research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-amino-5,5-di­methyl-2-[(E)-2-nitro­ethen­yl]cyclo­hex-2-en-1-one

aLatvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia
*Correspondence e-mail: dmitrijs.stepanovs@me.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 4 October 2014; accepted 20 October 2014; online 24 October 2014)

The asymmetric unit of the title compound, C10H14N2O3, contains two independent mol­ecules with similar conformations. In the both mol­ecules, the cyclo­hexene rings adopt the same envelope conformation with the flap C atoms lying 0.658 (3) and 0.668 (3) Å from the mean planes formed by the remaining atoms. In the crystal, adjacent mol­ecules are connected via N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming supra­molecular layers parallel to (-101).

1. Chemical context

sec-Nitro­dienamines appear to be potentially useful synthons in organic synthesis due to the enaminic, dienic and `push–pull' character of these mol­ecules (Koike et al., 2000[Koike, T., Shinohara, Y., Tobinaga, S. & Takeuchi, N. (2000). Chem. Pharm. Bull. 48, 1898-1902.]). Several methods are available for the synthesis of nitro­dienamines, which include the reaction of acetaldehydes with 1-di­methyl­amino-2-nitro­ethylen followed by treatment with amines (Severin et al., 1971[Severin, T., Adhikary, P., Dehmel, E. & Eberhard, I. (1971). Chem. Ber. 104, 2856-2863.]), the reaction of amino­acrolein with di­methyl­amine and subsequent treatment of the vinyl­amidinium salt with nitro­methane (Takeuchi et al., 1988[Takeuchi, N., Ohki, J., & Tobinaga, S. (1988). Chem. Pharm. Bull. 36, 481-487.]) and nitro­alken­ylation reactions of 2-methyl­indolines with nitro­enam­ines (Attanasi et al., 2006[Attanasi, O. A., Favi, G., Filippone, P., Forzato, C., Giorgi, G., Morganti, S., Nitti, P., Pitacco, G., Rizzato, E., Spinelli, D. & Valentin, E. (2006). Tetrahedron, 62, 6420-6434.]).

[Scheme 1]

Previously, we found that alpha-nitro acetaldehyde undergoes an unusual condensation with aldehydes and ammonium acetate to afford 3,5-di­nitro-1,2-di­hydro­pyridines (Vigante et al., 1993[Vigante, B., Ozols, Ya. & Dubur, G. (1993). Chem. Heterocycl. Compd, 29, 55-60.]). Afterwards, the synthesis of N-substituted 1,2-di­hydro­pyridines by heterocyclic annulation reaction of sec-nitro­dienamines with acetaldehyde was reported (Koike et al., 1999[Koike, T., Shinohara, Y., Tanabe, M., Takeuchi, N. & Tobinaga, S. (1999). Chem. Pharm. Bull. 47, 1246-1248.]). As part of our studies of synthetic pathways to fused 1,2-di­hydro­pyridines, the title compound was synthesized and we report herein on its mol­ecular and crystal structure.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) contains two independent mol­ecules (A and B) having coincident geometry. The bond lengths in the mol­ecules are close to standard values. The cyclo­hexene rings adopt an envelope conformation, with flap atoms C3A and C3B lying 0.658 (3) and 0.668 (3) Å from the mean planes formed by the remaining atoms in mol­ecules A and B, respectively.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering

3. Supra­molecular features

In the crystal, the mol­ecules form sheets parallel to ([\overline{1}]01) by means of N—H⋯O hydrogen bonds. The network consists of two hydrogen-bond motifs, R22(16) and R66(32) (Fig. 2[link]). Weak C—H⋯O inter­actions are also observed in the supra­molecular networks (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Bi 0.84 (2) 2.06 (3) 2.873 (2) 162 (2)
N1A—H2NA⋯O3Bii 0.88 (2) 2.10 (3) 2.961 (2) 167 (2)
N1B—H1NB⋯O3Aii 0.92 (2) 2.03 (3) 2.942 (2) 168 (2)
N1B—H2NB⋯O1Aiii 0.85 (3) 2.04 (2) 2.858 (2) 162 (2)
C2A—H2A1⋯O1Bi 0.97 2.42 3.262 (2) 145
C2B—H2B1⋯O1Aiii 0.97 2.46 3.298 (2) 144
C7A—H7A⋯O3Bii 0.93 2.54 3.469 (2) 173
C7B—H7B⋯O3Aii 0.93 2.55 3.469 (2) 171
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound showing sheets parallel to ([\overline{1}]01).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 5,5-di­methyl­cyclo­hex-2-enones gave 609 hits. Only one of these is a 3-amino-5,5-di­methyl­cyclo­hex-2-enone, namely, 3-amino-5,5-dimethyl-2-phenyl­cyclo­hex-2-enone (Fun et al., 2007[Fun, H.-K., Shen, Y.-M., Xu, J.-H. & Chantrapromma, S. (2007). Acta Cryst. E63, o462-o464.]). The conformation of the cyclo­hexene ring is identical to that found in the title compound.

5. Synthesis and crystallization

A mixture of 3-amino-5,5-di­methyl­cyclo­hex-2-enone (140 mg, 1 mmol) and potassium salt of alpha-nitro acetaldehyde (190 mg, 1.5 mmol) in methanol (2 mL) and acetic acid (2 mL) was stirred for 5 days at room temperature. The solvents were removed under reduced pressure and the residue was purified by flash chromatography on silica gel, eluent: chloro­form, hexane, acetone, methanol (9:7:1:1). The appropriate fraction was collected and crystallized from methanol, yielding 116 mg (55%) of bright-yellow crystals (m.p. 503 K).

MS (+ESI) m/z (relative intensity): 211.2 ([M+H]+, 100).1H NMR (400 MHz, DMSO-d6): δ 0.96 (s, 6H), 2.20 (s, 2H), 2.53 (s, 2H), 8.12 (d, J = 12.4 Hz, 1H), 8.39 (d, J = 12.4 Hz, 1H), 8.48 (s, 1H), 8.74 (s, 1H).

13C NMR (100.56 MHz, DMSO-d6): δ 27.94, 31.41, 44.12, 51.46, 100.02, 131.82, 132.15, 172.30, 193.93. Analysis calculated for C10H14N2O3: C, 57.13; H, 6.71; N, 13.32; found: C, 56.98; H, 6.78; N, 13.16.

6. Refinement

Hydrogens on the amino group were located in a difference Fourier map and freely refined. The C-bound hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.97 Å and refined as riding on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for other H atoms. The reflection whose intensity was affected by the beamstop was removed from the final refinement. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H14N2O3
Mr 210.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.3545 (3), 18.1097 (5), 10.4689 (3)
β (°) 100.119 (2)
V3) 2119.20 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.35 × 0.25 × 0.01
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 10741, 6174, 3235
Rint 0.068
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.158, 1.01
No. of reflections 6174
No. of parameters 287
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.29
Computer programs: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]), HKL DENZO SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

sec-Nitro­dienamines appear to be potentially useful synthons in organic synthesis due to the enaminic, dienic and `push–pull' character of these molecules (Koike et al., 2000). Several methods are available for the synthesis of nitro­dienamines, which include the reaction of acetaldehydes with 1-di­methyl­amino-2-nitro­ethylen followed by treatment with amines (Severin et al., 1971) or the reaction of amino­acrolein with di­methyl­amine and subsequent treatment of the vinyl­amidinium salt with nitro­methane (Takeuchi et al., 1988) or by nitro­alkenylation reactions of 2-methyl­indolines with nitro­enamines (Attanasi et al., 2006).

Previously, we found that alpha-nitro acetaldehyde undergoes an unusual condensation with aldehydes and ammonium acetate to afford 3,5-di­nitro-1,2-di­hydro­pyridines (Vigante et al., 1993). Afterwards the synthesis of N-substituted 1,2-di­hydro­pyridines by heterocyclic annulation reaction of sec-nitro­dienamines with acetaldehyde was reported (Koike et al., 1999). As part of our studies of synthetic pathways to fused 1,2-di­hydro­pyridines, the title compound was synthesized and we report herein its molecular and crystal structures.

Structural commentary top

The asymmetric unit of the title compound (Fig. 1) contains two independent molecules A and B having coincident geometry. The bond lengths in the molecules are close to standard values. The cyclo­hexene rings adopt an envelope conformation, with flap atoms C3A and C3B lying 0.658 (3) and 0.668 (3) Å from the mean planes formed by the remaining atoms in molecules A and B, respectively.

Supra­molecular features top

In the crystal, the molecules form two-dimensional network layers parallel to (101) by means of N—H···O-type hydrogen bonds. The network consists of two hydrogen-bond motifs, R22(16) and R66(32) (Fig. 2). Weak C—H···O inter­actions are also observed in the supra­molecular networks (Table 1).

Database survey top

A search of the Cambridge Structural Database (Version 5.35; Groom & Allen, 2014) for 5,5-di­methyl­cyclo­hex-2-enones gave 609 hits. Only one of these is a 3-amino-5,5-di­methyl­cyclo­hex-2-enone, namely, 3-amino-5,5-di­methyl-2-phenyl­cyclo­hex-2-enone (Fun et al., 2007). The conformation of the cyclo­hexene ring is identical to that found in the title compound.

Synthesis and crystallization top

The mixture of 3-amino-5,5-di­methyl­cyclo­hex-2-enone (140 mg, 1 mmol) and potassium salt of alpha-nitro acetaldehyde (190 mg, 1.5 mmol) in methanol (2 mL) and acetic acid (2 mL) was stirred for 5 days at r.t. The solvents were removed under reduced pressure and the residue was purified by flash chromatography on silica gel, eluent: chloro­form, hexane, acetone, methanol (9:7:1:1). The appropriate fraction was collected and crystallized from methanol, yielding 116 mg (55%) of bright-yellow crystals (m.p. 503 K).

MS (+ESI) m/z (relative intensity): 211.2 ([M+H]+, 100).1H NMR (400 MHz, DMSO-d6): δ 0.96 (s, 6H), 2.20 (s, 2H), 2.53 (s, 2H), 8.12 (d, J = 12.4 Hz, 1H), 8.39 (d, J = 12.4 Hz, 1H), 8.48 (s, 1H), 8.74 (s, 1H).

13C NMR (100.56 MHz, DMSO-d6): δ 27.94, 31.41, 44.12, 51.46, 100.02, 131.82, 132.15, 172.30, 193.93. Analysis calculated for C10H14N2O3: C, 57.13; H, 6.71; N, 13.32; found: C, 56.98; H, 6.78; N, 13.16.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogens on the amino group were refined isotropically. All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.97 Å and refined as riding on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for others. The reflection whose intensity was affected by the beamstop was removed from the final refinement. Crystal data, data collection and structure refinement details are summarized in Table 2.

Related literature top

For related literature, see: Groom & Allen (2014); Attanasi et al. (2006); Fun et al. (2007); Koike et al. (1999, 2000); Severin et al. (1971); Takeuchi et al. (1988); Vigante et al. (1993).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering

The crystal packing of the title compound showing two-dimensional network layers parallel to (101).
3-Amino-5,5-dimethyl-2-[(E)-2-nitroethenyl]cyclohex-2-en-1-one top
Crystal data top
C10H14N2O3F(000) = 896
Mr = 210.23Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point: 503 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.3545 (3) ÅCell parameters from 11852 reflections
b = 18.1097 (5) Åθ = 1.0–30.0°
c = 10.4689 (3) ŵ = 0.10 mm1
β = 100.119 (2)°T = 173 K
V = 2119.20 (10) Å3Plate, yellow
Z = 80.35 × 0.25 × 0.01 mm
Data collection top
Nonius KappaCCD
diffractometer
3235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 30.1°, θmin = 2.7°
CCD scansh = 1515
10741 measured reflectionsk = 2523
6174 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.6139P]
where P = (Fo2 + 2Fc2)/3
6174 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H14N2O3V = 2119.20 (10) Å3
Mr = 210.23Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.3545 (3) ŵ = 0.10 mm1
b = 18.1097 (5) ÅT = 173 K
c = 10.4689 (3) Å0.35 × 0.25 × 0.01 mm
β = 100.119 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3235 reflections with I > 2σ(I)
10741 measured reflectionsRint = 0.068
6174 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
6174 reflectionsΔρmin = 0.28 e Å3
287 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.44423 (12)0.26776 (8)0.25500 (13)0.0295 (4)
O2A0.55773 (14)0.50926 (9)0.20293 (17)0.0471 (5)
O3A0.38755 (15)0.52829 (9)0.07970 (17)0.0470 (5)
N1A0.09527 (15)0.33969 (10)0.03942 (16)0.0254 (4)
H1NA0.034 (2)0.3223 (13)0.087 (2)0.030*
H2NA0.1126 (19)0.3869 (14)0.043 (2)0.030*
N2A0.45967 (16)0.48703 (10)0.14688 (17)0.0307 (4)
C1A0.16406 (16)0.29331 (11)0.03826 (18)0.0209 (4)
C2A0.11184 (17)0.21747 (11)0.0458 (2)0.0247 (5)
H2A10.06190.20620.03690.030*
H2A20.06080.21790.11100.030*
C3A0.20444 (16)0.15635 (11)0.07868 (19)0.0229 (4)
C4A0.28813 (18)0.18035 (11)0.20157 (19)0.0271 (5)
H4A10.24400.18070.27290.032*
H4A20.35180.14420.22170.032*
C5A0.34312 (16)0.25560 (11)0.19190 (17)0.0215 (4)
C6A0.27637 (16)0.31205 (11)0.11171 (17)0.0207 (4)
C7A0.32346 (17)0.38535 (11)0.10523 (18)0.0232 (4)
H7A0.27380.41880.05430.028*
C8A0.42972 (18)0.41153 (11)0.16320 (19)0.0259 (5)
H8A0.48400.38050.21410.031*
C9A0.27396 (19)0.14516 (13)0.0321 (2)0.0329 (5)
H9A10.31070.19090.05000.049*
H9A20.22020.12920.10830.049*
H9A30.33470.10840.00780.049*
C10A0.14236 (19)0.08427 (12)0.1036 (2)0.0356 (6)
H10A0.20150.04750.13440.053*
H10B0.09380.06760.02440.053*
H10C0.09270.09240.16770.053*
O1B0.92300 (13)0.24275 (8)0.28241 (13)0.0322 (4)
O2B1.04280 (14)0.48418 (9)0.22269 (17)0.0487 (5)
O3B0.88174 (16)0.49987 (9)0.08349 (18)0.0521 (5)
N1B0.59376 (15)0.31138 (10)0.04246 (17)0.0263 (4)
H1NB0.6104 (19)0.3611 (14)0.046 (2)0.032*
H2NB0.537 (2)0.2930 (12)0.097 (2)0.032*
N2B0.94809 (15)0.46084 (10)0.16108 (17)0.0315 (4)
C1B0.66003 (16)0.26509 (11)0.03703 (18)0.0208 (4)
C2B0.61249 (16)0.18770 (11)0.03415 (19)0.0233 (4)
H2B10.56990.17730.05260.028*
H2B20.55530.18470.09270.028*
C3B0.70757 (16)0.12831 (11)0.07177 (19)0.0227 (4)
C4B0.77921 (18)0.15161 (11)0.20286 (19)0.0258 (5)
H4B10.72810.14770.26770.031*
H4B20.84510.11740.22670.031*
C5B0.82867 (17)0.22863 (11)0.20607 (18)0.0224 (4)
C6B0.76642 (16)0.28498 (11)0.12114 (18)0.0213 (4)
C7B0.81399 (17)0.35818 (11)0.11657 (18)0.0236 (4)
H7B0.76780.39060.05960.028*
C8B0.91564 (18)0.38621 (11)0.18294 (19)0.0258 (5)
H8B0.96510.35720.24320.031*
C9B0.78776 (19)0.12275 (13)0.0302 (2)0.0341 (5)
H9B10.82370.16990.04000.051*
H9B20.74080.10800.11160.051*
H9B30.84930.08680.00330.051*
C10B0.6467 (2)0.05431 (12)0.0841 (2)0.0357 (6)
H10D0.70560.01840.11990.054*
H10E0.60740.03830.00000.054*
H10F0.58880.05960.14020.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0257 (8)0.0261 (9)0.0313 (8)0.0026 (6)0.0102 (6)0.0006 (6)
O2A0.0386 (9)0.0392 (11)0.0589 (11)0.0172 (8)0.0045 (8)0.0057 (8)
O3A0.0501 (10)0.0252 (9)0.0583 (11)0.0029 (7)0.0110 (9)0.0062 (8)
N1A0.0226 (9)0.0198 (10)0.0294 (9)0.0021 (7)0.0073 (7)0.0016 (7)
N2A0.0321 (10)0.0267 (11)0.0314 (10)0.0052 (8)0.0002 (8)0.0035 (8)
C1A0.0194 (9)0.0242 (12)0.0187 (9)0.0018 (8)0.0021 (8)0.0004 (8)
C2A0.0196 (10)0.0243 (12)0.0280 (10)0.0023 (8)0.0020 (8)0.0045 (8)
C3A0.0217 (10)0.0193 (11)0.0258 (10)0.0003 (8)0.0009 (8)0.0010 (8)
C4A0.0284 (11)0.0238 (12)0.0258 (10)0.0005 (9)0.0039 (9)0.0059 (8)
C5A0.0226 (10)0.0244 (11)0.0165 (9)0.0035 (8)0.0007 (8)0.0021 (8)
C6A0.0206 (9)0.0195 (11)0.0201 (9)0.0007 (8)0.0012 (8)0.0009 (7)
C7A0.0248 (10)0.0226 (12)0.0207 (10)0.0033 (8)0.0006 (8)0.0005 (8)
C8A0.0275 (10)0.0198 (12)0.0286 (11)0.0003 (8)0.0000 (9)0.0000 (8)
C9A0.0339 (11)0.0270 (13)0.0376 (12)0.0004 (9)0.0061 (10)0.0051 (10)
C10A0.0330 (12)0.0248 (13)0.0458 (14)0.0049 (9)0.0016 (11)0.0055 (10)
O1B0.0286 (8)0.0280 (9)0.0332 (8)0.0016 (6)0.0131 (7)0.0021 (6)
O2B0.0387 (9)0.0368 (11)0.0635 (12)0.0169 (8)0.0108 (9)0.0058 (8)
O3B0.0520 (11)0.0271 (10)0.0665 (12)0.0061 (8)0.0193 (9)0.0124 (8)
N1B0.0229 (9)0.0220 (10)0.0292 (9)0.0008 (7)0.0090 (7)0.0009 (7)
N2B0.0302 (10)0.0253 (11)0.0361 (10)0.0038 (8)0.0018 (8)0.0039 (8)
C1B0.0203 (10)0.0211 (11)0.0204 (9)0.0023 (8)0.0015 (8)0.0028 (8)
C2B0.0189 (9)0.0215 (11)0.0276 (10)0.0024 (8)0.0013 (8)0.0024 (8)
C3B0.0216 (10)0.0183 (11)0.0269 (10)0.0013 (8)0.0006 (8)0.0006 (8)
C4B0.0274 (10)0.0204 (11)0.0271 (11)0.0003 (8)0.0022 (9)0.0051 (8)
C5B0.0227 (10)0.0226 (12)0.0209 (10)0.0027 (8)0.0011 (8)0.0031 (8)
C6B0.0203 (10)0.0209 (11)0.0207 (10)0.0003 (8)0.0017 (8)0.0010 (8)
C7B0.0242 (10)0.0206 (12)0.0242 (10)0.0024 (8)0.0007 (8)0.0019 (8)
C8B0.0274 (10)0.0230 (12)0.0257 (10)0.0013 (8)0.0007 (9)0.0022 (8)
C9B0.0329 (12)0.0297 (14)0.0405 (13)0.0033 (9)0.0091 (10)0.0092 (10)
C10B0.0378 (12)0.0243 (13)0.0419 (13)0.0072 (10)0.0017 (11)0.0036 (10)
Geometric parameters (Å, º) top
O1A—C5A1.240 (2)O1B—C5B1.245 (2)
O2A—N2A1.231 (2)O2B—N2B1.228 (2)
O3A—N2A1.233 (2)O3B—N2B1.230 (2)
N1A—C1A1.324 (2)N1B—C1B1.320 (2)
N1A—H1NA0.84 (2)N1B—H1NB0.92 (2)
N1A—H2NA0.88 (2)N1B—H2NB0.86 (2)
N2A—C8A1.426 (3)N2B—C8B1.430 (3)
C1A—C6A1.410 (2)C1B—C6B1.411 (2)
C1A—C2A1.504 (3)C1B—C2B1.500 (3)
C2A—C3A1.524 (3)C2B—C3B1.526 (3)
C2A—H2A10.9700C2B—H2B10.9700
C2A—H2A20.9700C2B—H2B20.9700
C3A—C4A1.522 (3)C3B—C9B1.523 (3)
C3A—C9A1.527 (3)C3B—C10B1.524 (3)
C3A—C10A1.528 (3)C3B—C4B1.527 (3)
C4A—C5A1.510 (3)C4B—C5B1.502 (3)
C4A—H4A10.9700C4B—H4B10.9700
C4A—H4A20.9700C4B—H4B20.9700
C5A—C6A1.449 (3)C5B—C6B1.453 (3)
C6A—C7A1.437 (3)C6B—C7B1.435 (3)
C7A—C8A1.338 (3)C7B—C8B1.338 (3)
C7A—H7A0.9300C7B—H7B0.9300
C8A—H8A0.9300C8B—H8B0.9300
C9A—H9A10.9600C9B—H9B10.9600
C9A—H9A20.9600C9B—H9B20.9600
C9A—H9A30.9600C9B—H9B30.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C1A—N1A—H1NA117.6 (15)C1B—N1B—H1NB123.2 (12)
C1A—N1A—H2NA122.0 (13)C1B—N1B—H2NB117.2 (15)
H1NA—N1A—H2NA120 (2)H1NB—N1B—H2NB119.4 (19)
O2A—N2A—O3A121.86 (19)O2B—N2B—O3B121.85 (19)
O2A—N2A—C8A118.09 (17)O2B—N2B—C8B117.90 (17)
O3A—N2A—C8A120.05 (16)O3B—N2B—C8B120.26 (16)
N1A—C1A—C6A124.16 (19)N1B—C1B—C6B124.21 (19)
N1A—C1A—C2A114.59 (16)N1B—C1B—C2B114.67 (16)
C6A—C1A—C2A121.23 (16)C6B—C1B—C2B121.11 (16)
C1A—C2A—C3A114.37 (16)C1B—C2B—C3B114.68 (15)
C1A—C2A—H2A1108.7C1B—C2B—H2B1108.6
C3A—C2A—H2A1108.7C3B—C2B—H2B1108.6
C1A—C2A—H2A2108.7C1B—C2B—H2B2108.6
C3A—C2A—H2A2108.7C3B—C2B—H2B2108.6
H2A1—C2A—H2A2107.6H2B1—C2B—H2B2107.6
C4A—C3A—C2A106.68 (16)C9B—C3B—C10B109.70 (18)
C4A—C3A—C9A110.52 (16)C9B—C3B—C2B110.40 (17)
C2A—C3A—C9A110.67 (17)C10B—C3B—C2B109.33 (16)
C4A—C3A—C10A109.75 (16)C9B—C3B—C4B111.01 (16)
C2A—C3A—C10A109.79 (16)C10B—C3B—C4B110.17 (17)
C9A—C3A—C10A109.39 (18)C2B—C3B—C4B106.16 (16)
C5A—C4A—C3A113.90 (16)C5B—C4B—C3B114.51 (16)
C5A—C4A—H4A1108.8C5B—C4B—H4B1108.6
C3A—C4A—H4A1108.8C3B—C4B—H4B1108.6
C5A—C4A—H4A2108.8C5B—C4B—H4B2108.6
C3A—C4A—H4A2108.8C3B—C4B—H4B2108.6
H4A1—C4A—H4A2107.7H4B1—C4B—H4B2107.6
O1A—C5A—C6A121.64 (18)O1B—C5B—C6B121.31 (18)
O1A—C5A—C4A118.67 (16)O1B—C5B—C4B118.76 (17)
C6A—C5A—C4A119.68 (16)C6B—C5B—C4B119.93 (16)
C1A—C6A—C7A120.33 (17)C1B—C6B—C7B120.06 (17)
C1A—C6A—C5A118.48 (17)C1B—C6B—C5B118.28 (17)
C7A—C6A—C5A121.18 (16)C7B—C6B—C5B121.58 (16)
C8A—C7A—C6A128.25 (18)C8B—C7B—C6B128.93 (18)
C8A—C7A—H7A115.9C8B—C7B—H7B115.5
C6A—C7A—H7A115.9C6B—C7B—H7B115.5
C7A—C8A—N2A120.01 (18)C7B—C8B—N2B119.90 (18)
C7A—C8A—H8A120.0C7B—C8B—H8B120.0
N2A—C8A—H8A120.0N2B—C8B—H8B120.0
C3A—C9A—H9A1109.5C3B—C9B—H9B1109.5
C3A—C9A—H9A2109.5C3B—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
C3A—C9A—H9A3109.5C3B—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
C3A—C10A—H10A109.5C3B—C10B—H10D109.5
C3A—C10A—H10B109.5C3B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C3A—C10A—H10C109.5C3B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
N1A—C1A—C2A—C3A152.82 (18)N1B—C1B—C2B—C3B152.97 (18)
C6A—C1A—C2A—C3A28.5 (3)C6B—C1B—C2B—C3B28.1 (3)
C1A—C2A—C3A—C4A52.7 (2)C1B—C2B—C3B—C9B67.4 (2)
C1A—C2A—C3A—C9A67.5 (2)C1B—C2B—C3B—C10B171.80 (17)
C1A—C2A—C3A—C10A171.61 (17)C1B—C2B—C3B—C4B53.0 (2)
C2A—C3A—C4A—C5A54.4 (2)C9B—C3B—C4B—C5B66.5 (2)
C9A—C3A—C4A—C5A66.0 (2)C10B—C3B—C4B—C5B171.79 (18)
C10A—C3A—C4A—C5A173.26 (18)C2B—C3B—C4B—C5B53.5 (2)
C3A—C4A—C5A—O1A149.19 (18)C3B—C4B—C5B—O1B150.83 (19)
C3A—C4A—C5A—C6A31.9 (3)C3B—C4B—C5B—C6B29.2 (3)
N1A—C1A—C6A—C7A0.1 (3)N1B—C1B—C6B—C7B5.0 (3)
C2A—C1A—C6A—C7A178.63 (19)C2B—C1B—C6B—C7B176.23 (19)
N1A—C1A—C6A—C5A179.33 (19)N1B—C1B—C6B—C5B178.3 (2)
C2A—C1A—C6A—C5A2.2 (3)C2B—C1B—C6B—C5B0.5 (3)
O1A—C5A—C6A—C1A177.29 (19)O1B—C5B—C6B—C1B179.96 (19)
C4A—C5A—C6A—C1A3.9 (3)C4B—C5B—C6B—C1B0.1 (3)
O1A—C5A—C6A—C7A1.9 (3)O1B—C5B—C6B—C7B3.3 (3)
C4A—C5A—C6A—C7A176.91 (19)C4B—C5B—C6B—C7B176.77 (19)
C1A—C6A—C7A—C8A176.7 (2)C1B—C6B—C7B—C8B176.3 (2)
C5A—C6A—C7A—C8A2.5 (3)C5B—C6B—C7B—C8B0.3 (3)
C6A—C7A—C8A—N2A178.8 (2)C6B—C7B—C8B—N2B178.4 (2)
O2A—N2A—C8A—C7A179.2 (2)O2B—N2B—C8B—C7B179.1 (2)
O3A—N2A—C8A—C7A0.2 (3)O3B—N2B—C8B—C7B1.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.84 (2)2.06 (3)2.873 (2)162 (2)
N1A—H2NA···O3Bii0.88 (2)2.10 (3)2.961 (2)167 (2)
N1B—H1NB···O3Aii0.92 (2)2.03 (3)2.942 (2)168 (2)
N1B—H2NB···O1Aiii0.85 (3)2.04 (2)2.858 (2)162 (2)
C2A—H2A1···O1Bi0.972.423.262 (2)145
C2B—H2B1···O1Aiii0.972.463.298 (2)144
C7A—H7A···O3Bii0.932.543.469 (2)173
C7B—H7B···O3Aii0.932.553.469 (2)171
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.84 (2)2.06 (3)2.873 (2)162 (2)
N1A—H2NA···O3Bii0.88 (2)2.10 (3)2.961 (2)167 (2)
N1B—H1NB···O3Aii0.92 (2)2.03 (3)2.942 (2)168 (2)
N1B—H2NB···O1Aiii0.85 (3)2.04 (2)2.858 (2)162 (2)
C2A—H2A1···O1Bi0.972.423.262 (2)145
C2B—H2B1···O1Aiii0.972.463.298 (2)144
C7A—H7A···O3Bii0.932.543.469 (2)173
C7B—H7B···O3Aii0.932.553.469 (2)171
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H14N2O3
Mr210.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.3545 (3), 18.1097 (5), 10.4689 (3)
β (°) 100.119 (2)
V3)2119.20 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.25 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10741, 6174, 3235
Rint0.068
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.158, 1.01
No. of reflections6174
No. of parameters287
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: KappaCCD Server Software (Nonius, 1997), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2011 (Burla et al., 2012), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the European Social Fund (No. 1DP/1.1.1.2.0/13/APIA/VIAA/011).

References

First citationAttanasi, O. A., Favi, G., Filippone, P., Forzato, C., Giorgi, G., Morganti, S., Nitti, P., Pitacco, G., Rizzato, E., Spinelli, D. & Valentin, E. (2006). Tetrahedron, 62, 6420–6434.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Shen, Y.-M., Xu, J.-H. & Chantrapromma, S. (2007). Acta Cryst. E63, o462–o464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKoike, T., Shinohara, Y., Tanabe, M., Takeuchi, N. & Tobinaga, S. (1999). Chem. Pharm. Bull. 47, 1246–1248.  CrossRef CAS Google Scholar
First citationKoike, T., Shinohara, Y., Tobinaga, S. & Takeuchi, N. (2000). Chem. Pharm. Bull. 48, 1898–1902.  CrossRef PubMed CAS Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeverin, T., Adhikary, P., Dehmel, E. & Eberhard, I. (1971). Chem. Ber. 104, 2856–2863.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, N., Ohki, J., & Tobinaga, S. (1988). Chem. Pharm. Bull. 36, 481–487.  CrossRef CAS Google Scholar
First citationVigante, B., Ozols, Ya. & Dubur, G. (1993). Chem. Heterocycl. Compd, 29, 55–60.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds