research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {μ-6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato}(meth­anol)(nitrato)nickel(II)sodium

aTaras Shevchenko National University of Kyiv, Department of Chemistry, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: ovmoroz@yahoo.com

Edited by M. Zeller, Youngstown State University, USA (Received 6 August 2014; accepted 30 September 2014; online 8 October 2014)

In the molecular structure of the title compound, [NaNi(C18H18N2O4)(NO3)(CH3OH)], the Ni2+ ion has a slightly distorted square-planar coordination environment defined by two N and two O atoms which belong to a Schiff base ligand, viz. 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolate. Seven O atoms form the coordination environment of the Na+ ion: four from the Schiff base ligand, two from a bidentate chelating nitrate anion and one O atom from a coordinating methanol mol­ecule. In the crystal, the bimetallic complexes are assembled into chains along the b-axis direction via weak C—H⋯O hydrogen-bond inter­actions. Neighbouring chains are in turn connected through bifurcated O—H⋯O hydrogen bonds that involve the coordinating methanol mol­ecules and the nitrate anions, and through ππ stacking inter­actions between phenyl rings of neighbouring mol­ecules.

1. Chemical context

Schiff bases are known to be effective ligands able to coord­inate a wide range of different metal ions, and they have been widely utilized in the study of biochemical processes (Lindoy et al., 1976[Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724-1727.]; Correia et al., 2005[Correia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. C. G. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732-744.]). Compartmental Schiff base ligands, i.e. tetra- and hexa­dentate Schiff base ligands with different `compartments' for different types of metal ions, have been employed extensively as `blocking ligands'. Typical examples would be e.g. ligands with an N2O4 donor set with two Schiff base N-donor sites, two anionic phenolate donor sites, and two additional ether donor sites. The N2O2 compartment is generally more favorable for 3d metal ions. The additional O-donor atoms provide the opportunity to accommodate a second metal ion, which might be a 3d-, 4f-, s- or p-block element, thus allowing the production of di-, tri- or oligonuclear systems (Gheorghe et al., 2006[Gheorghe, R., Cucos, P., Andruh, M., Costes, J.-P., Donnadieu, B. & Shova, S. (2006). Chem. Eur. J. 12, 187-203.]; Costes et al., 2008[Costes, J.-P., Shova, S. & Wernsdorfer, W. (2008). Dalton Trans. pp. 1843-1849.]; Andruh et al., 2009[Andruh, M., Branzea, D. G., Gheorghe, R. & Madalan, A. M. (2009). CrystEngComm, 11, 2571-2584.]).

Studies on heterometallic complexes began at the end of the 1960s. They are of inter­est because of their physicochemical properties that arise from the presence of dissimilar metal ions in close proximity. The majority of publications in this field are devoted to the preparation of 3d–4f heterometallic complexes (Costes et al., 1998[Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). Chem. Eur. J. 4, 1616-1620.]; Koner et al., 2005[Koner, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524-3536.]; Sakamoto et al., 2001[Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219-221, 379-414.]). Metal salicylaldimines, on the other hand, represent a fascin­ating group of ligands that are not only effective complexing agents for p- and d-block elements, but also for alkali metal ions similar to the more well known ligand systems such as crown ethers, cryptands etc. Much of the inter­est concerning the coordination chemistry of alkali metal ions originates from the development of mol­ecular systems that can mimic natur­ally occurring mol­ecules that are responsible for the selective transport of these ions, e.g. through membranes. Some of the alkali–metal-ion adducts behave as precursors for other potentially inter­esting mol­ecular species that can be used for small-mol­ecule activation (Gambarotta et al., 1982[Gambarotta, S., Arena, F., Floriani, C. & Zanazzi, P. F. (1982). J. Am. Chem. Soc. 104, 5082-5092.]), electron storage (Gallo et al., 1997[Gallo, E., Solari, E., Re, N., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1997). J. Am. Chem. Soc. 119, 5144-5154.]) and the production of materials with remarkable magnetic properties, the alkali cation being crucial in determining the three-dimensional network in the solid state (Miyasaka et al., 1996[Miyasaka, H., Matsumoto, N., Ōkawa, H., Re, N., Gallo, E. & Floriani, C. (1996). J. Am. Chem. Soc. 118, 981-994.]).

[Scheme 1]

In the case of compartmental Schiff base ligands such as e.g. N(imine)2O(phenoxo)2O(meth­oxy/eth­oxy)2, the metal ion may be either retained in the plane of the O4 donor set or sandwiched between two sets of the Schiff base O atoms. The former case is usually characterized by a coordination number of eight from two O(phenoxo)2O(meth­oxy/eth­oxy)2 com­part­ments which belong to different mol­ecules. The latter features a coordination number of six from the O4 compartment of the Schiff base, and two other donors are provided by coordinating solvent mol­ecules and/or anions. The present paper is devoted to the synthesis and structural analysis of an Ni2+-containing complex [NaNi(L)(CH3OH)(NO3)], (I)[link], in which the Na+ ion has a seven-coordination geometry and where H2L is the compartmental Schiff base ligand 6,6′-dimeth­oxy-2,2′-(ethane-1,2-diyldi­imino­dimethyl­ene)diphenol.

2. Structural commentary

The mol­ecular structure of compound (I)[link] with the atom numbering is shown in Fig. 1[link]. Two phenolate O atoms provided by the Schiff base ligand create a double bridge between the Ni2+ and Na+ ions. The coordination environment of the Ni2+ ion is square-planar, formed by two imine N atoms and two phenolate O atoms. The Na+ ion has an unusual seven-coordinated geometry in which the ion sits in the plane of the Schiff base O atoms. Further significant inter­actions with two nitrate O atoms and one O atom from the coordin­ating methanol mol­ecule, which are located above and below the plane formed by L, complete the coordination sphere. Values for the geometric parameters in (I)[link] are in good agreement with those observed for complexes based on similar Schiff base ligands (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]; Cunningham et al., 2000[Cunningham, D., McArdle, P., Mitchell, M., Chonchubhair, N. N., O'Gara, M., Franceschi, F. & Floriani, C. (2000). Inorg. Chem. 39, 1639-1649.]; Wang & Shen, 2009[Wang, W. & Shen, Y.-M. (2009). Acta Cryst. E65, m557.]; Xiao, 2009[Xiao, H.-Q. (2009). Acta Cryst. E65, m400.]). The two phenoxo and two meth­oxy O atoms of the O(phenoxo)2O(eth­oxy)2 moiety adopt a planar geometry as evidenced by the small mean deviation of the O atoms (<0.02 Å), from the O5/O6/O7/O8 least-squares plane. The deviations of the Na+ and Ni2+ ions from the O5/O6/O7/O8 plane [0.166 (1) and 0.008 (2) Å, respectively] indicate that Na and Ni are well incorporated in the O(phenoxo)2O(eth­oxy)2 moiety.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal structure, the mol­ecules of the title compound form chains along the b-axis via weak C—H⋯O hydrogen-bond inter­actions (Fig. 2[link], Table 1[link]). The C atom of the ethyl­ene moiety acts as a donor and one O atom of the nitrate anion of the neighboring mol­ecule acts as an acceptor. These chains are further assembled into sheets by a bifurcated O—H⋯O hydrogen bond (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]), which involves the coordin­ating methanol mol­ecule and nitrate units (Fig. 3[link], Table 1[link]) and through ππ stacking inter­actions, which exist between phenyl rings of neighbouring mol­ecules, with a separation of 3.5845 (11) Å between the centroids formed by the C atoms of the rings [symmetry code: (iii) −x + 1, −y, −z]. For the O—H⋯O hydrogen bond, the O atom of the methanol mol­ecule acts as a donor and the O atoms of the nitrate anion of the neighbouring mol­ecule act as the acceptors.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1i 0.82 2.24 2.991 (2) 154
O4—H4O⋯O3i 0.82 2.49 3.181 (2) 143
C8—H8B⋯O2ii 0.97 2.65 3.152 (2) 112
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z.
[Figure 2]
Figure 2
The mol­ecular packing for (I)[link], viewed along the b axis. C—H⋯O inter­actions are shown as dashed lines.
[Figure 3]
Figure 3
O—H⋯O and ππ contacts for (I)[link], shown as dashed lines, with ring centroids shown as coloured spheres.

4. Synthesis and crystallization

A mixture of 6,6′-dimeth­oxy-2,2′-(ethane-1,2-diyldi­imino­dimethyl­ene)diphenol (1 mmol) and nickel nitrate (1 mmol) in methanol (15 ml) was stirred for 30 min at room temperature. Then, sodium nitrate (1mmol) was added, and the mixture was stirred for another 30 min and filtered. The resulting clear orange filtrate was left at ambient temperature for crystallization in air. The red–orange block-shaped crystals were collected by filtration after 6 d, washed with chilled iso­propanol and dried on filter paper (yield 0.28 g, 56%).

5. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (methyl­ene), with Uiso(H) = 1.2Ueq(C), C—H = 0.98 Å for methyl H atoms, with Uiso(H) = 1.5Ueq(C), and O—H = 0.82 Å for the hy­droxy group of methanol, with Uiso(H) = 1.5Ueq(O). Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [NaNi(C18H18N2O4)(NO3)(CH4O)]
Mr 502.09
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.207 (1), 11.047 (1), 13.619 (1)
α, β, γ (°) 95.30 (1), 99.81 (1), 99.05 (1)
V3) 1047.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.690, 0.825
No. of measured, independent and observed [I > 2σ(I)] reflections 12718, 6501, 4324
Rint 0.020
(sin θ/λ)max−1) 0.744
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 0.90
No. of reflections 6501
No. of parameters 292
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.32
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

Schiff bases are known to be effective ligands able to coordinate a wide range of different metal ions, and they have been widely utilized in the study of biochemical processes (Lindoy, et al., 1976; Correia, et al., 2005). Compartmental Schiff base ligands, i.e. tetra- and hexadentate Schiff base ligands with different `compartments' for different types of metal ions, have been employed extensively as `blocking ligands'. Typical examples would be e.g. ligands with an N2O4 donor set with two Schiff base N-donor sites, two anionic phenolate donor sites, and two additional ether donor sites. The N2O2 compartment is generally more favorable for 3d metal ions. The additional O-donor atoms provide the opportunity to accommodate a second metal ion, which might be a 3d-, 4f-, s- or p-block element, thus allowing the production of di-, tri- or oligonuclear systems (Gheorghe et al., 2006; Costes et al., 2008; Andruh et al., 2009).

Studies on heterometallic complexes began at the end of the 1960s. They are of inter­est because of their physicochemical properties that arise from the presence of dissimilar metal ions in close proximity. The majority of publications in this field are devoted to the preparation of 3d–4f heterometallic complexes (Costes et al., 1998; Koner et al., 2005; Sakamoto et al., 2001). Metal salicylaldimines, on the other hand, represent a fascinating group of ligands that are not only effective complexing agents for p- and d-block elements, but also for alkali metal ions similar to the more well known ligand systems such as crown ethers, cryptands etc. Much of the inter­est concerning the coordination chemistry of alkali metal ions originates from the development of molecular systems that can mimic naturally occurring molecules that are responsible for the selective transport of these ions, e.g. through membranes. Some of the alkali–metal-ion adducts behave as precursors for other potentially inter­esting molecular species that can be used for small-molecule activation (Gambarotta et al., 1982), electron storage (Gallo et al., 1997) and producing materials with remarkable magnetic properties, the alkali cation being crucial in determining the three-dimensional network in the solid state (Miyasaka et al., 1996).

In the case of compartmental Schiff base ligands such as e.g. N(imine)2O(phenoxo)2O(meth­oxy/eth­oxy)2, the metal ion may be either retained in the plane of the O4 donor set or sandwiched between two sets of the Schiff base O atoms. The former case is usually characterized by a coordination number of eight from two O(phenoxo)2O(meth­oxy/eth­oxy)2 compartments which belong to different molecules. The latter features a coordination number of six from the O4 compartment of the Schiff base, and two other donors are provided by coordinated solvent molecules and/or anions. The present paper is devoted to the synthesis and structural analysis of an Ni2+-containing complex [NaNi(L)(CH3OH)(NO3)], (I), in which the Na+ ion has an unusual seven-coordination geometry and where H2L is the compartmental Schiff base ligand 6,6'-di­meth­oxy-2,2'-(ethane-1,2-diyldi­imino­dimethyl­ene)-diphenol.

Structural commentary top

The molecular structure of compound (I) with the atom numbering is shown in Fig. 1. Two phenolate O atoms provided by the Schiff base ligand create a double bridge between the Ni2+ and Na+ ions. The coordination environment of the Ni2+ ion is square-planar, formed by two imine N atoms and two phenolate O atoms. The Na+ ion has an unusual seven-coordinated geometry in which the ion sits in the plane of the Schiff base O atoms. Further significant inter­actions with two nitrate O atoms and one O atom from the coordinating methanol molecule, which are located above and below the plane formed by L, complete the coordination sphere. Values for the geometric parameters in (I) are in good agreement with those observed for complexes based on similar Schiff base ligands (Allen et al., 1987; Cunningham et al., 2000; Wang & Shen, 2009; Xiao, 2009). The two phenoxo and two meth­oxy O atoms of the O(phenoxo)2O(eth­oxy)2 moiety adopt a planar geometry as evidenced by the small mean deviation of the O atoms (<0.02 Å), from the O5/O6/O7/O8 least-squares plane. The deviations of the Na and Ni atoms from the O5/O6/O7/O8 plane [0.166 (1) and 0.008 (2) Å, respectively] indicate that Na and Ni are well incorporated in the O(phenoxo)2O(eth­oxy)2 moiety.

Supra­molecular features top

In the crystal structure, the molecules of the title compound form chains along the b-axis via weak C—H···O hydrogen-bond inter­actions (Fig. 2). The C atom of the ethyl­ene moiety acts as a donor and one O atom of the nitrate anion of the neighboring molecule acts as the acceptor (H8B···O2ii = 2.65 Å, C8—H8B···O2ii =112.2°; symmetry code: (ii) x, y-1, z). Theses chains are further assembled into sheets by a bifurcated O—H···O hydrogen bond (Steiner, 2002), which involves the coordinated methanol molecule and the coordinated nitrate (Fig. 3 and Table 1) and through π-stacking inter­actions, which exist between phenyl rings of neighbouring molecules, with a separation of 3.5845 (11) Å between the centroids formed by the C atoms of the rings [symmetry code: (iii) -x+1, -y, -z]. For the O—H···O hydrogen bond, the O atom of the methanol molecule acts as a donor and the O atoms of the nitrate anion of the neighbouring molecule act as the acceptors [H4O···O1i = 2.24 Å, O4—H4O···O1i = 153.9°; H4O···O3i = 2.49 Å, O4—H4O···O3i = 142.7°; symmetry code: (i) x-1, y, z].

Synthesis and crystallization top

A mixture of 6,6'-di­meth­oxy-2,2'-(ethane-1,2-diyldi­imino­dimethyl­ene)diphenol (1 mmol) and nickel nitrate (1 mmol) in methanol (15 ml) was stirred for 30 min at room temperature. Then, sodium nitrate (1mmol) was added, and the mixture was stirred for another 30 min and filtered. The resulting clear orange filtrate was left at ambient temperature for crystallization in air. The red–orange block-shaped crystals were collected by filtration after 6 d, washed with chilled iso­propanol and dried on filter paper (yield 0.28 g, 56%).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (methyl­ene), with Uiso(H) = 1.2Ueq(C), C—H = 0.98 Å for methyl H atoms, with Uiso(H) = 1.5Ueq(C), and O—H = 0.82 Å for the hy­droxy group of methanol, with Uiso(H) = 1.5Ueq(O). Crystal data, data collection and structure refinement details are summarized in Table 2.

Related literature top

For related literature, see: Allen et al. (1987); Andruh et al. (2009); Correia et al. (2005); Costes et al. (1998, 2008); Cunningham et al. (2000); Gallo et al. (1997); Gambarotta et al. (1982); Gheorghe et al. (2006); Koner et al. (2005); Lindoy et al. (1976); Miyasaka et al. (1996); Sakamoto et al. (2001); Steiner (2002); Wang & Shen (2009); Xiao (2009).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

The molecular packing for (I), viewed along the b axis. C—H···O interactions are shown as dashed lines.

O—H···O and ππ contacts for (I), shown as dashed lines, with ring centroids shown as coloured spheres.
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}(methanol)(nitrato)nickel(II)sodium top
Crystal data top
[NaNi(C18H18N2O4)(NO3)(CH4O)]Z = 2
Mr = 502.09F(000) = 520
Triclinic, P1Dx = 1.592 Mg m3
a = 7.207 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.047 (1) ÅCell parameters from 12718 reflections
c = 13.619 (1) Åθ = 2.9–31.9°
α = 95.30 (1)°µ = 1.00 mm1
β = 99.81 (1)°T = 293 K
γ = 99.05 (1)°Block, white
V = 1047.2 (2) Å30.4 × 0.2 × 0.2 mm
Data collection top
Nonius KappaCCD
diffractometer
4324 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.020
ϕ scans and ω scans with κ offsetθmax = 31.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 810
Tmin = 0.690, Tmax = 0.825k = 1515
12718 measured reflectionsl = 1920
6501 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
6501 reflectionsΔρmax = 0.50 e Å3
292 parametersΔρmin = 0.32 e Å3
Crystal data top
[NaNi(C18H18N2O4)(NO3)(CH4O)]γ = 99.05 (1)°
Mr = 502.09V = 1047.2 (2) Å3
Triclinic, P1Z = 2
a = 7.207 (1) ÅMo Kα radiation
b = 11.047 (1) ŵ = 1.00 mm1
c = 13.619 (1) ÅT = 293 K
α = 95.30 (1)°0.4 × 0.2 × 0.2 mm
β = 99.81 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6501 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4324 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.825Rint = 0.020
12718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.90Δρmax = 0.50 e Å3
6501 reflectionsΔρmin = 0.32 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.3085 (3)0.47914 (14)0.20473 (11)0.0500 (4)
N21.0634 (2)0.10231 (12)0.31510 (10)0.0414 (3)
N30.87587 (19)0.13606 (11)0.13663 (10)0.0384 (3)
O11.3115 (2)0.36716 (13)0.19219 (14)0.0823 (5)
O21.1514 (2)0.51204 (13)0.20629 (12)0.0692 (4)
O31.4575 (2)0.55470 (16)0.21536 (12)0.0840 (5)
O40.7094 (2)0.36010 (15)0.29641 (10)0.0708 (4)
H4O0.62100.37840.25820.106*
O51.04924 (18)0.14171 (10)0.31975 (8)0.0439 (3)
O60.87634 (17)0.10986 (10)0.14652 (8)0.0401 (3)
O70.7790 (2)0.29628 (11)0.06339 (9)0.0531 (3)
O81.1398 (2)0.36213 (11)0.41444 (9)0.0539 (3)
C11.2043 (2)0.27108 (16)0.46557 (12)0.0417 (4)
C21.3145 (3)0.28976 (19)0.56084 (13)0.0504 (4)
H21.34920.36880.59580.060*
C31.3734 (3)0.1895 (2)0.60439 (14)0.0592 (5)
H31.44870.20220.66830.071*
C41.3227 (3)0.0743 (2)0.55493 (13)0.0554 (5)
H41.36250.00850.58560.067*
C51.2091 (2)0.05142 (16)0.45629 (12)0.0419 (4)
C61.1504 (2)0.15157 (15)0.41092 (11)0.0380 (4)
C71.1604 (3)0.07053 (17)0.40535 (13)0.0457 (4)
H71.20190.13300.43990.055*
C81.0406 (3)0.23159 (17)0.27149 (14)0.0585 (5)
H8A1.00110.28600.31890.070*
H8B1.16160.24880.25680.070*
C90.8924 (3)0.25411 (15)0.17663 (15)0.0578 (5)
H9A0.92870.31050.12740.069*
H9B0.76990.29140.19050.069*
C100.7997 (2)0.13762 (15)0.04360 (13)0.0411 (4)
H100.77110.21360.00370.049*
C110.7552 (2)0.03232 (15)0.00347 (11)0.0366 (3)
C120.6631 (3)0.04768 (17)0.10544 (12)0.0455 (4)
H120.63840.12550.14240.055*
C130.6106 (3)0.04949 (18)0.14969 (12)0.0489 (4)
H130.55000.03740.21670.059*
C140.6459 (2)0.16813 (16)0.09638 (12)0.0419 (4)
H140.60870.23420.12760.050*
C150.7366 (2)0.18574 (15)0.00292 (11)0.0372 (4)
C160.7923 (2)0.08597 (14)0.05155 (11)0.0340 (3)
C170.7114 (4)0.39946 (18)0.02595 (15)0.0719 (7)
H17A0.77270.42180.02870.108*
H17B0.73990.46760.07840.108*
H17C0.57550.37910.00270.108*
C181.2117 (4)0.48674 (18)0.45544 (16)0.0714 (7)
H18A1.18420.50020.52170.107*
H18B1.15190.54050.41360.107*
H18C1.34750.50390.45870.107*
C190.6357 (4)0.2606 (2)0.34481 (17)0.0756 (7)
H19A0.61040.18560.29940.113*
H19B0.51920.27550.36500.113*
H19C0.72750.25310.40290.113*
Ni10.96567 (3)0.00143 (2)0.22924 (2)0.03524 (7)
Na10.97774 (10)0.30835 (6)0.23162 (5)0.04288 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0603 (11)0.0439 (9)0.0431 (8)0.0079 (8)0.0013 (7)0.0085 (7)
N20.0517 (9)0.0324 (7)0.0464 (8)0.0153 (6)0.0169 (7)0.0103 (6)
N30.0379 (8)0.0283 (7)0.0493 (8)0.0060 (5)0.0091 (6)0.0051 (6)
O10.0755 (12)0.0449 (9)0.1300 (14)0.0208 (8)0.0217 (10)0.0081 (9)
O20.0728 (11)0.0523 (9)0.0915 (11)0.0276 (8)0.0203 (8)0.0175 (7)
O30.0702 (12)0.0779 (11)0.0851 (11)0.0239 (9)0.0063 (8)0.0156 (9)
O40.0659 (10)0.0912 (11)0.0610 (9)0.0337 (9)0.0065 (7)0.0143 (8)
O50.0570 (8)0.0342 (6)0.0367 (6)0.0132 (5)0.0063 (5)0.0041 (5)
O60.0512 (7)0.0295 (6)0.0350 (6)0.0094 (5)0.0055 (5)0.0019 (4)
O70.0809 (10)0.0335 (6)0.0400 (6)0.0180 (6)0.0087 (6)0.0025 (5)
O80.0715 (9)0.0379 (7)0.0434 (7)0.0095 (6)0.0106 (6)0.0001 (5)
C10.0384 (10)0.0475 (10)0.0373 (8)0.0068 (7)0.0027 (7)0.0043 (7)
C20.0466 (11)0.0605 (12)0.0384 (9)0.0031 (9)0.0000 (8)0.0025 (8)
C30.0523 (13)0.0792 (15)0.0418 (10)0.0118 (10)0.0052 (8)0.0112 (10)
C40.0549 (13)0.0717 (14)0.0440 (10)0.0226 (10)0.0022 (8)0.0227 (9)
C50.0403 (10)0.0495 (10)0.0397 (9)0.0145 (8)0.0076 (7)0.0131 (7)
C60.0339 (9)0.0467 (10)0.0344 (8)0.0092 (7)0.0049 (6)0.0089 (7)
C70.0502 (11)0.0501 (11)0.0467 (10)0.0230 (8)0.0145 (8)0.0231 (8)
C80.0886 (16)0.0380 (10)0.0563 (11)0.0250 (10)0.0168 (10)0.0146 (8)
C90.0685 (14)0.0264 (9)0.0742 (13)0.0049 (8)0.0038 (10)0.0070 (8)
C100.0410 (10)0.0290 (8)0.0507 (10)0.0018 (7)0.0107 (7)0.0052 (7)
C110.0338 (9)0.0360 (8)0.0386 (8)0.0031 (6)0.0076 (6)0.0006 (6)
C120.0492 (11)0.0443 (10)0.0379 (9)0.0016 (8)0.0075 (7)0.0079 (7)
C130.0497 (11)0.0615 (12)0.0309 (8)0.0046 (9)0.0022 (7)0.0003 (8)
C140.0421 (10)0.0480 (10)0.0357 (8)0.0098 (7)0.0044 (7)0.0083 (7)
C150.0378 (9)0.0377 (9)0.0352 (8)0.0079 (7)0.0036 (6)0.0043 (6)
C160.0326 (9)0.0327 (8)0.0346 (8)0.0039 (6)0.0041 (6)0.0009 (6)
C170.111 (2)0.0414 (11)0.0596 (12)0.0280 (11)0.0082 (12)0.0091 (9)
C180.0865 (18)0.0455 (12)0.0671 (13)0.0025 (11)0.0136 (12)0.0035 (10)
C190.0713 (17)0.0801 (17)0.0719 (15)0.0061 (13)0.0154 (12)0.0002 (13)
Ni10.03972 (13)0.02768 (11)0.03891 (12)0.00921 (8)0.00475 (8)0.00648 (8)
Na10.0529 (4)0.0312 (3)0.0421 (3)0.0085 (3)0.0013 (3)0.0039 (3)
Geometric parameters (Å, º) top
N1—O31.230 (2)C4—C51.427 (2)
N1—O11.2372 (19)C4—H40.9300
N1—O21.246 (2)C5—C61.403 (2)
N1—Na12.8961 (19)C5—C71.420 (2)
N2—C71.293 (2)C7—H70.9300
N2—C81.468 (2)C8—C91.503 (3)
N2—Ni11.8433 (13)C8—H8A0.9700
N3—C101.290 (2)C8—H8B0.9700
N3—C91.473 (2)C9—H9A0.9700
N3—Ni11.8371 (13)C9—H9B0.9700
O1—Na12.5512 (19)C10—C111.432 (2)
O2—Na12.4806 (16)C10—H100.9300
O4—C191.412 (3)C11—C161.408 (2)
O4—Na12.3837 (17)C11—C121.416 (2)
O4—H4O0.8151C12—C131.352 (3)
O5—C61.3139 (18)C12—H120.9300
O5—Ni11.8396 (11)C13—C141.402 (2)
O5—Na12.3644 (12)C13—H130.9300
O6—C161.3148 (17)C14—C151.380 (2)
O6—Ni11.8339 (10)C14—H140.9300
O6—Na12.3288 (12)C15—C161.413 (2)
O7—C151.3689 (19)C17—H17A0.9600
O7—C171.412 (2)C17—H17B0.9600
O7—Na12.4666 (13)C17—H17C0.9600
O8—C11.371 (2)C18—H18A0.9600
O8—C181.418 (2)C18—H18B0.9600
O8—Na12.5364 (13)C18—H18C0.9600
C1—C21.380 (2)C19—Na13.125 (3)
C1—C61.416 (2)C19—H19A0.9600
C2—C31.394 (3)C19—H19B0.9600
C2—H20.9300C19—H19C0.9600
C3—C41.349 (3)Ni1—Na13.3749 (7)
C3—H30.9300
O3—N1—O1120.31 (19)O6—C16—C11123.80 (14)
O3—N1—O2121.67 (18)O6—C16—C15117.42 (13)
O1—N1—O2118.02 (17)C11—C16—C15118.78 (13)
O3—N1—Na1166.28 (12)O7—C17—H17A109.5
O1—N1—Na161.59 (11)O7—C17—H17B109.5
O2—N1—Na158.35 (10)H17A—C17—H17B109.5
C7—N2—C8118.06 (14)O7—C17—H17C109.5
C7—N2—Ni1126.55 (12)H17A—C17—H17C109.5
C8—N2—Ni1115.16 (11)H17B—C17—H17C109.5
C10—N3—C9118.99 (14)O8—C18—H18A109.5
C10—N3—Ni1126.49 (11)O8—C18—H18B109.5
C9—N3—Ni1114.51 (11)H18A—C18—H18B109.5
N1—O1—Na193.16 (12)O8—C18—H18C109.5
N1—O2—Na196.34 (11)H18A—C18—H18C109.5
C19—O4—Na1108.10 (13)H18B—C18—H18C109.5
C19—O4—H4O108.2O4—C19—Na146.47 (10)
Na1—O4—H4O119.0O4—C19—H19A109.5
C6—O5—Ni1127.75 (10)Na1—C19—H19A79.9
C6—O5—Na1125.60 (10)O4—C19—H19B109.5
Ni1—O5—Na1106.12 (5)Na1—C19—H19B155.4
C16—O6—Ni1127.73 (10)H19A—C19—H19B109.5
C16—O6—Na1123.96 (9)O4—C19—H19C109.5
Ni1—O6—Na1107.75 (5)Na1—C19—H19C87.4
C15—O7—C17118.69 (13)H19A—C19—H19C109.5
C15—O7—Na1118.60 (9)H19B—C19—H19C109.5
C17—O7—Na1122.69 (10)O6—Ni1—N395.02 (5)
C1—O8—C18118.12 (13)O6—Ni1—O583.21 (5)
C1—O8—Na1118.85 (9)N3—Ni1—O5178.04 (5)
C18—O8—Na1120.66 (11)O6—Ni1—N2177.63 (6)
O8—C1—C2125.03 (16)N3—Ni1—N287.08 (6)
O8—C1—C6113.83 (13)O5—Ni1—N294.71 (6)
C2—C1—C6121.13 (16)O6—Ni1—Na141.09 (3)
C1—C2—C3119.59 (18)N3—Ni1—Na1135.99 (4)
C1—C2—H2120.2O5—Ni1—Na142.30 (3)
C3—C2—H2120.2N2—Ni1—Na1136.74 (5)
C4—C3—C2120.82 (16)O6—Na1—O562.62 (4)
C4—C3—H3119.6O6—Na1—O4105.64 (6)
C2—C3—H3119.6O5—Na1—O4102.21 (5)
C3—C4—C5121.15 (18)O6—Na1—O764.88 (4)
C3—C4—H4119.4O5—Na1—O7127.21 (5)
C5—C4—H4119.4O4—Na1—O786.56 (5)
C6—C5—C7121.30 (15)O6—Na1—O2139.36 (6)
C6—C5—C4118.75 (17)O5—Na1—O2136.66 (5)
C7—C5—C4119.95 (16)O4—Na1—O2103.03 (6)
O5—C6—C5123.93 (15)O7—Na1—O288.99 (5)
O5—C6—C1117.52 (14)O6—Na1—O8125.89 (5)
C5—C6—C1118.55 (14)O5—Na1—O863.39 (4)
N2—C7—C5125.72 (15)O4—Na1—O882.22 (5)
N2—C7—H7117.1O7—Na1—O8166.29 (5)
C5—C7—H7117.1O2—Na1—O885.91 (5)
N2—C8—C9109.13 (14)O6—Na1—O1102.51 (5)
N2—C8—H8A109.9O5—Na1—O195.38 (5)
C9—C8—H8A109.9O4—Na1—O1151.34 (6)
N2—C8—H8B109.9O7—Na1—O1100.68 (6)
C9—C8—H8B109.9O2—Na1—O150.02 (5)
H8A—C8—H8B108.3O8—Na1—O185.75 (6)
N3—C9—C8109.49 (14)O6—Na1—N1124.94 (5)
N3—C9—H9A109.8O5—Na1—N1114.82 (5)
C8—C9—H9A109.8O4—Na1—N1126.53 (6)
N3—C9—H9B109.8O7—Na1—N198.99 (5)
C8—C9—H9B109.8O2—Na1—N125.31 (4)
H9A—C9—H9B108.2O8—Na1—N181.61 (5)
N3—C10—C11125.54 (14)O1—Na1—N125.25 (4)
N3—C10—H10117.2O6—Na1—C1988.26 (6)
C11—C10—H10117.2O5—Na1—C1977.74 (6)
C16—C11—C12119.08 (15)O4—Na1—C1925.43 (6)
C16—C11—C10120.98 (14)O7—Na1—C1995.80 (6)
C12—C11—C10119.84 (14)O2—Na1—C19126.74 (6)
C13—C12—C11120.74 (15)O8—Na1—C1977.25 (6)
C13—C12—H12119.6O1—Na1—C19162.98 (6)
C11—C12—H12119.6N1—Na1—C19146.80 (6)
C12—C13—C14121.20 (15)O6—Na1—Ni131.17 (3)
C12—C13—H13119.4O5—Na1—Ni131.58 (3)
C14—C13—H13119.4O4—Na1—Ni1108.42 (5)
C15—C14—C13119.21 (16)O7—Na1—Ni196.03 (3)
C15—C14—H14120.4O2—Na1—Ni1148.38 (4)
C13—C14—H14120.4O8—Na1—Ni194.97 (3)
O7—C15—C14125.11 (15)O1—Na1—Ni198.44 (4)
O7—C15—C16113.90 (12)N1—Na1—Ni1123.52 (4)
C14—C15—C16120.99 (15)C19—Na1—Ni183.90 (5)
O3—N1—O1—Na1164.40 (14)C12—C13—C14—C150.3 (3)
O2—N1—O1—Na115.51 (17)C17—O7—C15—C146.0 (3)
O3—N1—O2—Na1163.87 (15)Na1—O7—C15—C14172.37 (14)
O1—N1—O2—Na116.04 (18)C17—O7—C15—C16173.20 (18)
C18—O8—C1—C29.2 (3)Na1—O7—C15—C168.43 (19)
Na1—O8—C1—C2171.84 (14)C13—C14—C15—O7179.79 (16)
C18—O8—C1—C6169.82 (18)C13—C14—C15—C160.6 (3)
Na1—O8—C1—C67.19 (19)Ni1—O6—C16—C110.5 (2)
O8—C1—C2—C3179.16 (17)Na1—O6—C16—C11170.80 (12)
C6—C1—C2—C30.2 (3)Ni1—O6—C16—C15179.59 (11)
C1—C2—C3—C40.6 (3)Na1—O6—C16—C159.3 (2)
C2—C3—C4—C50.6 (3)C12—C11—C16—O6179.76 (15)
C3—C4—C5—C60.1 (3)C10—C11—C16—O63.2 (3)
C3—C4—C5—C7178.98 (19)C12—C11—C16—C150.2 (2)
Ni1—O5—C6—C51.7 (2)C10—C11—C16—C15176.70 (15)
Na1—O5—C6—C5172.10 (12)O7—C15—C16—O60.1 (2)
Ni1—O5—C6—C1177.62 (12)C14—C15—C16—O6179.34 (15)
Na1—O5—C6—C17.2 (2)O7—C15—C16—C11179.82 (15)
C7—C5—C6—O50.5 (3)C14—C15—C16—C110.6 (2)
C4—C5—C6—O5178.43 (16)C16—O6—Ni1—N34.68 (14)
C7—C5—C6—C1179.72 (16)Na1—O6—Ni1—N3176.25 (6)
C4—C5—C6—C10.8 (3)C16—O6—Ni1—O5176.15 (14)
O8—C1—C6—O50.7 (2)Na1—O6—Ni1—O54.58 (6)
C2—C1—C6—O5178.41 (16)C16—O6—Ni1—Na1171.57 (17)
O8—C1—C6—C5179.98 (15)C10—N3—Ni1—O67.18 (15)
C2—C1—C6—C50.9 (3)C9—N3—Ni1—O6171.60 (13)
C8—N2—C7—C5174.90 (17)C10—N3—Ni1—N2171.71 (15)
Ni1—N2—C7—C50.6 (3)C9—N3—Ni1—N29.50 (13)
C6—C5—C7—N21.0 (3)C10—N3—Ni1—Na13.64 (18)
C4—C5—C7—N2177.89 (17)C9—N3—Ni1—Na1175.15 (10)
C7—N2—C8—C9168.53 (17)C6—O5—Ni1—O6176.40 (15)
Ni1—N2—C8—C916.6 (2)Na1—O5—Ni1—O64.48 (6)
C10—N3—C9—C8160.57 (16)C6—O5—Ni1—N22.46 (15)
Ni1—N3—C9—C820.5 (2)Na1—O5—Ni1—N2174.39 (6)
N2—C8—C9—N322.7 (2)C6—O5—Ni1—Na1171.92 (17)
C9—N3—C10—C11173.00 (16)C7—N2—Ni1—N3178.85 (16)
Ni1—N3—C10—C115.7 (3)C8—N2—Ni1—N34.44 (14)
N3—C10—C11—C160.5 (3)C7—N2—Ni1—O51.95 (16)
N3—C10—C11—C12177.00 (17)C8—N2—Ni1—O5176.35 (13)
C16—C11—C12—C130.2 (3)C7—N2—Ni1—Na13.57 (19)
C10—C11—C12—C13176.39 (16)C8—N2—Ni1—Na1170.84 (11)
C11—C12—C13—C140.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.822.242.991 (2)154
O4—H4O···O3i0.822.493.181 (2)143
C8—H8B···O2ii0.972.653.152 (2)112
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1i0.822.242.991 (2)153.9
O4—H4O···O3i0.822.493.181 (2)142.7
C8—H8B···O2ii0.972.653.152 (2)112.2
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[NaNi(C18H18N2O4)(NO3)(CH4O)]
Mr502.09
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.207 (1), 11.047 (1), 13.619 (1)
α, β, γ (°)95.30 (1), 99.81 (1), 99.05 (1)
V3)1047.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.690, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
12718, 6501, 4324
Rint0.020
(sin θ/λ)max1)0.744
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 0.90
No. of reflections6501
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.32

Computer programs: COLLECT (Nonius, 1999), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors are grateful to Dr Y. S. Moroz for his kind assistance in refining the structure.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAndruh, M., Branzea, D. G., Gheorghe, R. & Madalan, A. M. (2009). CrystEngComm, 11, 2571–2584.  Web of Science CrossRef Google Scholar
First citationCorreia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. C. G. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.  Web of Science CSD CrossRef Google Scholar
First citationCostes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). Chem. Eur. J. 4, 1616–1620.  CrossRef CAS Google Scholar
First citationCostes, J.-P., Shova, S. & Wernsdorfer, W. (2008). Dalton Trans. pp. 1843–1849.  Web of Science CSD CrossRef Google Scholar
First citationCunningham, D., McArdle, P., Mitchell, M., Chonchubhair, N. N., O'Gara, M., Franceschi, F. & Floriani, C. (2000). Inorg. Chem. 39, 1639–1649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGallo, E., Solari, E., Re, N., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1997). J. Am. Chem. Soc. 119, 5144–5154.  CSD CrossRef CAS Web of Science Google Scholar
First citationGambarotta, S., Arena, F., Floriani, C. & Zanazzi, P. F. (1982). J. Am. Chem. Soc. 104, 5082–5092.  CSD CrossRef CAS Web of Science Google Scholar
First citationGheorghe, R., Cucos, P., Andruh, M., Costes, J.-P., Donnadieu, B. & Shova, S. (2006). Chem. Eur. J. 12, 187–203.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoner, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724–1727.  CrossRef CAS Web of Science Google Scholar
First citationMiyasaka, H., Matsumoto, N., Ōkawa, H., Re, N., Gallo, E. & Floriani, C. (1996). J. Am. Chem. Soc. 118, 981–994.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219–221, 379–414.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWang, W. & Shen, Y.-M. (2009). Acta Cryst. E65, m557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, H.-Q. (2009). Acta Cryst. E65, m400.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds