research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­(η2-phenyl iso­thio­cyanate-κ2C,S)-mer-tris­­(tri­methyl­phosphane-κP)iridium(I)

aDepartment of Chemistry 0212, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

Edited by M. Zeller, Youngstown State University, USA (Received 14 January 2014; accepted 30 September 2014; online 18 October 2014)

The molecule of the title compound, [IrCl(C7H5NS)(C3H9P)3], is a distorted octa­hedral iridium complex with three PMe3 ligands arranged in a meridional geometry, a chloride ion cis to all three PMe3 groups and the phenyl iso­thio­cyanate ligand bonded in an η2-fashion through the C and S atoms. The C atom is trans to the chloride ion and the S atom is responsible for a significant deviation from an ideal octa­hedral geometry. The geometric parameters for the metal-complexing phenyl isothiocyanate group are compared with other metal-complexed phenyl iso­thio­cyanates, as well as with examples of uncomplexed aryl iso­thio­cyanates.

1. Chemical context

Various phenyl iso­thio­cyanate complexes of metals have been characterized, all showing the effect of complexation of lengthening of N—C and C—S bonds and the bending of the N—C—S angle away from linearity. Complexation of an aryl iso­thio­cyanate to a metal has a similar effect across a wide range of metal systems with the N—C bond length averaging about 1.26 Å, the C—S distance averaging about 1.74 Å and the N—C—S bond angle ranging from 137 to 142°.

[Scheme 1]

2. Structural commentary

The molecule of the title iridium compound has a distorted octa­hedral coordination sphere with three PMe3 ligands arranged in a meridional geometry, a chloride ion cis to all three PMe3 groups and the phenyl iso­thio­cyanate bonded in an η2 fashion to the C and S atoms (Fig. 1[link]). The C atom is trans to the chloride ion and the S atom is significantly off from an ideal octa­hedral geometry [the P2—Ir1—S1 angle is 144.51 (5)° instead of the expected angle near 180°].

[Figure 1]
Figure 1
Displacement ellipsoid drawing of the title compound. Ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity.

Upon complexation to the iridium cation in the title compound, the N—C bond in phenyl iso­thio­cyanate lengthens to 1.256 (7) Å, the C—S bond lengthens to 1.757 (6) Å and the N—C—S bond angle bends to 137.2 (4)°. These significant changes in geometry reflect the normal consequences of π-bonding of the C–S π-electrons to the metal and π-back-bonding from the metal to the π*-orbitals of the ligand.

3. Database survey

A search of the Cambridge Crystallographic Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662-671.]) on 28 January 2014 found 16 aryl iso­thio­cyanates in which the SCN group is not disordered on coordinating to a metal. All of those structures display a nearly linear N—C—S geometry (ranging from 174–179° with an average of 176°). The multiply bonded nature of both the C—S and C—N bonds is seen in the bond lengths. For C—N, the distances range from 1.14 to 1.17 Å with an average of 1.16 Å and the C—S distances range from 1.54 to 1.59 Å with an average of 1.57 Å. Of those 16, four structures of good precision with no disorder, ionic inter­actions or other complex inter­actions that could affect the geometry of the N—C—S group were chosen for comparison to contrast `free' versus `complexed' iso­thio­cyanates. The first entry in Table 1[link] shows the average values for all 16 structures, the next four entries are the specific non-complexed aryl iso­thio­cyanates, the next six entries are other examples from the CCDC in which phenyl iso­thio­cyanate is complexed to a metal and the last entry is the data from the title compound. For the structures of several uncomplexed aryl iso­thio­cyanates, see: Majewska et al. (2007[Majewska, P., Rospenk, M., Czarnik-Matusewicz, B., Kochel, A., Sobczyk, L. & Dąbrowski, R. (2007). Chem. Phys. 340, 227-236.], 2008[Majewska, P., Rospenk, M., Czarnik-Matusewicz, B., Kochel, A., Sobczyk, L. & Dąbrowski, R. (2008). Chem. Phys. 354, 186-195.]); Laliberté et al. (2004[Laliberté, D., Maris, T. & Wuest, J. D. (2004). Can. J. Chem. 82, 386-398.]); Biswas et al. (2007[Biswas, S., Haldar, S., Mandal, P., Goubitz, K., Schenk, H. & Dabrowski, R. (2007). Cryst. Res. Technol. 42, 1029-1035.]). For the structures of a cobalt and a nickel complex of phenyl iso­thio­cyanate, see: Bianchini et al. (1984[Bianchini, C., Masi, D., Mealli, C. & Meli, A. (1984). Inorg. Chem. 23, 2838-2844.]). For the structure of a vanadium complex of phenyl iso­thio­cyanate see: Gambarotta et al. (1984[Gambarotta, S., Fiallo, M., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1984). Inorg. Chem. 23, 3532-3537.]). For a phenyl iso­thio­cyanate complex of molybdenum, see: Ohnishi et al. (2005[Ohnishi, T., Seino, H., Hidai, M. & Mizobe, Y. (2005). J. Organomet. Chem. 690, 1140-1146.]). For a phenyl iso­thio­cyanate complex of osmium, see: Flügel et al. (1996[Flügel, R., Gevert, O. & Werner, H. (1996). Chem. Ber. 129, 405-410.]). For a tris-tri­methyl­phosphine nickel complex of phenyl iso­thio­cyanate, see: Huang et al. (2013[Huang, N., Li, X., Xu, W. & Sun, H. (2013). Inorg. Chim. Acta, 394, 446-451.]).

Table 1
Comparison of bond lengths and angles (Å, °) for the SCN moiety of iso­thio­cyanate complexes

Compound CCDC refcode N—C C—S N—C—S Reference
Not complexing to a metal          
Average of 16 compounds   1.16 1.57 176 Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662-671.])
C29H16N4S4 221549 1.152 (5) 1.566 (4) 175.7 (3) Laliberté et al. (2004[Laliberté, D., Maris, T. & Wuest, J. D. (2004). Can. J. Chem. 82, 386-398.])
C21H23N1O2S1 673469 1.174 (3) !.584 (3) 177.6 (3) Majewska et al. (2008[Majewska, P., Rospenk, M., Czarnik-Matusewicz, B., Kochel, A., Sobczyk, L. & Dąbrowski, R. (2008). Chem. Phys. 354, 186-195.])
C24H37N1S1 637960 1.134 (7) 1.543 (6) 176.1 (5) Biswas et al. (2007[Biswas, S., Haldar, S., Mandal, P., Goubitz, K., Schenk, H. & Dabrowski, R. (2007). Cryst. Res. Technol. 42, 1029-1035.])
C21H21N1O1S1 646594 1.167 (4) 1.587 (4) 178.8 (3) Majewska et al. (2007[Majewska, P., Rospenk, M., Czarnik-Matusewicz, B., Kochel, A., Sobczyk, L. & Dąbrowski, R. (2007). Chem. Phys. 340, 227-236.])
           
Complexing to a metal          
C48H44N1Ni1P3S 555280 1.26 (3) 1.68 (3) 142 (2) Bianchini et al. (1984[Bianchini, C., Masi, D., Mealli, C. & Meli, A. (1984). Inorg. Chem. 23, 2838-2844.])
C49H47Co1N2P3S 555508 1.27 (2) 1.72 (1) 141 (1) Bianchini et al. (1984[Bianchini, C., Masi, D., Mealli, C. & Meli, A. (1984). Inorg. Chem. 23, 2838-2844.])
C27H35N1S1V1 557730 1.265 (9) 1.745 (7) 138.6 (6) Gambarotta et al. (1984[Gambarotta, S., Fiallo, M., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1984). Inorg. Chem. 23, 3532-3537.])
C70H63Mo1N3P4S2 257394 1.256 (7) 1.737 (5) 134.9 (4) Ohnishi et al. (2005[Ohnishi, T., Seino, H., Hidai, M. & Mizobe, Y. (2005). J. Organomet. Chem. 690, 1140-1146.])
C25H47ClN2O1Os1P2S1 661980 1.253 (7) 1.764 (6) 141.2 (4) Flügel et al. (1996[Flügel, R., Gevert, O. & Werner, H. (1996). Chem. Ber. 129, 405-410.])
C16H32N1Ni1P3S 850129 1.253 (3) 1.707 (2) 142.2 (2) Huang et al. (2013[Huang, N., Li, X., Xu, W. & Sun, H. (2013). Inorg. Chim. Acta, 394, 446-451.])
C16H32Cl1Ir1N1P3S1 1027097 1.256 (7) 1.757 (6) 137.2 (4) This work

4. Synthesis and crystallization

The crystal used in this experiment was obtained from a reaction between [Ir(COD)(PMe3)3]Cl (COD = 1,5-cyclo­octa­diene) and phenyl iso­thio­cyanate in toluene solution. Suitable single crystals were grown from di­chloro­methane by the layering of diethyl ether.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed at calculated positions and refined using a model in which the hydrogen rides on the atom to which it is attached. For methyl hydrogen atoms Uiso(H) = 1.5Ueq(C) and for the phenyl hydrogen atoms, Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [IrCl(C7H5NS)(C3H9P)3]
Mr 591.05
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.964 (2), 27.074 (7), 9.721 (2)
β (°) 102.054 (19)
V3) 2307.3 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.20
Crystal size (mm) 0.3 × 0.2 × 0.2
 
Data collection
Diffractometer Siemens P4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.757, 0.891
No. of measured, independent and observed [I > 2σ(I)] reflections 5294, 5294, 4133
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 0.93
No. of reflections 5294
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −1.19
Computer programs: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA]), SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

Various other phenyl iso­thio­cyanate complexes of metals have been characterized, all showing the effect of complexation of lengthening of N—C and C—S bonds and the bending of the N—C—S angle away from linearity. Complexation of an aryl iso­thio­cyanate to a metal has a similar effect across a wide range of metal systems with the N—C bond length averaging about 1.26 Å, the C—S distance averaging about 1.74 Å and the N—C—S bond angle ranging from 137 to 142°.

Structural commentary top

The title compound is a distorted o­cta­hedral iridium complex with three PMe3 ligands arranged in a meridional geometry, a chloride ion cis to all three PMe3 groups and the phenyl iso­thio­cyanate bonded in an η2 fashion to the C and S atoms. The C atom is trans to the chloride ion and the S atom is significantly off from an ideal o­cta­hedral geometry [the P2—Ir1—S1 angle is 144.51 (5)° instead of the expected angle near 180°].

Upon complexation to the iridium in the title compound, the N—C bond in phenyl iso­thio­cyanate lengthens to 1.256 (7) Å, the C—S bond lengthens to 1.757 (6) Å and the N—C—S bond angle bends to 137.2 (4)°. These significant changes in geometry reflect the normal consequences of π-bonding of the C–S π electrons to the metal and π back-bonding from the metal to the π* orbitals of the ligand.

Database survey top

A search of the Cambridge Crystallographic Database (Groom & Allen, 2014) on 28 January 2014 found 16 aryl iso­thio­cyanates in which the SCN group is not disordered or coordinated to a metal. All of those structures display a nearly linear N—C—S geometry (ranging from 174–179° with an average of 176°). The multiply bonded nature of both the C—S and C—N bonds is seen in the bond lengths. For C—N, the distances range from 1.14 to 1.17 Å with an average of 1.16 Å and the C—S distances range from 1.54 to 1.59 Å with an average of 1.57 Å. Of those 16, four structures of good precision with no disorder, ionic inter­actions or other complex inter­actions that could affect the geometry of the N—C—S group were chosen for comparison to contrast `free' versus `complexed' iso­thio­cyanates. The first entry in Table 1 shows the average values for all 16 structures, the next four entries are the specific non-complexed aryl iso­thio­cyanates, the next six entries are other examples from the CCDC in which phenyl iso­thio­cyanate is complexed to a metal and the last entry is the data from the title compound. For the structures of several uncomplexed aryl iso­thio­cyanates, see: Majewska et al. (2007, 2008); Laliberté et al. (2004); Biswas et al. (2007). For the structures of a cobalt and a nickel complex of phenyl iso­thio­cyanate, see: Bianchini et al. (1984). For the structure of a vanadium complex of phenyl iso­thio­cyanate see: Gambarotta et al. (1984). For a phenyl iso­thio­cyanate complex of molybdenum, see: Ohnishi et al. (2005). For a phenyl iso­thio­cyanate complex of osmium, see: Flügel et al. (1996). For a tris-tri­methyl­phosphine nickel complex of phenyl iso­thio­cyanate, see: Huang et al. (2013).

Synthesis and crystallization top

The crystal used in this experiment was obtained from a reaction between [Ir(COD)(PMe3)3]Cl (COD = 1,5-cyclo­octa­diene) and phenyl iso­thio­cyanate in toluene solution. Suitable single crystals were grown from di­chloro­methane by the layering of di­ethyl ether.

Refinement top

H atoms were placed at calculated positions and refined using a model in which the hydrogen rides on the atom to which it is attached. For methyl hydrogen atoms Uiso(H) = 1.5Ueq(C) and for the phenyl hydrogen atoms, Uiso(H) = 1.2Ueq(C).

Related literature top

For related literature, see: Bianchini et al. (1984); Biswas et al. (2007); Flügel et al. (1996); Gambarotta et al. (1984); Groom & Allen (2014); Huang et al. (2013); Laliberté et al. (2004); Majewska et al. (2007, 2008); Ohnishi et al. (2005).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Fig. 1. Displacement ellipsoid drawing of the title compound. Ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity.
Chlorido(η2-phenyl isothiocyanate-κ2C,S)-mer-tris(trimethylphosphane-κP)iridium(I) top
Crystal data top
[IrCl(C7H5NS)(C3H9P)3]F(000) = 1160
Mr = 591.05Dx = 1.701 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.964 (2) ÅCell parameters from 45 reflections
b = 27.074 (7) Åθ = 2–22°
c = 9.721 (2) ŵ = 6.20 mm1
β = 102.054 (19)°T = 293 K
V = 2307.3 (10) Å3Prism, yellow
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Siemens P4
diffractometer
4133 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 035
Tmin = 0.757, Tmax = 0.891l = 012
5294 measured reflections2 standard reflections every 400 reflections
5294 independent reflections intensity decay: 0.0 (1)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0433P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.002
5294 reflectionsΔρmax = 1.00 e Å3
218 parametersΔρmin = 1.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.00040 (9)
Crystal data top
[IrCl(C7H5NS)(C3H9P)3]V = 2307.3 (10) Å3
Mr = 591.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.964 (2) ŵ = 6.20 mm1
b = 27.074 (7) ÅT = 293 K
c = 9.721 (2) Å0.3 × 0.2 × 0.2 mm
β = 102.054 (19)°
Data collection top
Siemens P4
diffractometer
4133 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.0000
Tmin = 0.757, Tmax = 0.8912 standard reflections every 400 reflections
5294 measured reflections intensity decay: 0.0 (1)
5294 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.93Δρmax = 1.00 e Å3
5294 reflectionsΔρmin = 1.19 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.43752 (2)0.345208 (7)0.04153 (2)0.02506 (7)
Cl10.46057 (19)0.27098 (5)0.10524 (16)0.0442 (4)
P10.39424 (18)0.28837 (5)0.20883 (16)0.0331 (3)
P20.68593 (17)0.35657 (5)0.13576 (17)0.0352 (3)
P30.43328 (19)0.38958 (5)0.16484 (16)0.0355 (3)
S10.17603 (16)0.37728 (5)0.03289 (17)0.0377 (3)
C1A0.5316 (8)0.2394 (2)0.2543 (7)0.0543 (17)
H1AA0.53810.22100.17130.082*
H1AB0.50020.21780.32130.082*
H1AC0.62960.25320.29460.082*
C1B0.3641 (9)0.3133 (2)0.3741 (7)0.0578 (19)
H1BA0.45400.33050.42070.087*
H1BB0.34300.28680.43280.087*
H1BC0.27920.33570.35620.087*
C1C0.2226 (7)0.2537 (2)0.1451 (7)0.0500 (16)
H1CA0.14090.27590.10750.075*
H1CB0.19680.23520.22110.075*
H1CC0.23850.23140.07270.075*
C2A0.7354 (8)0.3558 (3)0.3284 (7)0.060 (2)
H2AA0.67750.38060.36460.091*
H2AB0.84230.36240.35960.091*
H2AC0.71220.32390.36180.091*
C2B0.8222 (8)0.3143 (3)0.0871 (9)0.065 (2)
H2BA0.80010.28130.11290.097*
H2BB0.92330.32320.13520.097*
H2BC0.81560.31590.01270.097*
C2C0.7610 (8)0.4167 (2)0.1038 (8)0.0579 (19)
H2CA0.74780.42190.00430.087*
H2CB0.86760.41810.14660.087*
H2CC0.70740.44180.14350.087*
C3A0.5891 (9)0.3812 (3)0.2562 (8)0.0586 (19)
H3AA0.68140.39430.19980.088*
H3AB0.56600.39830.34470.088*
H3AC0.60220.34660.27230.088*
C3B0.2699 (8)0.3716 (2)0.2991 (7)0.0528 (17)
H3BA0.27930.33750.32280.079*
H3BB0.26560.39160.38130.079*
H3BC0.17830.37610.26420.079*
C3C0.4144 (9)0.4560 (2)0.1565 (7)0.0536 (18)
H3CA0.31490.46410.14120.080*
H3CB0.42760.47040.24350.080*
H3CC0.49070.46880.08050.080*
C10.3493 (6)0.39985 (18)0.1318 (6)0.0295 (11)
N10.3916 (5)0.43280 (15)0.2224 (5)0.0330 (10)
C30.2897 (6)0.4657 (2)0.2672 (6)0.0336 (12)
C40.3135 (9)0.4781 (2)0.4081 (7)0.0576 (19)
H40.39360.46340.47100.069*
C50.2239 (12)0.5111 (3)0.4568 (7)0.086 (3)
H50.24260.51810.55250.103*
C60.1056 (10)0.5344 (3)0.3676 (8)0.068 (2)
H60.04510.55730.40180.081*
C70.0792 (8)0.5232 (2)0.2275 (8)0.0567 (19)
H70.00130.53820.16580.068*
C80.1712 (7)0.4895 (2)0.1760 (7)0.0448 (15)
H80.15350.48290.08010.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02846 (11)0.01590 (10)0.03174 (11)0.00011 (9)0.00841 (7)0.00018 (8)
Cl10.0563 (9)0.0274 (7)0.0530 (9)0.0037 (6)0.0206 (7)0.0132 (6)
P10.0430 (8)0.0220 (7)0.0358 (8)0.0002 (6)0.0115 (6)0.0035 (6)
P20.0300 (7)0.0232 (7)0.0522 (9)0.0020 (5)0.0081 (7)0.0023 (6)
P30.0502 (9)0.0229 (7)0.0355 (8)0.0011 (6)0.0140 (7)0.0003 (6)
S10.0295 (7)0.0297 (7)0.0525 (9)0.0006 (6)0.0055 (6)0.0032 (6)
C1A0.062 (4)0.033 (3)0.066 (4)0.012 (3)0.009 (4)0.014 (3)
C1B0.093 (6)0.040 (4)0.048 (4)0.004 (4)0.032 (4)0.002 (3)
C1C0.045 (4)0.043 (4)0.063 (4)0.008 (3)0.015 (3)0.006 (3)
C2A0.053 (4)0.064 (5)0.055 (4)0.011 (4)0.011 (3)0.002 (4)
C2B0.042 (4)0.058 (5)0.099 (6)0.022 (3)0.025 (4)0.010 (4)
C2C0.048 (4)0.028 (3)0.090 (5)0.012 (3)0.003 (4)0.006 (3)
C3A0.073 (5)0.046 (4)0.067 (5)0.001 (4)0.039 (4)0.002 (3)
C3B0.068 (5)0.043 (4)0.044 (4)0.005 (3)0.003 (3)0.003 (3)
C3C0.083 (5)0.026 (3)0.055 (4)0.004 (3)0.021 (4)0.008 (3)
C10.033 (3)0.021 (2)0.035 (3)0.006 (2)0.007 (2)0.003 (2)
N10.033 (2)0.021 (2)0.044 (3)0.0041 (19)0.007 (2)0.0039 (19)
C30.040 (3)0.028 (3)0.034 (3)0.002 (2)0.010 (2)0.001 (2)
C40.079 (5)0.049 (4)0.043 (4)0.027 (4)0.008 (4)0.003 (3)
C50.138 (9)0.090 (6)0.034 (4)0.049 (6)0.029 (5)0.001 (4)
C60.084 (6)0.055 (5)0.073 (5)0.028 (4)0.036 (5)0.008 (4)
C70.043 (4)0.042 (4)0.080 (5)0.016 (3)0.002 (4)0.007 (4)
C80.057 (4)0.033 (3)0.042 (3)0.010 (3)0.006 (3)0.007 (3)
Geometric parameters (Å, º) top
Ir1—Cl12.4982 (14)C2B—H2BA0.9600
Ir1—P12.3297 (15)C2B—H2BB0.9600
Ir1—P22.2450 (16)C2B—H2BC0.9600
Ir1—P32.3319 (15)C2C—H2CA0.9600
Ir1—S12.4846 (15)C2C—H2CB0.9600
Ir1—C11.968 (5)C2C—H2CC0.9600
P1—C1A1.801 (6)C3A—H3AA0.9600
P1—C1B1.814 (6)C3A—H3AB0.9600
P1—C1C1.799 (6)C3A—H3AC0.9600
P2—C2A1.832 (7)C3B—H3BA0.9600
P2—C2B1.808 (6)C3B—H3BB0.9600
P2—C2C1.813 (6)C3B—H3BC0.9600
P3—C3A1.819 (6)C3C—H3CA0.9600
P3—C3B1.813 (7)C3C—H3CB0.9600
P3—C3C1.810 (6)C3C—H3CC0.9600
S1—C11.757 (6)C1—N11.256 (7)
C1A—H1AA0.9600N1—C31.408 (6)
C1A—H1AB0.9600C3—C41.383 (8)
C1A—H1AC0.9600C3—C81.391 (8)
C1B—H1BA0.9600C4—H40.9300
C1B—H1BB0.9600C4—C51.351 (9)
C1B—H1BC0.9600C5—H50.9300
C1C—H1CA0.9600C5—C61.375 (10)
C1C—H1CB0.9600C6—H60.9300
C1C—H1CC0.9600C6—C71.368 (10)
C2A—H2AA0.9600C7—H70.9300
C2A—H2AB0.9600C7—C81.391 (8)
C2A—H2AC0.9600C8—H80.9300
P1—Ir1—Cl185.01 (6)H2AA—C2A—H2AB109.5
P1—Ir1—P3164.96 (6)H2AA—C2A—H2AC109.5
P1—Ir1—S187.77 (5)H2AB—C2A—H2AC109.5
P2—Ir1—Cl198.62 (5)P2—C2B—H2BA109.5
P2—Ir1—P195.81 (6)P2—C2B—H2BB109.5
P2—Ir1—P396.72 (6)P2—C2B—H2BC109.5
P2—Ir1—S1144.51 (5)H2BA—C2B—H2BB109.5
P3—Ir1—Cl184.92 (5)H2BA—C2B—H2BC109.5
P3—Ir1—S186.85 (6)H2BB—C2B—H2BC109.5
S1—Ir1—Cl1116.86 (5)P2—C2C—H2CA109.5
C1—Ir1—Cl1161.48 (16)P2—C2C—H2CB109.5
C1—Ir1—P192.54 (16)P2—C2C—H2CC109.5
C1—Ir1—P299.88 (16)H2CA—C2C—H2CB109.5
C1—Ir1—P393.46 (15)H2CA—C2C—H2CC109.5
C1—Ir1—S144.63 (16)H2CB—C2C—H2CC109.5
C1A—P1—Ir1116.9 (2)P3—C3A—H3AA109.5
C1A—P1—C1B106.1 (3)P3—C3A—H3AB109.5
C1B—P1—Ir1116.8 (2)P3—C3A—H3AC109.5
C1C—P1—Ir1111.1 (2)H3AA—C3A—H3AB109.5
C1C—P1—C1A101.0 (3)H3AA—C3A—H3AC109.5
C1C—P1—C1B103.0 (3)H3AB—C3A—H3AC109.5
C2A—P2—Ir1115.0 (3)P3—C3B—H3BA109.5
C2B—P2—Ir1118.2 (3)P3—C3B—H3BB109.5
C2B—P2—C2A103.2 (4)P3—C3B—H3BC109.5
C2B—P2—C2C103.2 (3)H3BA—C3B—H3BB109.5
C2C—P2—Ir1115.2 (2)H3BA—C3B—H3BC109.5
C2C—P2—C2A99.6 (3)H3BB—C3B—H3BC109.5
C3A—P3—Ir1118.7 (2)P3—C3C—H3CA109.5
C3B—P3—Ir1110.3 (2)P3—C3C—H3CB109.5
C3B—P3—C3A101.7 (4)P3—C3C—H3CC109.5
C3C—P3—Ir1117.3 (2)H3CA—C3C—H3CB109.5
C3C—P3—C3A103.5 (3)H3CA—C3C—H3CC109.5
C3C—P3—C3B103.3 (3)H3CB—C3C—H3CC109.5
C1—S1—Ir151.90 (17)S1—C1—Ir183.5 (2)
P1—C1A—H1AA109.5N1—C1—Ir1139.2 (4)
P1—C1A—H1AB109.5N1—C1—S1137.2 (4)
P1—C1A—H1AC109.5C1—N1—C3123.1 (5)
H1AA—C1A—H1AB109.5C4—C3—N1119.0 (5)
H1AA—C1A—H1AC109.5C4—C3—C8117.2 (5)
H1AB—C1A—H1AC109.5C8—C3—N1123.7 (5)
P1—C1B—H1BA109.5C3—C4—H4119.1
P1—C1B—H1BB109.5C5—C4—C3121.9 (6)
P1—C1B—H1BC109.5C5—C4—H4119.1
H1BA—C1B—H1BB109.5C4—C5—H5119.4
H1BA—C1B—H1BC109.5C4—C5—C6121.3 (7)
H1BB—C1B—H1BC109.5C6—C5—H5119.4
P1—C1C—H1CA109.5C5—C6—H6120.8
P1—C1C—H1CB109.5C7—C6—C5118.4 (6)
P1—C1C—H1CC109.5C7—C6—H6120.8
H1CA—C1C—H1CB109.5C6—C7—H7119.6
H1CA—C1C—H1CC109.5C6—C7—C8120.8 (6)
H1CB—C1C—H1CC109.5C8—C7—H7119.6
P2—C2A—H2AA109.5C3—C8—H8119.8
P2—C2A—H2AB109.5C7—C8—C3120.4 (6)
P2—C2A—H2AC109.5C7—C8—H8119.8
Ir1—S1—C1—N1175.8 (7)P3—Ir1—P2—C2B85.8 (3)
Ir1—C1—N1—C3176.7 (4)P3—Ir1—P2—C2C36.8 (3)
Cl1—Ir1—P1—C1A52.0 (3)P3—Ir1—S1—C198.1 (2)
Cl1—Ir1—P1—C1B179.2 (3)P3—Ir1—C1—S181.98 (17)
Cl1—Ir1—P1—C1C63.2 (2)P3—Ir1—C1—N1102.4 (6)
Cl1—Ir1—P2—C2A122.4 (3)S1—Ir1—P1—C1A169.2 (3)
Cl1—Ir1—P2—C2B0.0 (3)S1—Ir1—P1—C1B63.6 (3)
Cl1—Ir1—P2—C2C122.6 (3)S1—Ir1—P1—C1C54.0 (2)
Cl1—Ir1—P3—C3A55.1 (3)S1—Ir1—P2—C2A57.8 (3)
Cl1—Ir1—P3—C3B61.5 (3)S1—Ir1—P2—C2B179.8 (3)
Cl1—Ir1—P3—C3C179.3 (3)S1—Ir1—P2—C2C57.2 (3)
Cl1—Ir1—S1—C1179.2 (2)S1—Ir1—P3—C3A172.4 (3)
Cl1—Ir1—C1—S12.4 (6)S1—Ir1—P3—C3B55.8 (3)
Cl1—Ir1—C1—N1173.2 (4)S1—Ir1—P3—C3C62.0 (3)
P1—Ir1—P2—C2A36.6 (3)S1—Ir1—C1—N1175.6 (8)
P1—Ir1—P2—C2B85.8 (3)S1—C1—N1—C33.2 (9)
P1—Ir1—P2—C2C151.5 (3)C1—Ir1—P1—C1A146.4 (3)
P1—Ir1—P3—C3A103.2 (3)C1—Ir1—P1—C1B19.2 (3)
P1—Ir1—P3—C3B13.3 (3)C1—Ir1—P1—C1C98.4 (3)
P1—Ir1—P3—C3C131.2 (3)C1—Ir1—P2—C2A57.1 (3)
P1—Ir1—S1—C195.9 (2)C1—Ir1—P2—C2B179.5 (3)
P1—Ir1—C1—S184.23 (17)C1—Ir1—P2—C2C57.9 (3)
P1—Ir1—C1—N191.4 (6)C1—Ir1—P3—C3A143.4 (3)
P2—Ir1—P1—C1A46.2 (3)C1—Ir1—P3—C3B100.0 (3)
P2—Ir1—P1—C1B81.0 (3)C1—Ir1—P3—C3C17.8 (3)
P2—Ir1—P1—C1C161.4 (2)C1—N1—C3—C4140.5 (6)
P2—Ir1—P3—C3A43.0 (3)C1—N1—C3—C844.4 (8)
P2—Ir1—P3—C3B159.6 (3)N1—C3—C4—C5177.1 (7)
P2—Ir1—P3—C3C82.6 (3)N1—C3—C8—C7177.1 (6)
P2—Ir1—S1—C11.0 (2)C3—C4—C5—C61.0 (14)
P2—Ir1—C1—S1179.42 (14)C4—C3—C8—C71.9 (9)
P2—Ir1—C1—N15.0 (6)C4—C5—C6—C70.7 (14)
P3—Ir1—P1—C1A100.1 (3)C5—C6—C7—C81.0 (12)
P3—Ir1—P1—C1B132.7 (3)C6—C7—C8—C31.7 (11)
P3—Ir1—P1—C1C15.1 (3)C8—C3—C4—C51.6 (11)
P3—Ir1—P2—C2A151.8 (3)
Comparison of bond lengths and angles (Å, °) for the SCN moiety of isothiocyanate complexes top
CompoundCCDC refcodeN—CC—SN—C—SReference
Not complexing to a metal
Average of 16 compoundsN/A1.161.57176Groom & Allen (2014)
C29H16N4S42215491.152 (5)1.566 (4)175.7 (3)Laliberté et al. (2004)
C21H23N1O2S16734691.174 (3)!.584 (3)177.6 (3)Majewska et al. (2008)
C24H37N1S16379601.134 (7)1.543 (6)176.1 (5)Biswas et al. (2007)
C21H21N1O1S16465941.167 (4)1.587 (4)178.8 (3)Majewska et al. (2007)
Complexing to a metal
C48H44N1Ni1P3S5552801.26 (3)1.68 (3)142 (2)Bianchini et al. (1984)
C49H47Co1N2P3S5555081.27 (2)1.72 (1)141 (1)Bianchini et al. (1984)
C27H35N1S1V15577301.265 (9)1.745 (7)138.6 (6)Gambarotta et al. (1984)
C70H63Mo1N3P4S22573941.256 (7)1.737 (5)134.9 (4)Ohnishi et al. (2005)
C25H47ClN2O1Os1P2S16619801.253 (7)1.764 (6)141.2 (4)Flügel et al. (1996)
C16H32N1Ni1P3S8501291.253 (3)1.707 (2)142.2 (2)Huang et al. (2013)
C16H32Cl1Ir1N1P3S110270971.256 (7)1.757 (6)137.2 (4)This work

Experimental details

Crystal data
Chemical formula[IrCl(C7H5NS)(C3H9P)3]
Mr591.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.964 (2), 27.074 (7), 9.721 (2)
β (°) 102.054 (19)
V3)2307.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)6.20
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.757, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
5294, 5294, 4133
Rint0.0000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 0.93
No. of reflections5294
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.19

Computer programs: XSCANS (Siemens, 1994), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank the Virginia Tech Subvention Fund for covering the open-access fee.

References

First citationBianchini, C., Masi, D., Mealli, C. & Meli, A. (1984). Inorg. Chem. 23, 2838–2844.  CSD CrossRef CAS Web of Science Google Scholar
First citationBiswas, S., Haldar, S., Mandal, P., Goubitz, K., Schenk, H. & Dabrowski, R. (2007). Cryst. Res. Technol. 42, 1029–1035.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlügel, R., Gevert, O. & Werner, H. (1996). Chem. Ber. 129, 405–410.  Google Scholar
First citationGambarotta, S., Fiallo, M., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1984). Inorg. Chem. 23, 3532–3537.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuang, N., Li, X., Xu, W. & Sun, H. (2013). Inorg. Chim. Acta, 394, 446–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaliberté, D., Maris, T. & Wuest, J. D. (2004). Can. J. Chem. 82, 386–398.  Google Scholar
First citationMajewska, P., Rospenk, M., Czarnik-Matusewicz, B., Kochel, A., Sobczyk, L. & Dąbrowski, R. (2007). Chem. Phys. 340, 227–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationMajewska, P., Rospenk, M., Czarnik-Matusewicz, B., Kochel, A., Sobczyk, L. & Dąbrowski, R. (2008). Chem. Phys. 354, 186–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOhnishi, T., Seino, H., Hidai, M. & Mizobe, Y. (2005). J. Organomet. Chem. 690, 1140–1146.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds