboxylate) ethanol monosolvate top
Crystal data top
C27H21N3O6·C2H6OZ = 2
Mr = 529.54F(000) = 556
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.074 (2) ÅCell parameters from 25 reflections
b = 11.585 (2) Åθ = 9–13°
c = 12.898 (3) ŵ = 0.09 mm1
α = 114.09 (3)°T = 293 K
β = 106.68 (3)°Block, colorless
γ = 99.20 (3)°0.30 × 0.20 × 0.10 mm
V = 1372.5 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3254 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.973, Tmax = 0.991l = 1514
5313 measured reflections3 standard reflections every 200 reflections
5032 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.4188P]
where P = (Fo2 + 2Fc2)/3
5032 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C27H21N3O6·C2H6Oγ = 99.20 (3)°
Mr = 529.54V = 1372.5 (5) Å3
Triclinic, P1Z = 2
a = 11.074 (2) ÅMo Kα radiation
b = 11.585 (2) ŵ = 0.09 mm1
c = 12.898 (3) ÅT = 293 K
α = 114.09 (3)°0.30 × 0.20 × 0.10 mm
β = 106.68 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3254 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
5313 measured reflections intensity decay: 1%
5032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
5032 reflectionsΔρmin = 0.25 e Å3
352 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4712 (3)0.2518 (3)0.0074 (4)0.0901 (11)
N21.1545 (2)0.0075 (2)0.4249 (2)0.0438 (6)
H2A1.21510.01230.48700.053*
N30.9859 (2)0.4742 (2)0.3448 (2)0.0414 (5)
H3A0.97400.55070.36500.050*
O10.4711 (3)0.2634 (3)0.0977 (4)0.1266 (13)
O20.3872 (3)0.3273 (3)0.0959 (3)0.1360 (14)
O31.1911 (2)0.21184 (19)0.64357 (18)0.0599 (6)
O41.0053 (2)0.25277 (18)0.55999 (17)0.0506 (5)
O50.71167 (19)0.2865 (2)0.36509 (19)0.0548 (5)
O60.77081 (18)0.49394 (18)0.39092 (18)0.0504 (5)
O70.6624 (2)0.0902 (2)0.4450 (2)0.0733 (7)
H7B0.70180.14890.43540.110*
C10.6788 (3)0.0661 (3)0.1405 (3)0.0490 (7)
H1A0.68170.08460.20470.059*
C20.5754 (3)0.1429 (3)0.0248 (3)0.0565 (8)
C30.5662 (3)0.1189 (3)0.0723 (3)0.0616 (9)
H3B0.49560.17150.14840.074*
C40.6637 (3)0.0153 (3)0.0543 (3)0.0607 (9)
H4A0.66030.00250.11900.073*
C50.7674 (3)0.0629 (3)0.0598 (3)0.0497 (7)
H5A0.83230.13370.07100.060*
C60.7767 (3)0.0382 (2)0.1580 (2)0.0395 (6)
C70.8906 (2)0.1240 (2)0.2847 (2)0.0361 (6)
H7A0.84950.13900.34510.043*
C80.9896 (2)0.0532 (2)0.3134 (2)0.0354 (6)
C91.0194 (3)0.0546 (2)0.2304 (2)0.0389 (6)
C100.9715 (3)0.1346 (3)0.1015 (3)0.0484 (7)
H10A0.90440.12070.04970.058*
C111.0243 (3)0.2330 (3)0.0530 (3)0.0598 (8)
H11A0.99100.28700.03210.072*
C121.1276 (3)0.2544 (3)0.1288 (3)0.0609 (9)
H12A1.16240.32110.09300.073*
C131.1778 (3)0.1789 (3)0.2542 (3)0.0524 (8)
H13A1.24620.19310.30440.063*
C141.1231 (3)0.0798 (3)0.3043 (2)0.0410 (6)
C151.0733 (3)0.0872 (2)0.4314 (2)0.0390 (6)
C161.0840 (3)0.1913 (3)0.5490 (2)0.0425 (7)
C171.2112 (4)0.3165 (3)0.7644 (3)0.0695 (10)
H17A1.29000.32340.82550.104*
H17B1.13600.29520.78380.104*
H17C1.22080.39990.76350.104*
C180.9553 (2)0.2606 (2)0.3046 (2)0.0359 (6)
C191.0709 (3)0.3062 (2)0.2854 (2)0.0378 (6)
C201.1640 (3)0.2491 (3)0.2473 (3)0.0477 (7)
H20A1.15770.16150.22920.057*
C211.2643 (3)0.3253 (3)0.2377 (3)0.0624 (9)
H21A1.32580.28800.21230.075*
C221.2763 (3)0.4570 (3)0.2648 (3)0.0631 (9)
H22A1.34560.50540.25700.076*
C231.1893 (3)0.5166 (3)0.3023 (3)0.0529 (8)
H23A1.19800.60470.32080.064*
C241.0863 (3)0.4401 (3)0.3120 (2)0.0399 (6)
C250.9066 (2)0.3671 (2)0.3405 (2)0.0366 (6)
C260.7876 (3)0.3752 (3)0.3664 (2)0.0394 (6)
C270.6529 (3)0.5128 (3)0.4122 (3)0.0663 (9)
H27A0.65160.60110.42850.099*
H27B0.65300.50130.48190.099*
H27C0.57570.44850.34050.099*
C280.5250 (4)0.0591 (4)0.3849 (4)0.0870 (12)
H28A0.48000.02020.38450.104*
H28B0.50490.03840.29980.104*
C290.4715 (4)0.1671 (5)0.4421 (5)0.1096 (17)
H29A0.37720.13880.39690.164*
H29B0.51310.24520.44040.164*
H29C0.48940.18720.52600.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (2)0.059 (2)0.101 (3)0.0028 (16)0.000 (2)0.025 (2)
N20.0404 (13)0.0425 (13)0.0432 (14)0.0130 (11)0.0046 (10)0.0235 (11)
N30.0425 (13)0.0313 (11)0.0503 (14)0.0153 (10)0.0173 (11)0.0187 (10)
O10.096 (2)0.107 (3)0.129 (3)0.0288 (19)0.014 (2)0.057 (2)
O20.102 (2)0.087 (2)0.109 (3)0.0398 (19)0.024 (2)0.0179 (19)
O30.0643 (14)0.0489 (12)0.0396 (12)0.0150 (10)0.0031 (10)0.0140 (10)
O40.0582 (13)0.0395 (11)0.0457 (12)0.0168 (10)0.0147 (10)0.0163 (9)
O50.0454 (12)0.0523 (12)0.0729 (15)0.0170 (10)0.0255 (11)0.0333 (11)
O60.0448 (11)0.0443 (11)0.0645 (13)0.0227 (9)0.0227 (10)0.0243 (10)
O70.0597 (14)0.0859 (17)0.0859 (17)0.0228 (13)0.0164 (13)0.0598 (15)
C10.0440 (16)0.0369 (15)0.0531 (18)0.0118 (13)0.0097 (14)0.0166 (13)
C20.0388 (16)0.0382 (16)0.064 (2)0.0084 (13)0.0055 (15)0.0110 (15)
C30.0479 (19)0.054 (2)0.0476 (19)0.0224 (16)0.0033 (15)0.0054 (15)
C40.060 (2)0.065 (2)0.0404 (17)0.0271 (18)0.0054 (15)0.0173 (15)
C50.0463 (17)0.0507 (17)0.0430 (17)0.0149 (14)0.0090 (14)0.0203 (14)
C60.0372 (14)0.0332 (14)0.0385 (15)0.0163 (12)0.0081 (12)0.0114 (12)
C70.0359 (14)0.0326 (13)0.0357 (14)0.0115 (11)0.0112 (11)0.0142 (11)
C80.0331 (14)0.0305 (13)0.0385 (15)0.0076 (11)0.0090 (11)0.0171 (11)
C90.0396 (15)0.0355 (14)0.0413 (15)0.0124 (12)0.0117 (12)0.0207 (12)
C100.0544 (18)0.0459 (16)0.0425 (17)0.0196 (14)0.0143 (14)0.0208 (14)
C110.077 (2)0.0561 (19)0.0492 (18)0.0301 (18)0.0282 (17)0.0225 (15)
C120.073 (2)0.0516 (18)0.071 (2)0.0364 (17)0.0347 (19)0.0298 (17)
C130.0521 (18)0.0464 (17)0.063 (2)0.0234 (14)0.0187 (16)0.0296 (16)
C140.0419 (15)0.0367 (14)0.0438 (16)0.0112 (12)0.0134 (13)0.0215 (13)
C150.0394 (15)0.0315 (13)0.0419 (15)0.0086 (12)0.0096 (12)0.0189 (12)
C160.0462 (16)0.0325 (14)0.0395 (16)0.0052 (13)0.0062 (13)0.0185 (12)
C170.086 (3)0.0516 (19)0.0377 (18)0.0107 (18)0.0004 (17)0.0122 (15)
C180.0348 (14)0.0337 (13)0.0319 (14)0.0104 (11)0.0062 (11)0.0141 (11)
C190.0365 (14)0.0350 (14)0.0348 (14)0.0113 (12)0.0090 (12)0.0139 (12)
C200.0458 (17)0.0403 (15)0.0557 (18)0.0156 (13)0.0210 (14)0.0205 (14)
C210.053 (2)0.063 (2)0.074 (2)0.0243 (17)0.0356 (18)0.0269 (18)
C220.0520 (19)0.056 (2)0.083 (2)0.0128 (16)0.0345 (18)0.0313 (18)
C230.0534 (18)0.0423 (16)0.065 (2)0.0129 (15)0.0245 (16)0.0278 (15)
C240.0390 (15)0.0374 (14)0.0397 (15)0.0115 (12)0.0118 (12)0.0179 (12)
C250.0358 (14)0.0320 (13)0.0357 (14)0.0108 (11)0.0088 (11)0.0141 (11)
C260.0351 (14)0.0378 (15)0.0394 (15)0.0115 (12)0.0085 (12)0.0174 (12)
C270.0509 (19)0.071 (2)0.085 (3)0.0347 (17)0.0318 (18)0.035 (2)
C280.062 (2)0.098 (3)0.091 (3)0.010 (2)0.005 (2)0.059 (3)
C290.070 (3)0.117 (4)0.187 (5)0.039 (3)0.061 (3)0.103 (4)
Geometric parameters (Å, º) top
N1—O21.218 (4)C10—C111.369 (4)
N1—O11.226 (5)C10—H10A0.9300
N1—C21.459 (5)C11—C121.404 (4)
N2—C141.362 (3)C11—H11A0.9300
N2—C151.383 (3)C12—C131.364 (4)
N2—H2A0.8600C12—H12A0.9300
N3—C241.358 (3)C13—C141.395 (4)
N3—C251.372 (3)C13—H13A0.9300
N3—H3A0.8600C15—C161.458 (4)
O3—C161.339 (3)C17—H17A0.9600
O3—C171.456 (4)C17—H17B0.9600
O4—C161.214 (3)C17—H17C0.9600
O5—C261.211 (3)C18—C251.385 (3)
O6—C261.337 (3)C18—C191.433 (4)
O6—C271.441 (3)C19—C201.409 (4)
O7—C281.402 (4)C19—C241.414 (4)
O7—H7B0.8200C20—C211.372 (4)
C1—C61.380 (4)C20—H20A0.9300
C1—C21.393 (4)C21—C221.393 (4)
C1—H1A0.9300C21—H21A0.9300
C2—C31.370 (5)C22—C231.359 (4)
C3—C41.369 (5)C22—H22A0.9300
C3—H3B0.9300C23—C241.397 (4)
C4—C51.384 (4)C23—H23A0.9300
C4—H4A0.9300C25—C261.457 (4)
C5—C61.388 (4)C27—H27A0.9600
C5—H5A0.9300C27—H27B0.9600
C6—C71.529 (4)C27—H27C0.9600
C7—C181.511 (3)C28—C291.482 (6)
C7—C81.521 (3)C28—H28A0.9700
C7—H7A0.9800C28—H28B0.9700
C8—C151.384 (3)C29—H29A0.9600
C8—C91.435 (4)C29—H29B0.9600
C9—C101.408 (4)C29—H29C0.9600
C9—C141.420 (4)
O2—N1—O1122.4 (4)N2—C15—C8109.5 (2)
O2—N1—C2118.9 (4)N2—C15—C16121.9 (2)
O1—N1—C2118.7 (3)C8—C15—C16128.6 (2)
C14—N2—C15109.2 (2)O4—C16—O3123.8 (3)
C14—N2—H2A125.4O4—C16—C15123.9 (2)
C15—N2—H2A125.4O3—C16—C15112.2 (2)
C24—N3—C25109.1 (2)O3—C17—H17A109.5
C24—N3—H3A125.4O3—C17—H17B109.5
C25—N3—H3A125.4H17A—C17—H17B109.5
C16—O3—C17115.9 (2)O3—C17—H17C109.5
C26—O6—C27117.0 (2)H17A—C17—H17C109.5
C28—O7—H7B109.5H17B—C17—H17C109.5
C6—C1—C2118.6 (3)C25—C18—C19105.9 (2)
C6—C1—H1A120.7C25—C18—C7124.8 (2)
C2—C1—H1A120.7C19—C18—C7129.2 (2)
C3—C2—C1122.8 (3)C20—C19—C24117.8 (2)
C3—C2—N1118.8 (3)C20—C19—C18135.2 (2)
C1—C2—N1118.3 (3)C24—C19—C18107.0 (2)
C4—C3—C2118.2 (3)C21—C20—C19118.7 (3)
C4—C3—H3B120.9C21—C20—H20A120.6
C2—C3—H3B120.9C19—C20—H20A120.6
C3—C4—C5120.2 (3)C20—C21—C22121.8 (3)
C3—C4—H4A119.9C20—C21—H21A119.1
C5—C4—H4A119.9C22—C21—H21A119.1
C4—C5—C6121.5 (3)C23—C22—C21121.6 (3)
C4—C5—H5A119.2C23—C22—H22A119.2
C6—C5—H5A119.2C21—C22—H22A119.2
C1—C6—C5118.6 (3)C22—C23—C24117.3 (3)
C1—C6—C7119.3 (2)C22—C23—H23A121.4
C5—C6—C7122.1 (2)C24—C23—H23A121.4
C18—C7—C8113.3 (2)N3—C24—C23129.1 (2)
C18—C7—C6112.2 (2)N3—C24—C19108.2 (2)
C8—C7—C6113.1 (2)C23—C24—C19122.8 (3)
C18—C7—H7A105.8N3—C25—C18109.9 (2)
C8—C7—H7A105.8N3—C25—C26120.3 (2)
C6—C7—H7A105.8C18—C25—C26129.7 (2)
C15—C8—C9106.5 (2)O5—C26—O6123.4 (2)
C15—C8—C7124.1 (2)O5—C26—C25125.2 (2)
C9—C8—C7129.4 (2)O6—C26—C25111.4 (2)
C10—C9—C14117.5 (2)O6—C27—H27A109.5
C10—C9—C8135.7 (2)O6—C27—H27B109.5
C14—C9—C8106.8 (2)H27A—C27—H27B109.5
C11—C10—C9119.5 (3)O6—C27—H27C109.5
C11—C10—H10A120.3H27A—C27—H27C109.5
C9—C10—H10A120.3H27B—C27—H27C109.5
C10—C11—C12121.5 (3)O7—C28—C29114.0 (4)
C10—C11—H11A119.2O7—C28—H28A108.8
C12—C11—H11A119.2C29—C28—H28A108.8
C13—C12—C11121.1 (3)O7—C28—H28B108.8
C13—C12—H12A119.4C29—C28—H28B108.8
C11—C12—H12A119.4H28A—C28—H28B107.7
C12—C13—C14117.7 (3)C28—C29—H29A109.5
C12—C13—H13A121.2C28—C29—H29B109.5
C14—C13—H13A121.2H29A—C29—H29B109.5
N2—C14—C13129.2 (3)C28—C29—H29C109.5
N2—C14—C9108.1 (2)H29A—C29—H29C109.5
C13—C14—C9122.7 (3)H29B—C29—H29C109.5
C6—C1—C2—C30.5 (4)C7—C8—C15—N2177.3 (2)
C6—C1—C2—N1179.1 (3)C9—C8—C15—C16179.5 (3)
O2—N1—C2—C38.1 (5)C7—C8—C15—C161.0 (4)
O1—N1—C2—C3171.5 (4)C17—O3—C16—O41.0 (4)
O2—N1—C2—C1173.3 (3)C17—O3—C16—C15178.6 (2)
O1—N1—C2—C17.1 (5)N2—C15—C16—O4171.1 (2)
C1—C2—C3—C40.6 (5)C8—C15—C16—O410.7 (4)
N1—C2—C3—C4179.1 (3)N2—C15—C16—O39.3 (4)
C2—C3—C4—C50.7 (5)C8—C15—C16—O3168.9 (3)
C3—C4—C5—C60.9 (5)C8—C7—C18—C25149.2 (2)
C2—C1—C6—C50.6 (4)C6—C7—C18—C2581.3 (3)
C2—C1—C6—C7179.7 (2)C8—C7—C18—C1934.6 (4)
C4—C5—C6—C10.8 (4)C6—C7—C18—C1995.0 (3)
C4—C5—C6—C7179.9 (2)C25—C18—C19—C20178.9 (3)
C1—C6—C7—C18157.0 (2)C7—C18—C19—C202.1 (5)
C5—C6—C7—C1822.1 (3)C25—C18—C19—C240.5 (3)
C1—C6—C7—C873.4 (3)C7—C18—C19—C24177.3 (2)
C5—C6—C7—C8107.6 (3)C24—C19—C20—C210.2 (4)
C18—C7—C8—C1573.3 (3)C18—C19—C20—C21179.1 (3)
C6—C7—C8—C15157.5 (2)C19—C20—C21—C220.2 (5)
C18—C7—C8—C9104.8 (3)C20—C21—C22—C230.0 (5)
C6—C7—C8—C924.3 (4)C21—C22—C23—C240.4 (5)
C15—C8—C9—C10179.2 (3)C25—N3—C24—C23179.3 (3)
C7—C8—C9—C102.4 (5)C25—N3—C24—C190.2 (3)
C15—C8—C9—C140.7 (3)C22—C23—C24—N3178.7 (3)
C7—C8—C9—C14177.7 (2)C22—C23—C24—C190.4 (4)
C14—C9—C10—C110.8 (4)C20—C19—C24—N3179.1 (2)
C8—C9—C10—C11179.1 (3)C18—C19—C24—N30.4 (3)
C9—C10—C11—C121.4 (5)C20—C19—C24—C230.1 (4)
C10—C11—C12—C131.1 (5)C18—C19—C24—C23179.6 (3)
C11—C12—C13—C140.1 (5)C24—N3—C25—C180.1 (3)
C15—N2—C14—C13179.4 (3)C24—N3—C25—C26177.3 (2)
C15—N2—C14—C90.8 (3)C19—C18—C25—N30.4 (3)
C12—C13—C14—N2179.7 (3)C7—C18—C25—N3177.4 (2)
C12—C13—C14—C90.5 (4)C19—C18—C25—C26176.8 (2)
C10—C9—C14—N2180.0 (2)C7—C18—C25—C260.2 (4)
C8—C9—C14—N20.1 (3)C27—O6—C26—O52.3 (4)
C10—C9—C14—C130.2 (4)C27—O6—C26—C25177.0 (2)
C8—C9—C14—C13179.9 (3)N3—C25—C26—O5179.9 (2)
C14—N2—C15—C81.2 (3)C18—C25—C26—O53.2 (4)
C14—N2—C15—C16179.7 (2)N3—C25—C26—O60.8 (3)
C9—C8—C15—N21.2 (3)C18—C25—C26—O6176.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroids of the C1-ring, C10-ring and C20-ring, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.862.172.924 (3)146
N3—H3A···O4ii0.862.022.861 (4)166
O7—H7B···O50.822.132.892 (4)154
C10—H10A···Cg30.932.873.633 (4)140
C11—H11A···Cg5iii0.932.763.634 (4)156
C17—H17B···Cg4i0.962.893.813 (5)163
C27—H27B···Cg5ii0.962.753.496 (4)135
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroids of the C1-ring, C10-ring and C20-ring, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.862.172.924 (3)146
N3—H3A···O4ii0.862.022.861 (4)166
O7—H7B···O50.822.132.892 (4)154
C10—H10A···Cg30.932.873.633 (4)140
C11—H11A···Cg5iii0.932.763.634 (4)156
C17—H17B···Cg4i0.962.893.813 (5)163
C27—H27B···Cg5ii0.962.753.496 (4)135
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC27H21N3O6·C2H6O
Mr529.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.074 (2), 11.585 (2), 12.898 (3)
α, β, γ (°)114.09 (3), 106.68 (3), 99.20 (3)
V3)1372.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5313, 5032, 3254
Rint0.029
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.166, 1.04
No. of reflections5032
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Diffraction data were collected in the Center of Testing and Analysis, Nanjing University. The work was supported by the Funding of Nanjing College of Chemical Technology, China (NHKY-2013–02).

References

First citationChang, Y.-C., Riby, J., Grace, H. F., Peng, G.-F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGe, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNi, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPoter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.  CSD CrossRef IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds