organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-acetamido­benzoic acid monohydrate

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: lfy20110407@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 30 September 2014; accepted 4 October 2014; online 11 October 2014)

In the title compound, C9H9NO3·H2O, the plane of the acetamide group is oriented at 20.52 (8)° with respect to the benzene ring, whereas the plane of the carb­oxy­lic acid group is essentially coplanar with the benzene ring [maximum deviation = 0.033 (1) Å]. In the crystal, classical O—H⋯O and N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds link the organic mol­ecules and water mol­ecules of crystallization into a three-dimensional supra­molecular architecture.

1. Related literature

For applications of 4-acetamido­benzoic acid in coordination chemistry, see: Yin et al. (2011[Yin, X., Fan, J., Wang, Z.-H. & Zhang, W.-G. (2011). Z. Anorg. Allg. Chem. 637, 773-777.]); Wang et al. (2009[Wang, Z. H., Fan, J. & Zhang, W. G. (2009). Z. Anorg. Allg. Chem. 635, 2333-2339.]). For related structures, see: Kashino et al. (1986[Kashino, S., Matsushita, T., Iwamoto, T., Yamaguchi, K. & Haisa, M. (1986). Acta Cryst. C42, 457-462.]); Jedrzejas et al. (1995[Jedrzejas, M. J., Luo, M., Singh, S., Brouillette, W. J. & Air, G. M. (1995). Acta Cryst. C51, 1910-1912.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H9NO3·H2O

  • Mr = 197.19

  • Monoclinic, P 21 /c

  • a = 6.6712 (13) Å

  • b = 28.870 (6) Å

  • c = 4.992 (1) Å

  • β = 100.01 (3)°

  • V = 946.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.31 × 0.28 × 0.26 mm

2.2. Data collection

  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • 7525 measured reflections

  • 1819 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.06

  • 1819 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O4i 0.89 (2) 2.17 (2) 3.003 (2) 155.4 (17)
O1—H1⋯O2ii 0.88 (2) 1.75 (2) 2.6285 (18) 174 (2)
O4—H2W⋯O4iii 0.92 (2) 1.98 (2) 2.8920 (14) 176 (2)
O4—H1W⋯O3iv 0.83 (3) 1.93 (3) 2.7549 (18) 173 (2)
C9—H9C⋯O3i 0.96 2.57 3.484 (2) 160
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z-1.

Data collection: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, 4-acetamidobenzoic acid has attracted increasing attention as a multifunctional ligand (Kashino et al., 1986; Jedrzejas et al., 1995). It shows potential diversified coordination and exhibits various coordination modes, such as monodentate, chelating, and multidentate bridging, etc in those reported complexes (Yin et al., 2011; Wang et al., 2009). Herein we report the synthesis and structure of the title compound.

The structure of the title compound is shown in Fig. 1, Fig. 2 and hydrogen bond geometry is given in Table 1. In the title compound, the acetamide moiety is oriented with respect to the benzene ring at 20.52 (8)° whereas the carboxyl group is essentially co-planar with the benzene ring [the maximum deviation = 0.033 (1) Å]. In the crystal, classic O—H···O, N—H···O hydrogen bonds and weak C—H···O hydrogen bond link organic molecules and crystalline water molecules into the three dimensional supramolecular architecture.

Related literature top

For applications of 4-acetamidobenzoic acid in coordination chemistry, see: Yin et al. (2011); Wang et al. (2009). For related structures, see: Kashino et al. (1986); Jedrzejas et al. (1995).

Experimental top

4-Aminobenzoic acid (5 mmol, 686 mg) was added to 20 ml acetic anhydride. The mixture was then refluxed under argon for 8 h. The excess of acetic anhydride was then evaporated under reduced pressure. Water was then added to the resulting solid. The colorless block crystals were obtained after 48 h. Yield: 90% (based on 4-aminobenzoic acid).

Refinement top

H atoms attached to N and O atoms were located in a difference Fourier map and refined with positional parameters, Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other.

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Fig. 2. Hydrogen bonds are shown as brown dashed lines.

Fig. 3. A view of the crystal packing.
4-Acetamidobenzoic acid monohydrate top
Crystal data top
C9H9NO3·H2OF(000) = 416
Mr = 197.19Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8729 reflections
a = 6.6712 (13) Åθ = 3.1–26.0°
b = 28.870 (6) ŵ = 0.11 mm1
c = 4.992 (1) ÅT = 293 K
β = 100.01 (3)°Block, colorless
V = 946.8 (3) Å30.31 × 0.28 × 0.26 mm
Z = 4
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1448 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.025
Confocal monochromatorθmax = 26.0°, θmin = 3.1°
ω scans at fixed χ = 45°h = 88
7525 measured reflectionsk = 3535
1819 independent reflectionsl = 65
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.1929P]
where P = (Fo2 + 2Fc2)/3
1819 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C9H9NO3·H2OV = 946.8 (3) Å3
Mr = 197.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6712 (13) ŵ = 0.11 mm1
b = 28.870 (6) ÅT = 293 K
c = 4.992 (1) Å0.31 × 0.28 × 0.26 mm
β = 100.01 (3)°
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1448 reflections with I > 2σ(I)
7525 measured reflectionsRint = 0.025
1819 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
1819 reflectionsΔρmin = 0.21 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6802 (3)0.43025 (5)0.5354 (3)0.0370 (4)
C20.8849 (3)0.42983 (5)0.6534 (3)0.0432 (4)
H20.97510.44970.58860.052*
C30.9563 (3)0.40000 (5)0.8671 (3)0.0420 (4)
H31.09320.40000.94590.050*
C40.8203 (2)0.37010 (5)0.9622 (3)0.0346 (4)
C50.6157 (3)0.37085 (6)0.8459 (4)0.0430 (4)
H50.52490.35110.91070.052*
C60.5461 (3)0.40082 (6)0.6342 (3)0.0439 (4)
H60.40860.40120.55780.053*
C70.6019 (3)0.46170 (5)0.3049 (3)0.0394 (4)
C81.0650 (2)0.32340 (5)1.2903 (3)0.0344 (3)
C91.0717 (3)0.29285 (6)1.5361 (3)0.0423 (4)
H9A1.15070.26571.51610.063*
H9B0.93580.28391.55280.063*
H9C1.13290.30951.69610.063*
H10.684 (3)0.5062 (7)0.080 (4)0.063*
H40.775 (3)0.3275 (7)1.251 (4)0.051*
H1W0.452 (4)0.2928 (8)0.293 (5)0.063*
H2W0.545 (4)0.2597 (7)0.471 (5)0.063*
N10.8780 (2)0.33893 (5)1.1819 (3)0.0386 (3)
O10.7308 (2)0.48727 (4)0.2144 (3)0.0554 (4)
O20.4148 (2)0.46159 (4)0.2106 (3)0.0546 (4)
O31.21944 (18)0.33300 (4)1.1992 (2)0.0475 (3)
O40.5523 (2)0.27530 (5)0.3128 (3)0.0486 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (9)0.0327 (7)0.0322 (8)0.0049 (6)0.0030 (7)0.0027 (6)
C20.0428 (9)0.0409 (8)0.0444 (9)0.0030 (7)0.0037 (7)0.0100 (7)
C30.0355 (8)0.0426 (8)0.0452 (9)0.0011 (6)0.0006 (7)0.0091 (7)
C40.0379 (8)0.0341 (7)0.0311 (7)0.0040 (6)0.0041 (6)0.0028 (6)
C50.0369 (9)0.0463 (9)0.0445 (9)0.0028 (7)0.0031 (7)0.0120 (7)
C60.0384 (9)0.0465 (9)0.0428 (9)0.0018 (7)0.0037 (7)0.0064 (7)
C70.0490 (10)0.0339 (7)0.0338 (8)0.0049 (7)0.0033 (7)0.0020 (6)
C80.0387 (8)0.0331 (7)0.0297 (7)0.0021 (6)0.0012 (6)0.0010 (5)
C90.0467 (10)0.0463 (9)0.0326 (8)0.0083 (7)0.0035 (7)0.0071 (6)
N10.0358 (7)0.0428 (7)0.0369 (7)0.0029 (6)0.0056 (6)0.0113 (5)
O10.0595 (9)0.0540 (7)0.0495 (7)0.0018 (6)0.0003 (7)0.0215 (6)
O20.0504 (8)0.0573 (7)0.0515 (7)0.0061 (6)0.0043 (6)0.0177 (6)
O30.0349 (6)0.0563 (7)0.0500 (7)0.0022 (5)0.0041 (5)0.0156 (5)
O40.0409 (7)0.0569 (8)0.0496 (7)0.0028 (5)0.0122 (6)0.0053 (6)
Geometric parameters (Å, º) top
C1—C61.386 (2)C7—O21.255 (2)
C1—C21.390 (2)C7—O11.274 (2)
C1—C71.487 (2)C8—O31.228 (2)
C2—C31.389 (2)C8—N11.347 (2)
C2—H20.9300C8—C91.505 (2)
C3—C41.394 (2)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—C51.388 (2)C9—H9C0.9600
C4—N11.4193 (19)N1—H40.89 (2)
C5—C61.382 (2)O1—H10.881 (16)
C5—H50.9300O4—H1W0.83 (3)
C6—H60.9300O4—H2W0.92 (2)
C6—C1—C2119.44 (14)O2—C7—O1123.84 (14)
C6—C1—C7119.22 (16)O2—C7—C1118.76 (15)
C2—C1—C7121.34 (15)O1—C7—C1117.40 (16)
C3—C2—C1120.74 (15)O3—C8—N1123.64 (14)
C3—C2—H2119.6O3—C8—C9121.75 (15)
C1—C2—H2119.6N1—C8—C9114.60 (14)
C2—C3—C4119.27 (16)C8—C9—H9A109.5
C2—C3—H3120.4C8—C9—H9B109.5
C4—C3—H3120.4H9A—C9—H9B109.5
C5—C4—C3119.93 (14)C8—C9—H9C109.5
C5—C4—N1116.64 (14)H9A—C9—H9C109.5
C3—C4—N1123.41 (15)H9B—C9—H9C109.5
C6—C5—C4120.34 (15)C8—N1—C4128.98 (14)
C6—C5—H5119.8C8—N1—H4116.6 (13)
C4—C5—H5119.8C4—N1—H4114.4 (13)
C5—C6—C1120.27 (16)C7—O1—H1117.5 (15)
C5—C6—H6119.9H1W—O4—H2W104 (2)
C1—C6—H6119.9
C6—C1—C2—C30.6 (2)C7—C1—C6—C5179.16 (15)
C7—C1—C2—C3179.47 (15)C6—C1—C7—O21.9 (2)
C1—C2—C3—C40.3 (3)C2—C1—C7—O2178.08 (15)
C2—C3—C4—C50.9 (2)C6—C1—C7—O1177.98 (15)
C2—C3—C4—N1178.96 (15)C2—C1—C7—O12.1 (2)
C3—C4—C5—C60.6 (3)O3—C8—N1—C43.9 (3)
N1—C4—C5—C6178.79 (15)C9—C8—N1—C4176.06 (14)
C4—C5—C6—C10.3 (3)C5—C4—N1—C8163.45 (15)
C2—C1—C6—C50.9 (2)C3—C4—N1—C818.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O4i0.89 (2)2.17 (2)3.003 (2)155.4 (17)
O1—H1···O2ii0.88 (2)1.75 (2)2.6285 (18)174 (2)
O4—H2W···O4iii0.92 (2)1.98 (2)2.8920 (14)176 (2)
O4—H1W···O3iv0.83 (3)1.93 (3)2.7549 (18)173 (2)
C9—H9C···O3i0.962.573.484 (2)160
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O4i0.89 (2)2.17 (2)3.003 (2)155.4 (17)
O1—H1···O2ii0.881 (16)1.751 (16)2.6285 (18)174 (2)
O4—H2W···O4iii0.92 (2)1.98 (2)2.8920 (14)176 (2)
O4—H1W···O3iv0.83 (3)1.93 (3)2.7549 (18)173 (2)
C9—H9C···O3i0.962.573.484 (2)160
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x1, y, z1.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Yunnan Province, China (grant No. 2009CD048).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJedrzejas, M. J., Luo, M., Singh, S., Brouillette, W. J. & Air, G. M. (1995). Acta Cryst. C51, 1910–1912.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKashino, S., Matsushita, T., Iwamoto, T., Yamaguchi, K. & Haisa, M. (1986). Acta Cryst. C42, 457–462.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. H., Fan, J. & Zhang, W. G. (2009). Z. Anorg. Allg. Chem. 635, 2333–2339.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, X., Fan, J., Wang, Z.-H. & Zhang, W.-G. (2011). Z. Anorg. Allg. Chem. 637, 773–777.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds