research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4-chloro­phen­yl)[2-(10-hy­dr­oxy­phenanthren-9-yl)phenanthro[9,10-b]furan-3-yl]methanone

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by M. Zeller, Youngstown State University, USA (Received 24 July 2014; accepted 10 October 2014; online 18 October 2014)

In the title compound, C37H21ClO3, the dihedral angle between the two phenanthrene moieties is 57.79 (5)°. The furan and one of the phenanthrene groups are fused in an almost coplanar arrangement [dihedral angle = 5.14 (8)°] and the furan unit makes dihedral angles of 70.27 (11) and 57.58 (8)° with the planes of the phenyl and the second phenanthrene group, respectively. In the crystal, neighbouring mol­ecules are connected via two inter­molecular hydrogen-bonding inter­actions (O—H⋯O and C—H⋯O) towards the carbonyl O atom with donor–acceptor distances of 2.824 (2) and 3.277 (3) Å, creating an inversion dimer. A non-classical C—H⋯Cl inter­action [3.564 (2) Å] and three C—H⋯π inter­actions, with C⋯π distances of 3.709 (3), 3.745 (2) and 3.628 (3) Å, connect the mol­ecules, forming a three-dimensional supra­molecular architecture in the solid state.

1. Chemical context

Furan and its derivatives have in recent years again attracted the attention of researchers from various areas of chemistry (Uchuskin et al., 2014[Uchuskin, G. M., Molodtsova, V. N., Lysenko, A. S., Strelnikov, N. V., Trushkov, V. I. & Butin, V. A. (2014). Eur. J. Org. Chem. pp. 2508-2515.]; Liu et al., 2013[Liu, Z., Fang, J. & Yan, C. (2013). Chin. J. Chem. 31, 1054-1058.]). The di­hydro­furan core framework was identified in many natural products and in drugs with remarkable biological activities (Michael, 2000[Michael, J. P. (2000). Nat. Prod. Rep. 17, 603-620.]; Lipshutz, 1986[Lipshutz, B. H. (1986). Chem. Rev. 86, 795-819.]), inspiring the development of new synthetic methods for the construction of functionalized furans (Singh & Batra, 2008[Singh, V. & Batra, S. (2008). Tetrahedron, 64, 4511-4574.]; Snider, 1996[Snider, B. B. (1996). Chem. Rev. 96, 339-364.]; Ranu et al., 2008[Ranu, B. C., Adak, L. & Banerjee, S. (2008). Tetrahedron Lett. 49, 4613-4617.]; Redon et al., 2008[Redon, S., Leleu, S., Pannecoucke, X., Franck, X. & Outurquin, F. (2008). Tetrahedron, 64, 9293-9304.]; Adamo et al., 2009[Adamo, M., Suresh, S. & Piras, L. (2009). Tetrahedron, 65, 5402-5408.]). As for most organic syntheses, furans are often synthesized in stepwise sequences. However, it is much more efficient if one can form several bonds in one sequence without isolating the inter­mediates, changing the reaction conditions, or adding reagents (Tietze & Beifuss, 1993[Tietze, L. F. & Beifuss, U. (1993). Angew. Chem. 105, 137-170.]). This type of reaction, commonly termed a domino reaction (Muthusaravanan et al., 2013[Muthusaravanan, S., Bala, B. D. & Perumal, S. (2013). Tetrahedron Lett. 54, 5302-5306.]; Kadzimirsz et al., 2008[Kadzimirsz, D., Kramer, D., Sripanom, L., Oppel, I. M., Rodziewicz, P., Doltsinis, N. L. & Dyker, G. (2008). J. Org. Chem. 73, 4644-4649.]; Criado et al., 2013[Criado, A., Vilas-Varela, M., Cobas, A., Perez, D., Pena, D. & Guitian, E. (2013). J. Org. Chem. 78, 12637-12649.]) would allow a substantial reduction of waste compared to stepwise reactions. The amount of solvents, reagents, adsorbents, and energy would also be dramatically decreased.

[Scheme 1]

The title compound of this report has been obtained using such a domino reaction. Using a tandem Michael–aldol reaction of phenanthrene­quinone (1) with 4-chloro­aceto­phenone (2) we were able to obtain the highly substituted furan (3) and the 3(2H)-furan­one (4) (Jacob et al., 2005[Jacob, A. M., Thumpakkara, R. K., Prathapan, S. & Jose, B. (2005). Tetrahedron, 61, 4601-4607.]) in one simple multicomponent reaction.

2. Structural commentary

In the title compound, (3), the two phenanthrene moieties make a dihedral angle of 57.79 (5)°, while one of the phenanthrene moieties is fused together with the furan ring in an almost coplanar arrangement [5.14 (8)°] (Fig. 1[link]). The central furan ring makes dihedral angles of 70.27 (11) and 57.58 (8)° with the phenyl ring and the other phenanthrene moieties, respectively. These two attached rings are twisted so that the C=O oxygen atom points away from the phenanthrene ring. This conformation is stabilized by intra­molecular hydrogen bonds between the H atoms attached to atoms C11 and C26 towards O1 and O2, respectively (see Table 1[link] for numerical values).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring, Cg2 is the centroid of the C25–C30 ring and Cg3 is the centroid of the C9/C10/C15/C16/C21/C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.86 (1) 2.01 (2) 2.824 (2) 156 (3)
C20—H20⋯Cl1ii 0.93 2.68 3.564 (2) 158
C35—H35⋯O1i 0.93 2.52 3.277 (3) 139
C11—H11⋯O1 0.93 2.53 3.275 (3) 137
C26—H26⋯O2 0.93 2.52 3.057 (3) 117
C13—H13⋯Cg1iii 0.93 3.00 3.709 (3) 134
C17—H17⋯Cg2iii 0.93 2.94 3.745 (2) 146
C32—H32⋯Cg3ii 0.93 2.92 3.628 (3) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the title compound (3) with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

There are several inter­molecular hydrogen-bonding inter­actions present in the mol­ecular crystal. Carbonyl atom O1 acts as an acceptor for three hydrogen bonds; the intra­molecular C—H⋯O hydrogen bond with the H atom attached to C11, see above, and two inter­molecular hydrogen bonds involving atoms O3 and C35 of a neighbouring mol­ecule. The latter two inter­molecular hydrogen-bonding inter­actions lead to formation of an inversion dimer. Another non-classical hydrogen-bonding inter­action with the Cl atom of a neighbouring molecule as the acceptor connects these dimers, forming zigzag chains propagating in the b-axis direction (Fig. 2[link]). Three C—H⋯π inter­actions (Fig. 3[link]) are found in the crystal. The first two C—H⋯π inter­actions are between the H atoms attached to C13 and C17 and the outer two aromatic rings of one of the phenanthrene moieties of an adjacent mol­ecule with C⋯π distances of 3.709 (3) and 3.745 (2) Å. The third C—H⋯π inter­action occurs between atom C32 and the central aromatic ring of the other phenanthrene moiety (see Table 1[link] for numerical values and symmetry operators of O—H⋯O, C—H⋯O and C—H⋯π inter­actions). Fig. 4[link] shows the packing diagram of the title compound along a axis.

[Figure 2]
Figure 2
Hydrogen-bonding inter­actions found in the title compound (see Table 1[link] for details).
[Figure 3]
Figure 3
C—H⋯π inter­actions found in the title compound.
[Figure 4]
Figure 4
Packing diagram of the title compound along the a axis.

4. Synthesis and crystallization

A mixture of phenanthrene­quinone (1) (5.2 g, 25 mmol), 4-chloro­aceto­phenone (2) (4.2 g, 27 mmol) and powdered potassium hydroxide (1 g) in methanol (30 ml) was stirred at 333 K for 4 h and then kept in a refrigerator for 48 h. The main product obtained was a 3(2H)-furan­one [2-(4-chloro­phen­yl)-2-hy­droxy-1-oxa­cyclo­penta­[l]phenanthren-3-one] (4) (65%), which was purified by recrystallization from a mixture of methanol and di­chloro­methane (2:1 v/v). The title compound (3) was the minor product formed along with (4) during the reaction (Fig. 5[link]). The reaction mixture was filtered and the filtrate was concentrated and subjected to column chromatography over silica gel. The title compound (14%) was separated on elution with a mixture of hexane and ethyl acetate (2:3 v/v). Diffraction-quality single crystals were generated by slow evaporation from methanol. Yield 1.90 g (14%); m.p. 459 K; IR (KBr, νmax): 3374 (OH), 1591 (C=O) cm−1; 1H NMR (CDCl3): δ 8.79–7.26 (m, 20H), 8.69 (s, 1H); MS: m/z 548 (M+). Analysis calculated for C37H21ClO3: C 80.94, H 3.86%; found: C 80.82, H 3.66%.

[Figure 5]
Figure 5
Reaction scheme showing the synthesis of the title compound (3).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions and treated as riding with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The phenanthroline atom H3 was located from a difference Fourier map and refined with a distance restraint of O—H = 0.86 (1) Å. The reflection 101 was omitted owing to bad agreement.

Table 2
Experimental details

Crystal data
Chemical formula C37H21ClO3
Mr 548.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 11.6682 (12), 13.4448 (15), 17.071 (2)
β (°) 93.091 (5)
V3) 2674.1 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.40 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.918, 0.920
No. of measured, independent and observed [I > 2σ(I)] reflections 19672, 5790, 3869
Rint 0.027
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.147, 1.01
No. of reflections 5790
No. of parameters 374
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.36
Computer programs: APEX2, SAINT and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2012 and SHELXL97(Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Furans and its derivatives have in recent years again attracted the attention of researchers from various areas of chemistry (Uchuskin et al., 2014; Liu et al., 2013). The di­hydro­furan core framework was identified in many natural products and in drugs with remarkable biological activities (Michael, 2000; Lipshutz, 1986), inspiring the development of new synthetic methods for the construction of functionalized furans (Singh & Batra, 2008; Snider, 1996; Ranu et al., 2008; Redon et al., 2008; Adamo et al., 2009). As for most organic syntheses, furans are often synthesized in stepwise sequences. However, it is much more efficient if one can form several bonds in one sequence without isolating the inter­mediates, changing the reaction conditions, or adding reagents (Tietze & Beifuss, 1993). This type of reaction, commonly termed a domino reaction (Muthusaravanan et al., 2013; Kadzimirsz et al., 2008; Criado et al., 2013) would allow a substantial reduction of waste compared to stepwise reactions. The amount of solvents, reagents, adsorbents, and energy would also be dramatically decreased. The title compound of this report has been obtained using such a domino reaction. Using a tandem Michael–aldol reaction of phenanthrene­quinone, (1), with 4-chloro­aceto­phenone, (2), we were able to obtain the highly substituted furan (3) and the 3(2H)-furan­one (4) (Jacob et al., 2005) in one simple multicomponent reaction.

Structural commentary top

In the title compound, (3), the two phenanthrene moieties make a dihedral angle of 57.79 (5)°, while one of the phenanthrene moieties is fused together with the furan ring in an almost coplanar arrangement [5.14 (8)°] (Fig. 1). The central furan ring makes dihedral angles of 70.27 (11) and 57.58 (8)° with the phenyl ring and the other phenanthrene moieties, respectively. These two attached rings are twisted so that the CO O atom points away from the phenanthrene ring. This conformation is stabilized by intra­molecular hydrogen bonds between the H atoms attached to atoms C11 and C26 towards O1 and O2, respectively (see Table 1 for numerical values).

Supra­molecular features top

There are several inter­molecular hydrogen-bonding inter­actions present in the molecular crystal. Carbonyl atom O1 acts as an acceptor for three hydrogen bonds; the intra­molecular C—H···O hydrogen bond with the H atom attached to C11, see above, and two inter­molecular hydrogen bonds involving atoms O3 and C35 of a neighbouring molecule that coordinate in a chelating fashion to O1. The latter two inter­molecular hydrogen-bonding inter­actions lead to formation of a centrosymmetric dimer. Another nonclassical hydrogen-bonding inter­action with the Cl atom of a neighbouring atom as the acceptor connects these dimers in zigzag fashion (Fig. 2) to form molecular chains in the lattice. Three C—H···π inter­actions (Fig. 3) are found in the crystal. The first two C—H···π inter­actions are between the H atoms attached to C13 and C17 and the outer two aromatic rings of one of the phenanthrene moieties of an adjacent molecule with C···π distances of 3.709 (3) and 3.745 (2) Å. The third C—H···π inter­action occurs between atom C32 and the central aromatic ring of the other phenanthrene moiety (see Table 1 for numerical values and symmetry operators of O—H···O, C—H···O and C—H···π inter­actions). Fig. 4 shows the packing diagram of the title compound along a axis.

Synthesis and crystallization top

A mixture of phenanthrene­quinone (5.2 g, 25 mmol), 4-chloro­aceto­phenone (4.2 g, 27 mmol) and powdered potassium hydroxide (1 g) in methanol (30 ml) was stirred at 333 K for 4 h and then kept in a refrigerator for 48 h. The main product obtained was a 3(2H)-furan­one [2-(4-chloro­phenyl)-2-hy­droxy-1-oxa­cyclo­penta­[l]phenanthren-3-one] (4) (65%), which was purified by recrystallization from a mixture of methanol and di­chloro­methane (2:1 v/v). The title compound, (3), was the minor product formed along with (4) during the reaction. The reaction mixture was filtered and the filtrate was concentrated and subjected to column chromatography over silica gel. The title compound (14%) was separated on elution with a mixture of hexane and ethyl acetate (2:3 v/v). Diffraction-quality single crystals were generated by slow evaporation from methanol. Yield 1.90 g (14%); m.p. 459 K; IR (KBr, νmax): 3374 (OH), 1591 (CO) cm-1; 1H NMR (CDCl3): δ 8.79–7.26 (m, 20H), 8.69 (s, 1H); MS: m/z 548 (M+). Analysis calculated for C37H21ClO3: C 80.94, H 3.86%; found: C 80.82, H 3.66%.

Refinement top

All H atoms on C atoms were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93 Å. H atoms were assigned as Uiso(H) = 1.2Ueq(C). Phenanthroline atom H3 was located from Fourier maps and the O—H distance was restrained to 0.86 (1) Å. The reflection 101 was omitted owing to bad agreement. Crystal data, data collection and structure refinement details are summarized in Table 2.

Related literature top

For related literature, see: Adamo et al. (2009); Criado et al. (2013); Jacob et al. (2005); Kadzimirsz et al. (2008); Lipshutz (1986); Liu et al. (2013); Michael (2000); Muthusaravanan et al. (2013); Ranu et al. (2008); Redon et al. (2008); Singh & Batra (2008); Snider (1996); Tietze & Beifuss (1993); Uchuskin et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
View of the title compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Hydrogen-bonding interactions found in the title compound.

C—H···π interactions found in the title compound.

Packing diagram of the compound along the a axis.

Reaction scheme showing the synthesis of the title compound.
(4-Chlorophenyl)[2-(10-hydroxyphenanthren-9-yl)phenanthro[9,10-b]furan-3-yl]methanone top
Crystal data top
C37H21ClO3F(000) = 1136
Mr = 548.99Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.6682 (12) ÅCell parameters from 6603 reflections
b = 13.4448 (15) Åθ = 2.4–27.5°
c = 17.071 (2) ŵ = 0.18 mm1
β = 93.091 (5)°T = 296 K
V = 2674.1 (5) Å3Block, yellow
Z = 40.40 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3869 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.027
ω and ϕ scanθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1014
Tmin = 0.918, Tmax = 0.920k = 1617
19672 measured reflectionsl = 2121
5790 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.9152P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5790 reflectionsΔρmax = 0.28 e Å3
374 parametersΔρmin = 0.36 e Å3
Crystal data top
C37H21ClO3V = 2674.1 (5) Å3
Mr = 548.99Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6682 (12) ŵ = 0.18 mm1
b = 13.4448 (15) ÅT = 296 K
c = 17.071 (2) Å0.40 × 0.35 × 0.30 mm
β = 93.091 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5790 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3869 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.920Rint = 0.027
19672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
5790 reflectionsΔρmin = 0.36 e Å3
374 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40391 (18)0.20554 (15)0.31866 (12)0.0457 (5)
H10.32540.21780.31520.055*
C20.4531 (2)0.15068 (17)0.26111 (13)0.0518 (5)
H20.40820.12500.21920.062*
C30.5692 (2)0.13462 (17)0.26653 (13)0.0522 (5)
C40.6369 (2)0.1693 (2)0.32875 (15)0.0642 (7)
H40.71530.15660.33200.077*
C50.58738 (18)0.22282 (19)0.38599 (13)0.0562 (6)
H50.63280.24630.42850.067*
C60.47072 (16)0.24266 (14)0.38182 (11)0.0390 (4)
C70.42073 (16)0.29570 (15)0.44766 (11)0.0391 (4)
C80.29803 (16)0.32528 (14)0.44139 (11)0.0383 (4)
C90.20746 (16)0.29570 (14)0.49057 (11)0.0367 (4)
C100.19633 (17)0.22173 (14)0.55080 (11)0.0397 (4)
C110.28787 (19)0.16154 (17)0.57835 (14)0.0531 (6)
H110.35950.16900.55760.064*
C120.2732 (2)0.09222 (19)0.63515 (17)0.0680 (7)
H120.33480.05270.65280.082*
C130.1672 (2)0.0801 (2)0.66681 (18)0.0751 (8)
H130.15810.03340.70620.090*
C140.0758 (2)0.13712 (19)0.64004 (15)0.0634 (7)
H140.00490.12810.66160.076*
C150.08630 (17)0.20866 (15)0.58108 (12)0.0439 (5)
C160.01135 (17)0.26868 (15)0.55198 (11)0.0410 (4)
C170.12259 (18)0.25754 (17)0.57918 (13)0.0516 (5)
H170.13540.20920.61670.062*
C180.21172 (19)0.31559 (18)0.55206 (14)0.0558 (6)
H180.28390.30670.57160.067*
C190.19613 (19)0.38775 (18)0.49571 (14)0.0535 (6)
H190.25720.42770.47800.064*
C200.09032 (18)0.39981 (16)0.46640 (12)0.0466 (5)
H200.07980.44760.42810.056*
C210.00207 (16)0.34092 (14)0.49349 (11)0.0379 (4)
C220.11395 (16)0.34856 (14)0.46446 (11)0.0367 (4)
C230.25215 (16)0.39259 (15)0.38951 (11)0.0393 (4)
C240.30128 (16)0.45162 (14)0.32712 (11)0.0385 (4)
C250.25286 (17)0.44683 (15)0.24773 (11)0.0406 (4)
C260.16075 (18)0.38356 (17)0.22663 (13)0.0506 (5)
H260.13040.34320.26460.061*
C270.1146 (2)0.38008 (19)0.15127 (14)0.0590 (6)
H270.05360.33750.13860.071*
C280.1583 (2)0.4396 (2)0.09386 (14)0.0630 (6)
H280.12590.43790.04290.076*
C290.2489 (2)0.50093 (18)0.11228 (13)0.0567 (6)
H290.27830.53990.07310.068*
C300.29902 (17)0.50670 (15)0.18884 (12)0.0433 (5)
C310.39590 (17)0.57061 (15)0.20959 (12)0.0430 (5)
C320.4470 (2)0.63220 (18)0.15423 (14)0.0582 (6)
H320.41760.63220.10250.070*
C330.5380 (2)0.69143 (19)0.17483 (16)0.0657 (7)
H330.56920.73180.13720.079*
C340.5849 (2)0.69255 (18)0.25086 (15)0.0611 (6)
H340.64710.73350.26440.073*
C350.53931 (19)0.63313 (17)0.30604 (13)0.0516 (5)
H350.57190.63300.35700.062*
C360.44394 (17)0.57218 (15)0.28718 (11)0.0416 (5)
C370.39348 (17)0.51105 (15)0.34560 (11)0.0408 (4)
O10.47866 (12)0.31117 (12)0.50815 (9)0.0543 (4)
O20.13803 (11)0.40874 (10)0.40306 (7)0.0401 (3)
O30.43790 (14)0.51167 (13)0.42054 (8)0.0555 (4)
Cl10.63277 (7)0.06692 (6)0.19461 (4)0.0826 (3)
H30.479 (2)0.5630 (16)0.4332 (18)0.099 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (11)0.0519 (12)0.0441 (11)0.0030 (9)0.0032 (9)0.0002 (9)
C20.0611 (14)0.0545 (13)0.0386 (11)0.0019 (11)0.0075 (10)0.0051 (9)
C30.0636 (15)0.0546 (13)0.0385 (11)0.0101 (11)0.0025 (10)0.0030 (9)
C40.0445 (13)0.0922 (19)0.0558 (14)0.0109 (13)0.0016 (11)0.0152 (13)
C50.0399 (12)0.0809 (16)0.0470 (13)0.0004 (11)0.0050 (9)0.0157 (11)
C60.0388 (11)0.0428 (11)0.0352 (10)0.0024 (8)0.0004 (8)0.0008 (8)
C70.0388 (10)0.0444 (11)0.0339 (10)0.0028 (8)0.0005 (8)0.0020 (8)
C80.0378 (10)0.0441 (11)0.0329 (10)0.0011 (8)0.0007 (8)0.0003 (8)
C90.0366 (10)0.0405 (10)0.0327 (9)0.0026 (8)0.0008 (8)0.0040 (7)
C100.0439 (11)0.0379 (10)0.0369 (10)0.0058 (8)0.0023 (8)0.0002 (8)
C110.0457 (12)0.0529 (13)0.0601 (14)0.0026 (10)0.0046 (10)0.0108 (10)
C120.0579 (15)0.0615 (15)0.0833 (19)0.0006 (12)0.0085 (13)0.0300 (14)
C130.0690 (17)0.0701 (17)0.086 (2)0.0087 (14)0.0023 (15)0.0397 (15)
C140.0563 (14)0.0634 (15)0.0707 (17)0.0102 (12)0.0057 (12)0.0228 (12)
C150.0464 (12)0.0421 (11)0.0428 (11)0.0081 (9)0.0003 (9)0.0024 (8)
C160.0420 (11)0.0433 (11)0.0379 (10)0.0074 (9)0.0026 (8)0.0044 (8)
C170.0476 (13)0.0578 (13)0.0501 (13)0.0111 (10)0.0086 (10)0.0020 (10)
C180.0404 (12)0.0696 (15)0.0581 (14)0.0078 (11)0.0099 (10)0.0057 (12)
C190.0417 (12)0.0598 (14)0.0592 (14)0.0051 (10)0.0025 (10)0.0077 (11)
C200.0468 (12)0.0471 (12)0.0461 (12)0.0031 (9)0.0039 (9)0.0017 (9)
C210.0382 (10)0.0403 (10)0.0352 (10)0.0026 (8)0.0026 (8)0.0065 (8)
C220.0415 (11)0.0373 (10)0.0313 (9)0.0025 (8)0.0028 (8)0.0013 (7)
C230.0358 (10)0.0459 (11)0.0364 (10)0.0012 (8)0.0025 (8)0.0010 (8)
C240.0383 (10)0.0433 (11)0.0342 (10)0.0037 (8)0.0040 (8)0.0028 (8)
C250.0396 (10)0.0449 (11)0.0372 (10)0.0083 (9)0.0012 (8)0.0009 (8)
C260.0470 (12)0.0622 (14)0.0423 (12)0.0011 (10)0.0015 (9)0.0021 (10)
C270.0507 (13)0.0736 (16)0.0516 (14)0.0023 (12)0.0082 (10)0.0070 (12)
C280.0632 (15)0.0834 (18)0.0406 (13)0.0033 (13)0.0123 (11)0.0005 (12)
C290.0623 (14)0.0685 (15)0.0389 (12)0.0073 (12)0.0002 (10)0.0078 (10)
C300.0465 (11)0.0464 (11)0.0369 (11)0.0115 (9)0.0013 (8)0.0032 (8)
C310.0473 (12)0.0425 (11)0.0394 (11)0.0086 (9)0.0060 (9)0.0055 (8)
C320.0616 (15)0.0648 (15)0.0482 (13)0.0038 (12)0.0042 (11)0.0201 (11)
C330.0688 (16)0.0640 (15)0.0654 (17)0.0054 (13)0.0128 (13)0.0249 (12)
C340.0632 (15)0.0562 (14)0.0649 (16)0.0125 (12)0.0140 (12)0.0021 (11)
C350.0547 (13)0.0554 (13)0.0454 (12)0.0070 (10)0.0097 (10)0.0038 (10)
C360.0453 (11)0.0417 (11)0.0385 (11)0.0030 (9)0.0086 (9)0.0008 (8)
C370.0438 (11)0.0456 (11)0.0333 (10)0.0032 (9)0.0037 (8)0.0012 (8)
O10.0476 (9)0.0749 (11)0.0398 (8)0.0036 (7)0.0046 (7)0.0107 (7)
O20.0392 (7)0.0454 (7)0.0361 (7)0.0021 (6)0.0048 (6)0.0047 (6)
O30.0629 (10)0.0691 (11)0.0340 (8)0.0196 (8)0.0022 (7)0.0013 (7)
Cl10.1005 (6)0.0945 (5)0.0529 (4)0.0339 (4)0.0043 (3)0.0198 (3)
Geometric parameters (Å, º) top
C1—C21.378 (3)C19—C201.367 (3)
C1—C61.389 (3)C19—H190.9300
C1—H10.9300C20—C211.396 (3)
C2—C31.370 (3)C20—H200.9300
C2—H20.9300C21—C221.425 (3)
C3—C41.370 (3)C22—O21.365 (2)
C3—Cl11.728 (2)C23—O21.381 (2)
C4—C51.367 (3)C23—C241.469 (3)
C4—H40.9300C24—C371.363 (3)
C5—C61.385 (3)C24—C251.441 (3)
C5—H50.9300C25—C261.402 (3)
C6—C71.477 (3)C25—C301.417 (3)
C7—O11.221 (2)C26—C271.369 (3)
C7—C81.484 (3)C26—H260.9300
C8—C231.356 (3)C27—C281.384 (3)
C8—C91.441 (3)C27—H270.9300
C9—C221.357 (3)C28—C291.364 (3)
C9—C101.441 (3)C28—H280.9300
C10—C111.401 (3)C29—C301.405 (3)
C10—C151.420 (3)C29—H290.9300
C11—C121.362 (3)C30—C311.449 (3)
C11—H110.9300C31—C361.410 (3)
C12—C131.386 (4)C31—C321.412 (3)
C12—H120.9300C32—C331.359 (4)
C13—C141.372 (4)C32—H320.9300
C13—H130.9300C33—C341.381 (4)
C14—C151.402 (3)C33—H330.9300
C14—H140.9300C34—C351.365 (3)
C15—C161.461 (3)C34—H340.9300
C16—C211.408 (3)C35—C361.405 (3)
C16—C171.410 (3)C35—H350.9300
C17—C181.361 (3)C36—C371.442 (3)
C17—H170.9300C37—O31.354 (2)
C18—C191.385 (3)O3—H30.864 (10)
C18—H180.9300
C2—C1—C6120.52 (19)C19—C20—C21120.5 (2)
C2—C1—H1119.7C19—C20—H20119.7
C6—C1—H1119.7C21—C20—H20119.7
C3—C2—C1119.0 (2)C20—C21—C16120.84 (18)
C3—C2—H2120.5C20—C21—C22123.34 (18)
C1—C2—H2120.5C16—C21—C22115.82 (18)
C2—C3—C4121.7 (2)C9—C22—O2111.56 (16)
C2—C3—Cl1119.73 (17)C9—C22—C21125.70 (18)
C4—C3—Cl1118.58 (18)O2—C22—C21122.69 (17)
C5—C4—C3119.0 (2)C8—C23—O2110.23 (16)
C5—C4—H4120.5C8—C23—C24132.70 (18)
C3—C4—H4120.5O2—C23—C24116.99 (16)
C4—C5—C6121.1 (2)C37—C24—C25120.54 (18)
C4—C5—H5119.4C37—C24—C23118.86 (17)
C6—C5—H5119.4C25—C24—C23120.60 (17)
C5—C6—C1118.66 (19)C26—C25—C30118.55 (19)
C5—C6—C7118.75 (18)C26—C25—C24121.64 (18)
C1—C6—C7122.41 (17)C30—C25—C24119.81 (18)
O1—C7—C6120.15 (17)C27—C26—C25121.3 (2)
O1—C7—C8120.22 (18)C27—C26—H26119.4
C6—C7—C8119.56 (16)C25—C26—H26119.4
C23—C8—C9106.78 (17)C26—C27—C28120.3 (2)
C23—C8—C7124.84 (17)C26—C27—H27119.8
C9—C8—C7128.25 (17)C28—C27—H27119.8
C22—C9—C8105.43 (17)C29—C28—C27119.8 (2)
C22—C9—C10119.59 (17)C29—C28—H28120.1
C8—C9—C10134.70 (18)C27—C28—H28120.1
C11—C10—C15119.61 (18)C28—C29—C30121.8 (2)
C11—C10—C9122.79 (18)C28—C29—H29119.1
C15—C10—C9117.58 (17)C30—C29—H29119.1
C12—C11—C10120.8 (2)C29—C30—C25118.3 (2)
C12—C11—H11119.6C29—C30—C31122.72 (19)
C10—C11—H11119.6C25—C30—C31119.02 (18)
C11—C12—C13120.4 (2)C36—C31—C32117.3 (2)
C11—C12—H12119.8C36—C31—C30120.26 (18)
C13—C12—H12119.8C32—C31—C30122.4 (2)
C14—C13—C12120.0 (2)C33—C32—C31121.5 (2)
C14—C13—H13120.0C33—C32—H32119.2
C12—C13—H13120.0C31—C32—H32119.2
C13—C14—C15121.7 (2)C32—C33—C34120.9 (2)
C13—C14—H14119.2C32—C33—H33119.5
C15—C14—H14119.2C34—C33—H33119.5
C14—C15—C10117.5 (2)C35—C34—C33119.5 (2)
C14—C15—C16121.72 (19)C35—C34—H34120.2
C10—C15—C16120.77 (18)C33—C34—H34120.2
C21—C16—C17116.52 (19)C34—C35—C36121.1 (2)
C21—C16—C15120.50 (17)C34—C35—H35119.5
C17—C16—C15122.98 (19)C36—C35—H35119.5
C18—C17—C16121.8 (2)C35—C36—C31119.58 (19)
C18—C17—H17119.1C35—C36—C37121.44 (19)
C16—C17—H17119.1C31—C36—C37118.98 (18)
C17—C18—C19120.7 (2)O3—C37—C24118.63 (17)
C17—C18—H18119.6O3—C37—C36120.00 (18)
C19—C18—H18119.6C24—C37—C36121.37 (18)
C20—C19—C18119.5 (2)C22—O2—C23105.99 (14)
C20—C19—H19120.2C37—O3—H3115 (2)
C18—C19—H19120.2
C6—C1—C2—C31.0 (3)C10—C9—C22—C212.5 (3)
C1—C2—C3—C41.9 (4)C20—C21—C22—C9177.58 (19)
C1—C2—C3—Cl1179.48 (17)C16—C21—C22—C92.9 (3)
C2—C3—C4—C51.3 (4)C20—C21—C22—O25.4 (3)
Cl1—C3—C4—C5179.9 (2)C16—C21—C22—O2174.09 (16)
C3—C4—C5—C60.2 (4)C9—C8—C23—O20.7 (2)
C4—C5—C6—C11.1 (4)C7—C8—C23—O2175.36 (17)
C4—C5—C6—C7176.4 (2)C9—C8—C23—C24177.5 (2)
C2—C1—C6—C50.4 (3)C7—C8—C23—C241.5 (3)
C2—C1—C6—C7175.59 (19)C8—C23—C24—C3755.3 (3)
C5—C6—C7—O18.4 (3)O2—C23—C24—C37121.35 (19)
C1—C6—C7—O1166.7 (2)C8—C23—C24—C25124.7 (2)
C5—C6—C7—C8174.80 (19)O2—C23—C24—C2558.6 (2)
C1—C6—C7—C810.1 (3)C37—C24—C25—C26177.61 (19)
O1—C7—C8—C23117.9 (2)C23—C24—C25—C262.4 (3)
C6—C7—C8—C2365.3 (3)C37—C24—C25—C302.0 (3)
O1—C7—C8—C957.2 (3)C23—C24—C25—C30177.96 (17)
C6—C7—C8—C9119.5 (2)C30—C25—C26—C271.0 (3)
C23—C8—C9—C220.4 (2)C24—C25—C26—C27179.4 (2)
C7—C8—C9—C22175.41 (19)C25—C26—C27—C280.1 (4)
C23—C8—C9—C10173.2 (2)C26—C27—C28—C291.0 (4)
C7—C8—C9—C1011.0 (3)C27—C28—C29—C300.9 (4)
C22—C9—C10—C11177.33 (19)C28—C29—C30—C250.1 (3)
C8—C9—C10—C114.4 (3)C28—C29—C30—C31179.5 (2)
C22—C9—C10—C150.9 (3)C26—C25—C30—C291.0 (3)
C8—C9—C10—C15173.8 (2)C24—C25—C30—C29179.31 (18)
C15—C10—C11—C121.5 (3)C26—C25—C30—C31178.58 (18)
C9—C10—C11—C12179.7 (2)C24—C25—C30—C311.1 (3)
C10—C11—C12—C130.1 (4)C29—C30—C31—C36178.97 (19)
C11—C12—C13—C141.1 (5)C25—C30—C31—C360.6 (3)
C12—C13—C14—C150.3 (4)C29—C30—C31—C320.2 (3)
C13—C14—C15—C101.3 (4)C25—C30—C31—C32179.77 (19)
C13—C14—C15—C16179.4 (2)C36—C31—C32—C330.7 (3)
C11—C10—C15—C142.2 (3)C30—C31—C32—C33179.8 (2)
C9—C10—C15—C14179.59 (19)C31—C32—C33—C340.8 (4)
C11—C10—C15—C16178.45 (19)C32—C33—C34—C350.2 (4)
C9—C10—C15—C160.2 (3)C33—C34—C35—C361.3 (4)
C14—C15—C16—C21179.1 (2)C34—C35—C36—C311.4 (3)
C10—C15—C16—C210.2 (3)C34—C35—C36—C37178.4 (2)
C14—C15—C16—C171.7 (3)C32—C31—C36—C350.4 (3)
C10—C15—C16—C17178.98 (19)C30—C31—C36—C35178.76 (19)
C21—C16—C17—C181.9 (3)C32—C31—C36—C37179.40 (18)
C15—C16—C17—C18178.9 (2)C30—C31—C36—C371.4 (3)
C16—C17—C18—C190.6 (3)C25—C24—C37—O3178.54 (18)
C17—C18—C19—C200.8 (3)C23—C24—C37—O31.5 (3)
C18—C19—C20—C210.8 (3)C25—C24—C37—C361.2 (3)
C19—C20—C21—C160.6 (3)C23—C24—C37—C36178.75 (17)
C19—C20—C21—C22178.89 (19)C35—C36—C37—O30.1 (3)
C17—C16—C21—C201.9 (3)C31—C36—C37—O3179.74 (18)
C15—C16—C21—C20178.83 (18)C35—C36—C37—C24179.69 (19)
C17—C16—C21—C22177.64 (18)C31—C36—C37—C240.5 (3)
C15—C16—C21—C221.6 (3)C9—C22—O2—C230.4 (2)
C8—C9—C22—O20.0 (2)C21—C22—O2—C23177.00 (17)
C10—C9—C22—O2174.73 (16)C8—C23—O2—C220.6 (2)
C8—C9—C22—C21177.31 (17)C24—C23—O2—C22178.04 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring, Cg2 is the centroid of the C25–C30 ring and Cg3 is the centroid of the C9/C10/C15/C16/C21/C22 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.86 (1)2.01 (2)2.824 (2)156 (3)
C20—H20···Cl1ii0.932.683.564 (2)158
C35—H35···O1i0.932.523.277 (3)139
C11—H11···O10.932.533.275 (3)137
C26—H26···O20.932.523.057 (3)117
C13—H13···Cg1iii0.933.003.709 (3)134
C17—H17···Cg2iii0.932.943.745 (2)146
C32—H32···Cg3ii0.932.923.628 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x3/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring, Cg2 is the centroid of the C25–C30 ring and Cg3 is the centroid of the C9/C10/C15/C16/C21/C22 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.864 (10)2.013 (16)2.824 (2)156 (3)
C20—H20···Cl1ii0.93002.683.564 (2)158
C35—H35···O1i0.93002.523.277 (3)139
C11—H11···O10.93002.533.275 (3)137
C26—H26···O20.93002.523.057 (3)117
C13—H13···Cg1iii0.93003.003.709 (3)134
C17—H17···Cg2iii0.93002.943.745 (2)146
C32—H32···Cg3ii0.93002.923.628 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC37H21ClO3
Mr548.99
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.6682 (12), 13.4448 (15), 17.071 (2)
β (°) 93.091 (5)
V3)2674.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.918, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
19672, 5790, 3869
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.147, 1.01
No. of reflections5790
No. of parameters374
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT and XPREP (Bruker, 2007), SHELXS2012 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

SLU and JPJ are obliged to Dr S. Prathapan for introducing them to the field of domino reactions. SAIF (STIC) CUSAT, Kochi, India, provided spectroscopic, analytical and single-crystal X-ray diffraction data.

References

First citationAdamo, M., Suresh, S. & Piras, L. (2009). Tetrahedron, 65, 5402–5408.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCriado, A., Vilas-Varela, M., Cobas, A., Perez, D., Pena, D. & Guitian, E. (2013). J. Org. Chem. 78, 12637–12649.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJacob, A. M., Thumpakkara, R. K., Prathapan, S. & Jose, B. (2005). Tetrahedron, 61, 4601–4607.  Web of Science CSD CrossRef CAS Google Scholar
First citationKadzimirsz, D., Kramer, D., Sripanom, L., Oppel, I. M., Rodziewicz, P., Doltsinis, N. L. & Dyker, G. (2008). J. Org. Chem. 73, 4644–4649.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLipshutz, B. H. (1986). Chem. Rev. 86, 795–819.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Z., Fang, J. & Yan, C. (2013). Chin. J. Chem. 31, 1054–1058.  Web of Science CrossRef CAS Google Scholar
First citationMichael, J. P. (2000). Nat. Prod. Rep. 17, 603–620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuthusaravanan, S., Bala, B. D. & Perumal, S. (2013). Tetrahedron Lett. 54, 5302–5306.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanu, B. C., Adak, L. & Banerjee, S. (2008). Tetrahedron Lett. 49, 4613–4617.  Web of Science CSD CrossRef CAS Google Scholar
First citationRedon, S., Leleu, S., Pannecoucke, X., Franck, X. & Outurquin, F. (2008). Tetrahedron, 64, 9293–9304.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. & Batra, S. (2008). Tetrahedron, 64, 4511–4574.  Web of Science CrossRef CAS Google Scholar
First citationSnider, B. B. (1996). Chem. Rev. 96, 339–364.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTietze, L. F. & Beifuss, U. (1993). Angew. Chem. 105, 137–170.  CrossRef CAS Google Scholar
First citationUchuskin, G. M., Molodtsova, V. N., Lysenko, A. S., Strelnikov, N. V., Trushkov, V. I. & Butin, V. A. (2014). Eur. J. Org. Chem. pp. 2508–2515.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds